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Abstract: Background: A major driver of individual variation in long-term outcomes following a
large vessel occlusion (LVO) stroke is the degree of collateral arterial circulation. We aimed to develop
and evaluate machine-learning models that quantify LVO collateral status using admission computed
tomography angiography (CTA) radiomics. Methods: We extracted 1116 radiomic features from
the anterior circulation territories from admission CTAs of 600 patients experiencing an acute LVO
stroke. We trained and validated multiple machine-learning models for the prediction of collateral
status based on consensus from two neuroradiologists as ground truth. Models were first trained
to predict (1) good vs. intermediate or poor, or (2) good vs. intermediate or poor collateral status.
Then, model predictions were combined to determine a three-tier collateral score (good, intermediate,
or poor). We used the receiver operating characteristics area under the curve (AUC) to evaluate
prediction accuracy. Results: We included 499 patients in training and 101 in an independent test
cohort. The best-performing models achieved an averaged cross-validation AUC of 0.80 ± 0.05
for poor vs. intermediate/good collateral and 0.69 ± 0.05 for good vs. intermediate/poor, and
AUC = 0.77 (0.67–0.87) and AUC = 0.78 (0.70–0.90) in the independent test cohort, respectively. The
collateral scores predicted by the radiomics model were correlated with (rho = 0.45, p = 0.002) and
were independent predictors of 3-month clinical outcome (p = 0.018) in the independent test cohort.
Conclusions: Automated tools for the assessment of collateral status from admission CTA—such as
the radiomics models described here—can generate clinically relevant and reproducible collateral
scores to facilitate a timely treatment triage in patients experiencing an acute LVO stroke.
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1. Introduction

There is considerable variability in clinical outcomes and the extent of ischemic damage
among patients experiencing a large vessel occlusion (LVO) stroke after an endovascular
thrombectomy (EVT) [1]. One significant contributor to this variation is differing degrees
of collateral arterial circulation beyond the site of occlusion, wherein patients with better
collateral flow suffer less neurological damage and have better outcomes [2]. Indeed,
patients with good collateral flow have demonstrated higher rates of recanalization after
EVT or intravenous thrombolysis, lower final infarct volumes, a slower rate of infarct
progression, and better functional outcomes than patients with poor collateral flow [3–5].

The recognition that collateral status affects LVO stroke outcomes after EVT is reflected
by current guidelines and proposed prognostic scales [6]. Recent trials have recognized
the added value of collateral assessment in early LVO ischemic changes, noting, critically,
that poor collaterals indicate a need for rapid recanalization [7]. To this end, the effect
of collateral status on the relative benefit of extended-time-window EVT (6-to-24 h after
onset) remains an area of active research [8]. While a quantification of collateral status is
required for its use as a universal prognostic biomarker, commonly used scales vary in both
number of categories and type of assessment, and collateral status grading has yet to be
standardized [9,10]. Collateral status scoring is also not routinely required in radiologists’
reports and is not an inherent part of the ‘code stroke’ CT angiography (CTA) workflow.
As timely, accurate decision making in the acute stroke setting is imperative, a quick,
objective, and automated assessment tool would be an ideal way to counter inconsistencies
in collateral scoring and assist in time-sensitive patient triage.

In the present study, our overarching goal was to assist LVO stroke treatment decision
making and expedite risk stratification in these patients upon admission based on collateral
status. To this end, we hypothesized that the radiomic features of admission CTA scans
could provide an objective measure of collateral arterial flow in patients experiencing an
acute LVO stroke. Radiomics-based models, in which several hundred quantitative features
derived from medical images are fed to machine learning algorithms for the prediction
of a variable of interest, have already proven useful in predicting clinical variables that
can assist with prognostication in acute LVO stroke cases [11–14]. We thus aimed to use
radiomics methods to create an automated assessment platform for collateral flow. From a
database of 600 acute LVO stroke patients, we extracted radiomic features from the anterior
circulation territories of admission CTAs, and then, using multiple combinations of feature
selection and machine learning classifiers, we trained, optimized, and validated models
to quantify collateral arterial flow. The present work describes a methodology for the
development and testing of these models, analyzes their performance in an independent
test cohort, and evaluates the clinical relevance of their predictions as compared to collateral
scoring determined by neuroradiologists.

