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Abstract: Intravoxel Incoherent Motion (IVIM) imaging provides non-invasive perfusion measure-
ments, eliminating the need for contrast agents. This work explores the feasibility of IVIM imaging
in whole brain perfusion studies, where an isotropic 1 mm voxel is widely accepted as a standard.
This study follows the validity of a time-limited, precise, segmentation-ready whole-brain IVIM
protocol suitable for clinical reality. To assess the influence of SNR on the estimation of S0, f, D*,
and D IVIM parameters, a series of measurements and simulations were performed in MATLAB
for the following three estimation techniques: segmented grid search, segmented curve fitting, and
one-step curve fitting, utilizing known “ground truth” and noised data. Scanner-specific SNR was
estimated based on a healthy subject IVIM MRI study in a 3T scanner. Measurements were con-
ducted for 25.6 × 25.6 × 14.4 cm FOV with a 256 × 256 in-plane resolution and 72 slices, resulting in
1 × 1 × 2 mm voxel size. Simulations were performed for 36 SNR levels around the measured SNR
value. For a single voxel grid, the search algorithm mean relative error Ŝ0, f̂ , D̂∗, and D̂ of at the
expected SNR level were 5.00%, 81.91%, 76.31%, and 18.34%, respectively. Analysis has shown that
high-resolution IVIM imaging is possible, although there is significant variation in both accuracy and
precision, depending on SNR and the chosen estimation method.

Keywords: MRI; DWI; IVIM; SNR; perfusion; brain

1. Introduction

In many brain perfusion studies, contrast agents are used [1]. Although current
gadolinium-based contrast agents have relatively low toxicity, the possibility of long-term,
negative side effects is present [2]. A contrast-free MRI perfusion imaging method would
improve clinical scanning protocols’ safety. Such a possibility arises when considering
IVIM-based perfusion studies.

IVIM MRI was first described by Le Bihan in 1986 [3] as an extension of diffusion MRI
(dMRI) that explores the random movement of molecules [4], particularly water, within
biological tissues. This movement, known as diffusion, results from molecular collisions
and follows a random walk pattern or so-called Brownian motion [5]. A dMRI sequence
was first used, modified by Stejskal and Tanner [6] into a spin-echo sequence, where the MR
echo signal was sensitized to water molecules’ diffusion speed by applying magnetic field
gradient pulses. The resulting exponential decrease in the measured MR signal depends on
the product of the diffusion coefficient (D) and the magnitude of sensitization, the so-called
b-value (later in this work referred to as b or b-value).

In IVIM MRI, the movement of water, caused by the blood flow in the vessel network
being aligned in multiple directions within a voxel, can be considered a fast (pseudo-
diffusion, D∗) component. This pseudo-diffusion component and the extravascular com-
ponent (regular diffusion, D) contribute to MR signal attenuation, allowing both tissue
diffusion and blood microcirculation to be detected and separated [7]. Thus, the overall
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dMRI signal, as a combination of both fast and regular components, can be described using
a bi-exponential signal decay model, given in Equation (1):

S(b) = S0·
(

f ·e−D∗ ·b + (1 − f )·e−D·b
)

(1)

where:

• S(b) represents the measured signal intensity in the DWI image for a given b.
• b stands for b-value—diffusion weighting factor, determined by the strength and

timing of the diffusion gradients prior to signal echo.
• S0 is the signal intensity in the absence of diffusion weighting (b = 0).
• f represents the fraction of signal coming from quick-diffusing water molecules, which

are assumed to be circulating in the blood, also referred to as the perfusion fraction.
• D* is the pseudo-diffusion coefficient, which reflects the diffusion of water in capillaries

and small vessels.
• D represents the true diffusion coefficient, which characterizes the diffusion of ex-

travascular water molecules.

An illustration of an example of the Intravoxel Incoherent Motion (IVIM) dataset is
presented in Figure 1. The parameters chosen for this representation are f = 0.1, D = 0.001,
D∗ = 0.012, S0 = 1. These values were selected to demonstrate a clear and explanatory
IVIM dataset generated in accordance with Equation (1).
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Figure 1. A bi-exponential IVIM model illustration. The orange curve represents the prediction
from over-threshold b-values. The blue curve represents the actual data. The difference between the
prediction from high b-values and the actual data is attributed to the influence of blood circulation
and is referred to as pseudo-diffusion [8]. It is seen that b-values where scanning is sensitive for fast
components lie in the range of approx. 0–250.