2. Methods
2.1. Data Acquisition

From the Yale New Haven Hospital stroke center registry, 600 consecutive subjects
who experienced an LVO stroke were identified between 1 January 2020–31 October 2020.
Included patients met the following criterial: (1) all patients suffered an anterior circulation
LVO stroke (ICA, M1, or M2 occlusion); (2) all patient had an admission CTA scan with slice
thickness ≤1 mm; (3) all patients were sent for EVT intervention; and (4) the functional
outcome for all patients was recorded at discharge and at 3-month follow-up (or the closest
follow-up interval) using the modified Rankin Scale (mRS) functional outcome assessment.
EVT reperfusion success was quantified by the treating neuro-interventionalist according to
the modified Thrombolysis in Cerebral Infarction (mTICI) scale. Patients were excluded for
the following reasons: (a) the patient had a simultaneous posterior circulation LVO; (b) the
patient’s admission CTA was of poor quality because of motion, metal artifact, or scanner-
based artifacts; or (c) the patient was missing admission or follow-up clinical information.
We obtained approval from our institution’s institutional review board (IRB) for our study.
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Our IRB approval included a waiver of informed consent from study participants due to
the retrospective nature of our data collection. Patient management and procedures at our
hospital were followed according to the institutional and national guidelines at the time of
patient admission and were not influenced by research protocols.

2.2. Collateral Status

For assessment of collateral status, we used the 3-point Miteff scoring system given its
easy-to-use 3-level scoring [15], and proven reliability for predicting outcomes in throm-
bolyzed stroke patients compared to other scoring systems [16]. In this scoring system,
a grade of 3 is assigned if vessels are reconstituted distal to the occlusion, a grade of 2 is
assigned if vessels can be seen at the Sylvian fissure, or a grade of 1 is assigned when the
contrast opacification is seen only in the distal superficial branches [15]. For each of the
included subjects, collateral status scores were independently quantified by two neuroradi-
ologists (S.P. and A.K.) as poor, intermediate, or good [15]. Both neuroradiologists were
board certified, each with at least 7 years of experience in reviewing brain CTAs, and were
blinded to each patient’s clinical and other imaging data. In subjects with disagreement,
consensus scores were determined conjointly. We calculated interrater correlation using
Cohen’s kappa and compared collateral status correlations with patient outcomes (mRS at
3 months) using Fisher’s r-to-z transformation. The two-rater consensus score was used as
the measure of ground truth for collateral status modeling and analyses.

2.3. Image Pre-Processing and Feature Extraction

The radiomics features of middle cerebral artery (MCA) territories were extracted
from native CTAs as previously described [17]. Image pre-processing was conducted as
follows: isotropic 1-mm spacing of voxels spacing was achieved through image resampling
to ensure rotational invariance of texture features. Given that intravenous bolus timing
may differ during CTA scan acquisition, all images were normalized, and voxels were
only included if they were between a 1-to-500 Hounsfield unit (HU) range. We extracted
a total of 1116 “texture-matrix” and “first-order” radiomics features from the CTA MCA
territories after high- and low-pass filters were implemented in each spatial direction
(“coif-1” transformation of wavelets and “edge-enhancement” Laplacian of Gaussian (LoG)
filter using sigma values of 6, 4, and 2 mm), using a customized Pyradiomics pipeline [18].
Radiomic features included first-order features (e.g., kurtosis, mean, variance), gray level
co-occurrence texture features (e.g., contrast), gray level size zone texture features (e.g., gray
level variance), gray level run length matrix features (e.g., run entropy), neighboring gray
tone difference matrix features (e.g., coarseness), gray level dependence matrix features
(e.g., gray level variance). Detailed descriptions of radiomic features are provided in
Supplemental Table S1, and a complete list of the first-order and texture features used in
this study is described in van Griethuysen et al., 2017 [19].

2.4. Training and Optimization of Models

Separate datasets were allocated for training/cross-validation and independent testing,
with patient dataset assignment made at random. Separate models were trained for binary
prediction of either (1) poor vs. intermediate or good collateral status, or (2) good vs.
poor or intermediate collateral status. Following the methodological framework first
described in Haider et al. [20], we applied 50-to-200 rounds of 5-fold cross-validation
to optimize the hyperparameters for each machine-learning algorithm using Bayesian
Optimization [21]. After optimization, 20 rounds of 5-fold cross-validation were performed
using the optimized hyperparameters and the receiver operating characteristics (ROC) area
under the curve (AUC) subsequently determined in validation folds for each combination of
6 feature selection methods and 6 machine learning classifiers (36 pairs). The average AUC
across 100 validation folds was calculated and used to determine the optimal performing
model (pair of feature selection method and machine-learning classifier). The 6 feature
selection methods and 6 machine learning classifiers are described below. The machine
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learning classifiers’ hyperparameters and their range are specified in Supplemental Table S2.
All 36 possible combinations of the six feature selection methods (A) and six machine
learning classifiers (B) were used to create candidate models for prediction of collateral
status. Detailed descriptions of each feature selection method and machine learning
classifier are noted in previous work [20].

2.4.1. Feature Selection Methods

Hierarchical clustering (HClust): In this feature selection method, we first computed
an Euclidean feature distance matrix of all radiomic features using the “stats” package in R
(version 3.6.0) [22]. This was followed by Ward clustering [23], and cutting the resultant
dendrogram until 20 clusters remained, allowing for extraction of “meta-features” by
averaging the features of the remaining clusters as 20 meta features in analysis.

Minimum redundancy maximum relevance filter (MRMR): Using the R “mRMRe”
package (version 2.0.9) [24], we perform traditional MRMR feature selection to select the n
most predictive features, as n was tuned during Bayesian optimization as a hyperparameter.

No feature selection (noFS): No feature selection was performed for this method. The
classifiers were fitted on the entire feature set.

Principal component analysis (PCA): Using the “prcomp” function of the R “stats”
package (version 3.6.0) [22], we adapted PCA for feature selection using the schemata
proposed by Song et al. [25], wherein 30 eigenvectors were selected and ranked. The n
features contributing the most to the feature extraction result were used for classifier fitting.

Pearson correlation-based redundancy reduction with mutual information maximiza-
tion filter (pMIM): First, we computed Pearson’s correlation coefficient (r) for all radiomic
feature pairs using the “cor” function of the R “stats” package (version 3.6.0) [22], and
excluded feature pairs with an absolute r value > 0.9 to reduced multicollinearity (R “caret”
package “findCorrelation” function) [26]. We then applied a mutual information maximiza-
tion filter to non-redundant features using “MIM” function of “praznik” package (version
6.0.0) R [27].

RIDGE regularized logistic regression for feature selection (RIDGE): We used the R
“glmnet” package (version 2.0-18) [28] “cv.glmnet” function to fit a ridge regularized logistic
regression model. The lambda parameter was determined using the cv.glmnet function’s
internal 10-fold cross-validation. Each feature’s regression coefficient was derived from the
fitted “glmnet” at a lambda value that maximized the mean cross-validated AUC. Then,
the n highest-ranked features based on absolute regression coefficient were selected.

2.4.2. Machine Learning Classifiers

Elastic net regularized logistic regression (ElNet): We used the “cv.glmnet” function
of the R “glmnet” package (version 2.0-18) [28]. The lambda parameter was determined
using the internal 10-fold cross-validation mode of the “cv.glmnet” function similar to
the Ridge model. The Elastic Net regression provides a hybrid approach that blends both
penalizations of the L2 and L1 regularization of lasso (alpha = 1) and Ridge (alpha = 0)
methods. We finetuned the alpha hyperparameter during Bayesian optimization process.

Naïve Bayes classifier (NBayes): For this machine learning classifier, we used the
“naive_bayes” function of the R “naivebayes” package (version 0.9.6) [29] to create the
models. We did not use Laplace smoothing or kernel.

Random forest classifier (RF): We used the R “randomForest” package (version 4.6-
14) [30], and configured the model to grow 1000 trees and perform sampling of cases with
replacement. The “mtry” parameter (the number of features randomly sampled at each
split) and the “maxnodes” parameter (the maximum number of terminal nodes in a tree)
were tuned in Bayesian optimization. All other function parameters were kept at their
default values.