While previous studies have extensively explored the applications of the IVIM tech-
nique in various medical fields, especially in pathological conditions [9–11], the influence of
SNR on the accuracy of IVIM parameter determination remains insufficiently investigated
in terms of clinical, time-limited whole brain scanning, only partially covered by simula-
tions in silico [12]. In contrast to other studies conducted for IVIM-specific exams, which
took most of the scanner time, this study aims to assess quick IVIM scanning protocols as
an additional series to regular clinical acquisition protocols. Quick IVIM protocols may be
useful, for example, during the acute stroke phase, where imaging has to be completed in
less than 10 min [13], or as a DWI extension for additional screening that provides regular
DWI measures, but does not take too much time.
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One of the techniques that may help overcome SNR issues is voxel clustering or
averaging signals from atlas-based regions of interest. Although gray matter exhibits
thicknesses of approximately 2–3 mm in the context of brain imaging, in diffusion-weighted
images, this tissue effectively occupies nearly the whole voxel between white matter
(WM) and cerebrospinal fluid (CSF). The quality of single voxel estimation rather than the
clustered approach should also be investigated, as, in this tissue, the precise drawing of
large ROIs may be difficult.

To assess the chance of performing an accurate IVIM MRI parameters estimation, the
SNR level must be known as a crucial factor, determining the reliability and precision of
estimation. SNR plays a significant role in DWI, influencing the ability to distinguish subtle
signal variations related to diffusion from noise in the acquired images. A higher SNR
allows for better discrimination between actual signal changes related to perfusion effects
and random fluctuations. Therefore, knowledge of the SNR level is essential for ensuring
and estimating the robustness and validity of IVIM MRI analyses.

The primary aim of this study was to investigate the impact of SNR on the estima-
tion of the f, D, and D* parameters with the IVIM technique. By employing multiple
parameter estimation methods, this study aims to compare their efficacy and identify
potential strengths and weaknesses in particular SNR ranges and region sizes. A simulated
environment is created to evaluate the accuracy of the IVIM MRI parameter estimation
methods. IVIM parameters were estimated using three methods commonly found in the
literature [14], as follows: one-step curve fitting, two-step curve fitting, and the two-step
grid search algorithm on simulated ground truth, noise-added data.

2. Materials and Methods

Considering the IVIM protocol to be as quick as possible, the scanning duration was
limited to 15 min. A MUSE sequence was used to ensure the maximum available SNR
level [15]. While planning an experiment, we tried selecting b-values that were accessible on
the scanner and were close to an optimized set [16]. Under these conditions, the GE MR 3T
Pioneer scanner with 21 channel head/neck coil was able to acquire images for 10 b-values
(1200, 1000, 700, 500, 200, 120, 80, 50, 20, and 10) measured in three orthogonal directions
and five b0 (no diffusion weighing). Echo Time (TE) was set to 85 ms, and Repetition Time
(TR) was set to 14.3 s. Voxel dimensions were 1 × 1 mm in-plane resolution, 2 mm slice
thickness, 72 slices (whole brain coverage), slice gap 0, phase acceleration factor was set to
2, and NEX 1 for all b-values. Two anatomical sequences were applied, as follows: T1 MP-
RAGE TR 1370.36 ms, TE 2.228 ms, TI 718.0 ms, flip angle 7◦, 1 mm cubic voxel; and CUBE
T2, TE 71 ms, TR 2800 ms, 1mm cubic voxel, reconstructed to 0.5 × 0.5 × 1 mm voxel.