Support vector machine classifier, (SVM_sig) and (SVM_rad): We used the R “e1071”
(version 1.7-2) package [31] to implement SVM with “radial” and “sigmoid” kernels.
Sigmoid and radial kernels are among the most widely used SVM kernels. The sigmoid
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kernel is most commonly used as a proxy for neural networks. The radial kernel is a
general-purpose kernel that is appropriate for use when there is no prior knowledge about
the data [32]. In SVM with radial kernel (SVM_rad), the “gamma” and “cost” parameters
were optimized. In SVM with sigmoid kernel (SVM_sig), the “gamma”, “coef0”, and “cost”
parameters were optimized. Class weights were specified to be inversely proportional to the
class distribution in the training data, and all other parameters were kept at default values.

Extreme gradient boosting classifier (XGB): For this machine learning classifier, we
implemented extreme gradient boosting utilizing the R “xgboost” package [33,34] in tree-
booster mode (the “gbtree” option). We tuned “eta”, “gamma”, “max_depth”, “subsample”,
“lambda”, “min_child_weight”, and “colsample_bytree” with 300 iterations of boosting.
The remaining parameters were kept at their default values.

2.5. Final Model Training and Validation

For independent validation, we identified the candidate model (feature selection
method and machine learning algorithm pair) with the highest averaged cross-validation
AUC. Then, we trained this model on the complete training/cross-validation dataset
applying optimized machine learning hyperparameters. This final model was then applied
to the independent test cohort to predict collateral status. The independent test cohort was
completely isolated from the training/cross-validation process. We used DeLong’s test to
evaluate paired AUCs and to calculate the p-value and 95% confidence interval (CI) for
each AUC using the R pROC package [35,36]. We also used the multi-class ROC analysis
from the pROC package, to compare the accuracy of three-tier collateral status prediction
versus consensus scores in independent test cohort. The multiclass AUC is the mean of
separate AUCs and cannot be plotted. Similarly, confidence intervals, standard deviation,
smoothing and comparison tests are not applicable to this analysis [37].

2.6. Statistical Methods

For univariate comparison between the training/cross-validation and independent
test groups, we used the Student’s t-test for continuous variables, the Mann–Whitney
rank test for ordinal variables, and the Fisher exact test for categorical variables. We used
Spearman rank correlation to determine the relationship between collateral status ratings
and predicted collateral scores with patient 3-month mRS outcome. We also performed
multivariate ordinal logistic regression to determine whether collateral scores were inde-
pendent predictors of outcome—adjusting for age, sex, admission NIHSS, and post-EVT
reperfusion mTICI scores. The threshold for statistical significance was a p value < 0.05.

3. Results
3.1. Patients Characteristics

A total of 600 patients were included in our analysis. The demographic characteristics
of the training/cross-validation (n = 499) and independent test cohorts (n = 101) are detailed
in Table 1. Between these two groups, there was no significant difference in average age,
sex, admission NIHSS, onset-to-imaging time, or functional outcome at 3 months (Table 2).
The consensus collateral scores were good, intermediate, and poor in 212 (42%), 174 (35%),
and 113 (23%) patients in the training cohort, and 37 (37%), 35 (35%), and 29 (29%) patients
in the test cohort, respectively (score distribution difference not significant, p = 0.17).
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Table 1. Evaluation of collateral scores as independent predictor of 3-month outcomes in multivariate
model (test cohort, n = 101).

Collateral Status Score Odds Ratio (95% Confidence Interval) p Value

Neuroradiologist #1 1.64 (1.12–2.40) 0.012

Neuroradiologist #2 1.14 (0.75–1.72) 0.532

Consensus scores 1.61 (0.99–2.61) 0.054

Radiomics model prediction 2.38 (1.16–4.86) 0.018

Table 2. Training and testing cohort demographic characteristics.