The diffusion data underwent a preprocessing procedure involving the following five
steps: denoising, removal of Gibbs ringing artifacts, correction of susceptibility-induced
distortions, eddy current correction, and DWI bias field correction. Denoising was per-
formed using the Marchenko–Pastur Principal Component Analysis [17–19], while Gibbs
ringing artifacts were mitigated through the method of local subvoxel-shifts [20] and were
implemented in MRTrix version 3.0.4 [21]; susceptibility-induced distortions correction
and eddy current correction was corrected using FSL version 6.0.6.4 [22]; and B1 Inho-
mogeneity correction was corrected using the N4 algorithm [23] implemented in ANTs
version 2.3.1 [24]. Preprocessed data underwent a brain extraction procedure with MRTrix.
SNR was calculated from 5 b0 scans as mean signal and standard deviation quotient in
MATLAB version 2023a [25] for brain-extracted images. Normalization of IVIM data to
MNI152 space [26] was performed using MRTrix algorithms. To match structures in MNI
space, patients’ b0 scan underwent extraction, followed by brain masking. Subsequently,
the histogram of the extracted image was nonlinearly adjusted to match the histogram of
the symmetrical 1 mm3 T2 template. The image was then registered to the template using
affine, followed by nonlinear transformation. The following two transformation matrices
were computed: one for aligning the patient’s image to the template space and another
for aligning the template to the patient’s space. Using the abovementioned transform, the
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Brodmann atlas aligned in MNI space [27] was transformed to patient space and re-gridded
to IVIM data using the nearest neighbor interpolation method. The quality of the registra-
tion procedure was visually inspected. IVIM parameter estimations for 80 Brodmann areas
(40 from the left and 40 from the right hemisphere) were computed based on the averaged
signal from the specified region after normalizing each voxel to its maximal value.

FSL FMRIB’s Automated Segmentation Tool was used on T1 and T2 images to create
white and gray matter maps. Despite the patient being stable during acquisition, a minimal
drift in head position was observed between scans. T1 and IVIM MRI were acquired as
the first and the last imaging sequence, respectively, thus the co-registration of T1 to the b0
IVIM scan was necessary because of discrepancies in spatial alignment caused by patient
movement. This co-registration was performed using SPM12 [28] using the Normalized
Mutual Information objective function. Similar to the above, IVIM parameter estimations
for WM and grey matter (GM) were computed based on the average signal from the region
after normalizing each voxel to its maximal value.

The IVIM signal is generated in silico, mimicking real-world conditions, with known
ground truth values assigned to key parameters such as perfusion fraction ( f ), diffusion
coefficient (D), pseudo-diffusion coefficient (D∗), and baseline signal intensity (S0). This
allows for the latter comparison of estimated values with the true values, providing a
controlled setting to assess the reliability of the estimation methods. These were conducted
using MATLAB and included the generation of synthetic IVIM MRI data using the four-
parametric model described by Equation (1). According to the literature, in GM f, D*, and D
are in the range of 2.4–24.7, 6.2–85.7·10−3 mm2/s, and 0.67–1.20·10−3 mm2/s, respectively,
which was summarized in [29]. To conduct further study, we chose values from the
mentioned ranges to represent IVIM parameter values as a sample from a human brain.
The following values were assigned as ground truth S0 = 1, f = 0.12, D* = 0.01 mm2/s, and
D = 0.001 mm2/s.

Rician noise is introduced to the simulated IVIM signals to replicate the noise inherent
in real-world MRI data. The application of noise ensures that the simulated data resem-
bles the complexities of experimental data, allowing for the evaluation of the parameter
estimation quality.

Random Rician-distributed noise, as shown in Equation (2), was added to create
a multiple realization of IVIM data. The amplitude of the real and imaginary parts of
Rician noise were adequately set to represent SNR levels from 15 to 50. Simulations finally
consisted of n = 17, 280 realizations for each SNR level.

Snoised =
√
(S + Nr)

2 + N2
i (2)

where:

• S represents the “ground truth” signal,
• Snoised represents the noised signal,
• Nr, Ni are, respectively, real and imaginary parts of noise.

For every realization, parameters were estimated using three methods. The one-step
fitting method involves the simultaneous estimation of all parameters, while the two-step
methods separate the estimation into two distinct stages. The first stage aims to estimate
the regular diffusion coefficient (D), for a b-value greater than a certain threshold, followed
by the second stage, where the pseudo-diffusion coefficient (D*) is estimated from the
remaining data below the threshold. This approach relies on the observation that in data
obtained for b-values above 250, the blood fraction signal is close to 0 and below the noise
floor level [8]. For both one-step (4-parameter) and two-step (2-parameter) fitting, the
Trust Regions nonlinear curve fitting method implemented in the MATLAB Curve Fitting
Tool [30] was used. An algorithm was implemented locally for the grid search method.
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The grid search algorithm employs maximum likelihood estimation (MLE) for a
combination of two parameters. Initially, it only monoexponentially estimates D and S0
from the signal obtained for b > 250. Subsequently, for b < 250, it subtracts the previously
estimated signal curve and then fits the remaining data to estimate D∗ and So in a similar
manner. Dividing So from the second step by the sum of the So estimates from both
steps produces f . After the estimation procedure, a Root Mean Square Error (RMSE)
between estimated parameters Ŝ0, f̂ , D̂∗, and D̂ and known ground truth parameters was
calculated for each parameter and SNR level. For three analyzed methods, RMSE relative
to ground truth was plotted as a function of SNR. Additionally, to simulate neighboring
voxel averaging, estimates were calculated for every 8 (2 × 2 × 2), 27 (3 × 3 × 3), and
64 (4 × 4 × 4) averaged realizations.

3. Results
3.1. Estimation of Scanner-Specific SNR

A healthy subject (M, age 55) was scanned using the previously described protocol.
The subject gave their informed consent for inclusion before participating in the study. The
study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the local Ethics Committee for project NCN OPUS 2018/31/B/ST7/01888.

The brain extraction tool found the brain to be occupying 1,011,294 of a total 4,718,592 vox-
els (approx. 20% of the scanned volume) and SNR in the whole brain to have the following
parameters: average = 19.57, median = 19.14, minimum = 0.789, and maximum = 150. The
results are depicted in Figure 2.
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The SNR level was separately estimated for WM and GM voxels using FSL FAST
segmentation with Tissue Probability Maps (TPMs). Acquiring high-resolution T2 data
allowed for the precise separation of these two tissue types. The results were compara-
ble to whole brain analysis and to each other. Estimated parameters for WM, based on
210,523 voxels, were as follows: average = 21.56, median = 21.23, minimum = 1.36, and max-
imum = 62.14. For GM, mask depicted on Figure 3, based on 68,067 voxels average = 20.69,
median = 20.32, minimum = 1.25, and maximum = 117.77.
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Figure 3. Gray matter coverage on DWI scan. The yellow shape represents the coverage of the gray
matter map with a probability > 80% overlayed on b0 image, regridded to IVIM DWI resolution.

3.2. Evaluation of Accuracy

A comparison of RMSE in the function of SNR for the three analyzed methods is
shown in Figure 4. Further tests included averaging simulation data before estimation for
2 × 2 × 2 (Figure 5), 3 × 3 × 3 (Figure 6), and 4 × 4 × 4 (Figure 7) neighboring voxels,
which would be an equivalent of 2 × 2 × 4, 3 × 3 × 6, and 4 × 4 × 8 mm voxels/regions
of interest, respectively.

The values of relative RMSE for SNR 20, closest to the average SNR in the conducted
study, are presented in Table 1.
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Averaging Grid Search Segmented One Step

Single voxel
S0 5.00 7.18 3.98
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D 18.34 24.01 19.24
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S0 1.28 1.38 1.36
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Table 1. Cont.

Averaging Grid Search Segmented One Step

3 × 3 × 3
S0 0.68 0.70 0.73
F 29.07 27.85 36.89

D* 42.57 84.06 54.69
D 5.46 5.36 6.61

4 × 4 × 4
S0 0.44 0.46 0.46
F 18.77 18.08 20.02

D* 29.42 35.88 27.96
D 3.80 3.65 3.99
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3.3. Results from Study
3.3.1. Quality of Matching Subject IVIM DWI Data to T2 MNI Template

Fitting to the template was performed using MRTRix. The results are depicted in
Figure 8.
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3.3.2. Calculation of IVIM Parameters

IVIM parameters were calculated in the following three ways: for WM and GM,
for each of the Brodmann areas, and in a single voxel manner. The results for WM and
GM are presented in Table 2. The calculation of IVIM parameters for Brodmann areas is
summarized using boxplots across all three methods. Three separate plots, containing
three boxplots each, were prepared to illustrate the results. Figure 9 presents the blood
fraction, pseudo-diffusion, and diffusion estimation results. Each boxplot within a single
axes represents estimates from all 80 regions, calculated using the given method. The
results of the single voxel calculation are plotted in Figure 10.