Training
(n = 499)

Test
(n = 101) p Value

Patients’ age at admission (years) 70.4 ± 15.4 69.2 ± 14.0 0.471

Basline NIH Stroke Scale 15 (10–19) 13 (7–19.25) 0.126

Time gap from onset to angiography (hours) 7.2 ± 5.2 6.8 ± 4.8 0.501

Time gap from onset to CTA (hours) 5.3 ± 5.4 5.6 ± 5.3 0.603

Female sex 230 (46%) 48 (48%) 0.653

Side of occlusion side (right) 243 (48%) 41 (41%) 0.518

Internal Carotid Artery occlusion 120 (24%) 19 (19%) 0.254

Middle Cerebral Artery M1/M2 occlusion 379 (76%) 82 (81%) 0.254

modified Rankin Scale (mRS) score at 3-month 4 (2–6) 3 (1–6) 0.063

Favorable outcome at 3 months (mRS ≤ 2 at 3-month) 376 (75%) 68 (68%) 0.140

3.2. Comparison of Different Model Combinations for Predicting Collateral Status

A heatmap summary of the performance of all collateral status candidate models
in cross-validation is provided in Figure 1. The highest averaged AUC was 0.69 ± 0.05
for good vs. poor or intermediate collateral status prediction by combination of Ridge
feature selection and random forest machine learning, and was 0.80 ± 0.05 for poor vs.
intermediate or good collateral status prediction by combination of Ridge feature selection
and XG-boost machine learning.
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3.3. Independent Testing

In the independent testing cohort, the Ridge and XG-boost combination achieved an
AUC of 0.77 (0.67–0.87) for the prediction of poor vs. intermediate or good flow and an
AUC of 0.78 (0.70–0.90) for good vs. poor or intermediate flow (Figure 2). Of note, the
Ridge and random forest combination model had an AUC of 0.68 (0.57–0.79) for good vs.
poor or intermediate flow, which was lower than the runner-up combination of Ridge and
XG-boost in the cross-validation platform (Figure 1). On the independent test set, we also
evaluated the accuracy of the three-tiered model predictions versus consensus scores (poor
vs. intermediate vs. good) using multi-class ROC analysis, with a resulting multi-class
AUC of 0.635 (notable, no 95% CI or p value is appropriate for this analysis).
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Figure 2. Receiver operating characteristics (ROC) area under the curve (AUC) analysis for collateral
status prediction in the independent test cohort using Ridge feature selection and XG-boost classifier.
ROC curves for predicting poor vs. intermediate or good flow are depicted in dotted line, and for
predicting good vs. poor or intermediate flow are depicted in dashed line.

3.4. Concordance Analysis

By combining the predictions made by Ridge and XG-boost models in the independent
test cohort, a single prediction of poor, intermediate, or good collateral flow was deduced.
The concordance of radiomics model predictions with the consensus scores from both
neuroradiologists are shown in Figure 3. The radiomics models predicted collateral status
in agreement with consensus scores 49% of the time, with a Cohen’s kappa of 0.22 indicating
fair concordance with the set of consensus scores [38]. By comparison, the neuroradiologists
had an interrater concordance of kappa = 0.38, also indicating fair concordance.
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Figure 3. Concordance of collateral status scores by neuroradiologists and radiomics model predic-
tions in independent test cohort (n = 101). Consensus scores were based on neuroradiologists #1 and
#2’s ratings and consensus read on subjects with discrepancy. Ratings by neuroradiologist #1 were in
agreement with the consensus score in 67% of cases, and were within one degree of the consensus
score in 100% of cases. Ratings by neuroradiologist #2 were in agreement with the consensus score
in 80% of cases, and were within one degree of the consensus score in 92% of cases. Ratings by the
radiomics model were in agreement with the consensus score in 49% of cases, and were within one
degree of the consensus score in 88% of cases.
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3.5. Relationship of Collateral Score with Clinical Outcomes

In the independent test cohort, there was a significant correlation of 3-month outcome
(0-to-6 mRS score) with consensus collateral scores (rho = 0.31, p = 0.002), collateral status
as per neuroradiologist #1 (rho = 0.35, p < 0.001), collateral status as per neuroradiologist
#2 (rho = 0.28, p = 0.005), and collateral status predicted by the radiomics model (rho = 0.45,
p < 0.001). In the multivariate ordinal logistic regression, the collateral scores determined
by neuroradiologist #1 (odds ratio = 1.64 (1.12–2.40), p = 0.012), and those predicted by the
radiomics model (odds ratio = 2.38 (1.16–4.86), p = 0.018) were independently associated
with 3-month mRS after adjusting for age, sex, admission NIHSS, and post-EVT reperfusion
mTICI (Table 1).

In separate multivariate ordinal logistic regressions within independent test cohort
(n = 101), the collateral status scores determined by neuroradiologist #1 and from radiomics
model prediction were independent predictors of modified Rankin scale (mRS) at 3 months
after adjustment for age, sex, NIHSS on admission, and post-thrombectomy reperfusion
indicated by modified Thrombolysis in Cerebral Infarction score, mTICI.

4. Discussion

Using radiomic features extracted from the admission CTAs of acute LVO stroke
patients, we devised, optimized, and validated machine learning classifiers to predict
collateral status. In the independent test cohort, the collateral scores predicted by the
radiomics model had significant correlations with clinical outcome and were independent
predictors of outcome in multivariate regression. Our findings highlight the feasibility
and clinical reliability of automated image analysis tools for the assessment of collateral
status. Specifically, for subjective ratings such as collateral status, which lack objective gold
standards, automated image analysis tools with reproducible and clinically relevant results
can facilitate timely prognostication and treatment triage in the acute stroke setting.

One of the main challenges in training machine learning models for the prediction of
collateral status is the subjective nature of the scoring system. In other words, the ground
truth used for training and testing of the models is prone to interrater variability. Even
after a one-hour dedicated training session with collateral score examples, the interclass
correlation coefficient between 29 radiologists and radiology residents reached 0.75, using
the Tan scale for collateral status [39,40]. We utilized the Miteff scale, as it has been a
reliable scoring system for predicting both favorable and unfavorable outcome, rather than
unfavorable outcome alone [16]. Nevertheless, the significant association of radiomics-
generated collateral scores with 3-month mRS outcome in the independent test cohort
(Table 1) is strong evidence for the clinical relevance of model prediction despite lower
concordance with consensus scores compared to neuroradiologists (Figure 3).

A few groups have also developed automated tools for the assessment of collateral
status. In 2023, Kuang and colleagues utilized a convolutional neural network (CNN)
to predict collateral status in 154 patients experiencing an acute ischemic stroke using
a three-tier scale for assessment of collateral status on single-phase CT and Maximum
Intensity Projection (MIP) images for training and cross-validation. Binary prediction (good
vs. poor collateral flow) AUCs for their cross validation models ranged from 0.71–0.79,
comparable to our cross validation performance of 0.70–0.80 [41]. However, their study
lacked an independent test cohort, and the best performing model in five-fold cross-
validation achieved a 69% concordance with ground truth consensus scores from two
neuroradiologists (scheme similar to Figure 3, wherein our model had a 49% concordance
in a separate independent test dataset) [41]. In 2022, Wolff et al. [39] also utilized a CNN
for collateral status scoring based on the four-tiered Tan scale [40] (absent collateral supply,
>0% and ≤50% collateral supply, >50% and <100%, and 100%) using patients from the
MR CLEAN registry [42]. However, concordance with radiologist-based consensus scores
was reduced to a two-tier framework (good versus poor) in a random subset of patients,
wherein it was found to be 59%. In addition, radiologist ratings that differed by more than
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one degree from the consensus were rescored by the first and senior authors, which might
have improved interrater agreement [39].

Commercial software, such as e-CTA by Brainomix, has also been assessed for its
potential to improve interrater concordance of quantitative collateral status scoring. In 2023,
Jabal et al. [43] reported an improvement from 59% to 68% in interrater concordance when
12 raters (junior neuroradiologists, senior neuroradiologists, and neurologists) utilized
e-CTA to assist in their ratings (four-tiered Tan scale) in cohort of 56 patients. However,
the performance of the e-CTA tool itself and its concordance with the three senior raters
who determined the consensus scores as well as the interrater concordance among the
three senior raters were not reported [43]. In addition, there was no reported information
regarding potential correlation between e-CTA collateral status and clinical outcome. The
RAPID software also offers the hypoperfusion index ratio (HIR) to assess collateral status
on multiphase CTA. However, recent comparisons of RAPID HIR with neuroradiologist
collateral status ratings have been limited to a two-tier good vs. poor framework [44].