Table 2. Values of IVIM parameters estimation for white and grey matter for voxels with >80%
probability on TPM generated with FSL FAST.

Parameters Grid Search Segmented One Step

White matter
f 0.16 0.16 0.14

D∗ [10−3 mm2

s ] 5.17 5.24 5.06
D [10−3 mm2

s ] 0.79 0.79 0.82

Grey matter
f 0.09 0.08 0.05

D∗ [10−3 mm2

s ] 3.62 3.71 5.00
D [10−3 mm2

s ] 0.65 0.66 0.69
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Out of 369,832 voxels, estimates from 56,989 (approx. 15.42%) were outliers that
reached near 0 blood fraction, f . In total, 70.02% of estimations fell in the range
f ε < 0.02; 0.25 >. Over 54.82% of the estimates from voxels are considered as outliers.
Altogether, 33.21% fell in the range D∗ε < 0.006; 0.05).

4. Discussion

This study aimed to investigate IVIM estimation procedures in various SNR levels
in medical conditions. An evaluation of accuracy was performed for commonly used
techniques [14]. The SNR level is a factor of great importance whilst predicting IVIM
parameters. Unfortunately, it is hard to achieve a high SNR while applying quick scanning
techniques. One of the solutions is voxel clusterization. In many IVIM-related papers,
this technique is used [10,12,29,31]. Another option for improving SNR is using multiple
excitations for a single voxel, as mentioned in [16]. In all these works, the sizes of the
voxels are much larger than in this paper (i.e., 1.8 × 1.8 × 5 mm [29], 1.2 × 1.2 × 4 mm [10],
2.75 × 2.75 × 5 mm [12], 1.14 × 1.14 × 4 mm [16], and 1.5 × 1.5 × 6 mm [32]) and have
a nonzero slice gap or are limited to a lower number of slices, both resulting in worse
segmentation capabilities. Although in most publications SNR level is presented to be in
the range of 10–30 for b0, some publications state SNR is in the range of 35–53 on b-value
1000 [14] or even SNR = 50 dB [16], which corresponds with SNR ≈ 316.22, which is very
unlikely to achieve in any scanning. To achieve precise results at a high SNR level, one
of the works’ total acquisition time was 52 min [12]. Similarly, [32] presents an optimal b
vector for a 12 min sequence, but the number of slices is not clearly defined, so the brain
coverage remains unknown. This consideration raises the question of how to effectively
implement a universal and repeatable IVIM diagnostic sequence.

We showed that high-resolution f and D estimates are consistent with the values
reported in the literature for clustered or large voxel studies. Results are more consistent for
segmented methods, while the one-step method requires a better SNR level. IVIM estimates
from a signal averaged over WM and GM ROIs fit well with reports from previous studies.
Also, the vast majority of estimations for Brodmann areas fell within the ranges reported in
the literature [29].

Some estimated values appear to be outliers, which may stem from small volumes
of interest or locally imperfect segmentation. All outliers may also have multiple causes,
like imperfect acquisition or patient movement, which was observed between the first and
last scan and was properly corrected. Patient movement is another factor emphasizing the
importance of keeping acquisition time in tight constraints.

High-resolution IVIM estimates from voxels mainly occupied by vessels, such as
small arterials with relatively high blood flow [33,34], may yield high f and D∗ estimates.
Consequently, this could potentially result in categorizing them as outliers.

Our interpretation is that the lower D∗ estimation than can be seen in most of the
literature may result from improved sampling precision in GM and Brodmann areas and,
thus, a lower CSF share in the overall signal from the tissue.