Compared to prior reports, the main strengths of our study are model validation in an
independent test cohort; the use of three-tier collateral classification; the establishment of
clinical correlation and relevance of model-predicted collateral scores; and the transparent
depiction of concordance between the model and neuroradiologists with consensus collat-
eral scores which were used as the ground truth. Automated tools for predicting collateral
status allow for a more personalized approach to stroke management, considering the spe-
cific needs and potential responses of each patient. More consistent automated assessments
of collateral status compared to visual evaluations can reduce inter-institutional variabilities
in treatment decisions and research collaboration. Finally, automated assessment of the
collateral status can help prioritize patient treatment based on those who have a more
urgent need for reperfusion therapies.

The present work lays a foundation for the future implementation of fully automated
assessment tools for LVO stroke patients. Such tools can ideally be implemented into stroke
patient workflow such that the patient’s admission CTA scan is automatically segmented,
radiomics features are automatically extracted, and these features are automatically ana-
lyzed as in the present work to derive a predicted quantitative measure of collateral flow.
This requires no manual segmentation or analysis on behalf of the physician. In the ideal
real-world setting, the radiologist, neurologist, and other consulting physicians can see
and consider the predicted collateral status variables as they make time-sensitive treatment
decisions. This streamlined, automated platform would prove to be especially valuable in
tele-stroke settings, and in rural or underserved community hospitals.

An important limitation of our study is the absence of LVO patients without thrombec-
tomy treatment. Since collateral status has predominantly been addressed in the context
of treatment guidance in thrombectomy candidates, we limited our study cohort to pa-
tients with LVO who underwent thrombectomy. This may have affected the proportions
of good, intermediate, and poor collateral statuses in our study cohorts compared to all
LVO stroke patients regardless of treatment status. The generalizability of our models to
other institutions and patient populations should also be assessed in future work. Incon-
sistency in contrast administration and acquisition protocols across different centers is a
crucial factor hampering reproducibility of collateral status assessment across different
imaging studies. All patients in our study cohort had single-phase early arterial CTA
acquisition; however, multiphase or late-phase acquisitions can inherently affect collateral
status evaluation. Also, many other machine learning models such as Bayesian Network
Classifier, AdaBoost Classifier, and Neural Network Classifiers were not tested in our
analyses. Another limitation of our dataset is the fact that there were proportionally more
M1 occlusions in the training cohort and proportionally more M2 occlusions in the testing
cohort. In general, collateral flow becomes negligible and clinically irrelevant at the distal
endpoints of an arterial tree [45]. However, precise differences in M1 vs. M2 collateral flow
have not been extensively described, and do not likely make a clinically relevant difference
in our study. There was also a proportionally higher rate of successful reperfusion in the
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testing cohort. As recent work has suggested that clinical outcome predicted by collateral
flow is most reliable when EVT is technically successful [46], our analysis of the relationship
between predicted collateral flow and functional clinical outcome (Table 1) is appropriately
conducted within the testing cohort. In addition to the future study directions noted above,
further work may also aim to improve the model’s performance by incorporating clinical
data. Clinical variables such as smoking history [47], history of prior transient ischemic
attack [48], and prior statin use [49], for example, have been associated with better collateral
flow and may improve model performance. Patient age has conversely been associated
with decreased collateral flow [50], though other clinical risk factors for stroke in very old
age (>85) are thought to be unique [51] and future studies on this subset of patients alone is
warranted. Overall, as clinical data are not always readily available in the time-sensitive
period of ‘code stroke’ decision making, the fact that models based on imaging data alone
demonstrate good performance remains important for real-life clinical scenarios.

5. Conclusions

In summary, our work illustrates that radiomics-based tools can be feasibly employed
for automatically and objectively quantifying clinically relevant collateral statuses from
admission CTA scans of patients experiencing an acute LVO stroke. In the test cohort,
the scores predicted by our radiomics model were independent predictors of 3-month
outcomes. As collateral status becomes an increasingly important clinical variable for
prognostication and treatment decision-making in acute LVO stroke cases, automated
models such as ours are particularly helpful given the lack of standardized collateral status
scoring. To improve patient selection and, ultimately, patient outcomes, these tools may
play a transformative role in facilitating time-sensitive and objective patient evaluation.
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