Specifically for our scanner, with measured SNR = 20, RMSE of f and D∗ on single
voxel estimations reached 80–100% and 350–500%, respectively. Achieving a higher SNR
level near 50 on a better system would ultimately lead to an RMSE of a single voxel blood
fraction fit near 55%. The RMSE of the blood pseudo-diffusion coefficient fit, in all cases,
was above 70%, reaching 500–600% for curve fitting methods. These RMSE results may
suggest that utilizing IVIM in a single voxel manner may not be optimal. On the other hand,
combining the signal from 27 1 × 1 × 2 mm voxels in an SNR range near that estimated for
our scanner for the RMSE of blood fraction parameter f estimation was able to achieve the
level of 25%, while estimation of D∗ improved from a 100% relative RMSE error to roughly
60%. This improvement of RMSE suggests a high potential for good results on ROI-based
estimations, which was partially confirmed by estimations conducted on Brodmann areas.

Regarding the selection of fitting techniques, in terms of precise f estimation, it is
generally advised to use segmented parameter fitting methods. In all SNR cases, grid search
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and segmented curve fitting represent similar qualities in terms of f prediction, with favor
for the grid search algorithm in single voxel fitting. The all-in-one step fitting becomes
feasible only for high SNR and clustered voxels. In the case of single voxel D∗ fitting, it is
advised to use grid search, as the other methods become reliable either for the clustered
voxel approach or at significantly higher SNR levels. In low-resolution high SNR studies,
all three methods will produce results of similar accuracy. In terms of calculation time,
employing a one-step method is beneficial, although better precision is typically achieved
using segmented methods. The general recommendation is to utilize segmented methods,
reserving the one-step method exclusively for studies characterized by high signal-to-noise
ratios (SNRs).

Fitting may produce imperfect results even for relatively large ROIs, such as Brodmann
areas. These outlier values were estimated from the smallest Brodmann ROIs and the frontal
cortex, which may be subject to greater movement considering the patient’s supine position.

Acquiring high-resolution IVIM DWI allowed for precise spatial alignment with the
template/atlas, as evidenced in Figure 8. Visual observation leads to the conclusion that
Brodmann’s atlas is mostly well-aligned with cortical structures.

The decision to average small voxel data rather than acquiring larger voxels may
initially appear incongruent with the pursuit of high-resolution IVIM outcomes. However,
rather than decreasing spatial resolution, averaging data from multiple precisely selected
voxels could improve the diagnostic value of the data. The utilization of smaller voxels
proves to be more beneficial, given the fact that with high-resolution imaging sequence,
it is possible to draw precise ROIs for any structure. With imaging sequences that have
more than a 3 mm slice thickness or in-plane resolution, it is impossible to catch gray
matter-specific voxels because of partial volume effects. Acquiring high-resolution IVIM
images allows us to distinguish between WM, GM, and CSF and limit the partial volume
effect influence on parameter estimation.

This study showed that acquiring high-resolution IVIM data is possible and may also
provide precise results if analysis is conducted with care. The presented findings could
introduce a new perspective in the approach towards DWI imaging, particularly in the
context of clinical scanning. Research may be continued and extended to gather more
patient data, search for applications, and test multiple scanners and scanning techniques
toward finding an optimal whole-brain quick scanning protocol. Advancements in this
field can potentially improve all perfusion-related diagnostics, as well as patients’ comfort
and safety.

5. Conclusions

The diffusion-based IVIM method undoubtedly offers a non-invasive means to gain
insights into blood flow parameters in perfused tissues. In this study, we estimated accuracy
using the RMSE measure of a quick, high-resolution IVIM imaging protocol with three
reconstruction methods under the assumption of not exceeding a 15 min scanning time.
We demonstrated that it is possible to acquire high-resolution IVIM data and estimate
perfusion parameters from it. Despite the relative RMSE of IVIM estimates and results from
human studies showing that all single voxel reconstruction methods are significantly error-
prone at low SNR levels, the measurements still fell within the expected ranges. Although
a significant number of outlier values were found, the estimation of f is still feasible in
high-resolution quick IVIM, especially when considering the use of small ROIs. In terms of
fitting for D∗, the single voxel method appears to be not applicable. Simulations suggested
a high error value, which was confirmed by human study, as over 50% of estimations
reach the boundaries of estimation. This study’s findings hold significant implications for
optimizing scanning time in MR imaging, potentially paving the way for quicker and more
efficient acquisition protocols, which are crucial for practical implementation in clinical
reality and also enhance patient comfort and scanner efficiency.
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