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Abstract: This study aimed to develop a predictive model for intensive care unit (ICU) admission
by using heart rate variability (HRV) data. This retrospective case–control study used two datasets
(emergency department [ED] patients admitted to the ICU, and patients in the operating room
without ICU admission) from a single academic tertiary hospital. HRV metrics were measured every
5 min using R-peak-to-R-peak (R-R) intervals. We developed a generalized linear mixed model
to predict ICU admission and assessed the area under the receiver operating characteristic curve
(AUC). Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated from the coefficients.
We analyzed 610 (ICU: 122; non-ICU: 488) patients, and the factors influencing the odds of ICU
admission included a history of diabetes mellitus (OR [95% CI]: 3.33 [1.71–6.48]); a higher heart rate
(OR [95% CI]: 3.40 [2.97–3.90] per 10-unit increase); a higher root mean square of successive R-R
interval differences (RMSSD; OR [95% CI]: 1.36 [1.22–1.51] per 10-unit increase); and a lower standard
deviation of R-R intervals (SDRR; OR [95% CI], 0.68 [0.60–0.78] per 10-unit increase). The final model
achieved an AUC of 0.947 (95% CI: 0.906–0.987). The developed model effectively predicted ICU
admission among a mixed population from the ED and operating room.

Keywords: intensive care units; forecasting; heart rate variability; emergency service; case–control studies

1. Introduction

The number of emergency department (ED) visits has surged over the past several
decades, with approximately 150 million annual visits recorded in the United States, and
10 million visits recorded in Korea [1–3]. This increase has given rise to challenges such as
overcrowding in EDs and resource shortages [4]. Furthermore, ED crowding is associated
with the delayed detection of patients deteriorating into critical conditions while awaiting
treatment [5]. Moreover, the availability of ED beds for patient monitoring is constrained,
and a limited number of health care providers are available to check the status of all patients.
Hence, it is crucial to develop accessible methods for identifying critically ill patients who
are not under rigorous monitoring.
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Heart rate variability (HRV) quantifies the fluctuation in time intervals between
successive heartbeats and can be assessed using various methods. Time domain metrics
include the standard deviation of R-R intervals (SDRR) and the root mean square of
successive R-R interval differences (RMSSD). The frequency domain metrics include low-
frequency (LF) power, high-frequency (HF) power, and LF/HF ratio. While HRV can be
assessed over ultra-short-term (less than 5 min), short-term (approximately 5 min), and long-
term (approximately 24 h) durations, short-term measurement is most commonly employed
due to its convenience in data acquisition and its ability to capture slow fluctuations in
heart rate [6].

HRV is recognized for its representation of cardiovascular function and autonomic
balance. It has been identified to be associated with various severe illnesses, which are
accompanied by a decline in cardiovascular function and a disruption in autonomic bal-
ance [7–10]. One study demonstrated that a low SDRR predicted mortality in sepsis patients
in the intensive care unit (ICU) [9]. Another study demonstrated that a decrease in the
LF and an increase in the HF signal were associated with the severity of sepsis in patients
in the ED [7]. In another study, multiple HRV metrics were used to predict in-hospital
cardiac arrest [10]. As demonstrated in previous research, HRV serves as a pivotal marker
of physiologic compensation in critically ill patients.

The accurate identification of critically ill patients in the ED who require ICU admis-
sion is crucial for ensuring early treatment and adequate preparation of ICU resources.
Therefore, the aim of this study was to develop and validate a model using heart rate (HR)
and HRV data to predict ICU admission. By utilizing a concise set of variables that can
be easily obtained through electrocardiography (ECG) or photoplethysmography (PPG)
sensors, we developed a model applicable to patients not undergoing comprehensive vital
sign monitoring.

2. Materials and Methods
2.1. Ethical Statement

This study was conducted according to the guidelines of the Declaration of Helsinki
and approved by the Institutional Review Board of Seoul National University Hospital
(IRB number: 2307-147-1452; date of approval: 28 July 2023). Patient consent was waived
due to its retrospective design and the anonymization of patient data.

2.2. Study Design and Setting

This retrospective case–control study utilized two datasets derived from a single
urban tertiary hospital in Seoul, South Korea. The ED-VitalDB dataset encompasses adult
(18 years or older) ED patients triaged to the highest acuity (level 1) and subsequently
assigned to the resuscitation room. The study hospital uses the Korean Triage and Acuity
Scale (KTAS), which is a 5-level ED triage scale developed based on the Canadian Triage
and Acuity Scale [11]. Continuous PPG and ECG monitoring were applied to most of
the patients who entered the resuscitation room. Invasive monitoring (including arterial
blood pressure) was applied and treatment decisions were made at the discretion of the
attending ED physician. Vital sign data were recorded using VitalRecorder (Ver. 1.11.12.0,
accessed on 20 December 2021), which is a free software designed for recording biosignal
waveforms and vital signs [12]. Trained reviewers retrieved patient demographic, ED
evaluation, diagnosis, management, and disposition data by reviewing hospital medical
records. If vital sign data corresponding to a patient were identified, the patient’s data were
incorporated into the ED-VitalDB dataset after anonymization.

The OR-VitalDB dataset (available at https://vitaldb.net/dataset/ accessed on 20 De-
cember 2021) is an open dataset comprising patient data from operating rooms of the study
institution collected from August 2016 to June 2017 [13]. This dataset encompasses vital
sign data recorded during surgery, patient demographics, surgical details, and outcomes.

https://vitaldb.net/dataset/
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2.3. Study Population

Among the patients in the ED-VitalDB dataset, individuals who presented to the ED
from April 2018 to December 2021, who were triaged to level 1, and who were admitted
to the ICU were designated case patients. Additionally, patients who died in the ED were
categorized as ICU-admitted patients. We excluded individuals with less than 5 min of
ECG waveform data, those in a cardiac arrest state, those transferred to another hospital,
and those aged 75 years or older.

Individuals in the OR-VitalDB dataset without critical conditions served as the control
group. Patients with less than 5 min of ECG waveform data, those who underwent
emergency surgery, individuals admitted to the ICU, those who died in hospital, and those
aged 75 years or older were excluded from the analysis. The rationale for selecting patients
from the OR-VitalDB dataset as the control group was that noncritical patients with stable
vital signs are usually not subject to continuous vital sign monitoring in the ED.

Case–control matching was performed using a 1:4 ratio based on age (<20, 20–24,
25–29, . . ., 70–74 years) and sex. The decision to exclude patients 75 years or older was
made due to an insufficient number of individuals within this age range in the OR-VitalDB
dataset, thus preventing a complete match.

2.4. Variables and Measurements

For each patient, we calculated the SDRR, RMSSD, normalized LF power, normalized
HF power, LF/HF ratio, and HR at 5 min intervals for up to two hours following ED arrival
(for case patients) or at the start of the operation (for control patients). HRV was calculated
through the following steps. Initially, the Lead II ECG signal was sampled at 125 Hz, and
intervals were removed if no meaningful ECG signal was observed upon visual inspection.
Subsequently, the ECG signal was split into 5 min intervals and passed through a 0.5 Hz
fifth-order Butterworth highpass filter to eliminate noise. Afterwards, the R peaks were
identified, and the RR intervals were measured. Finally, the SDRR, RMSSD, normalized LF
power, normalized HF power, and LF/HF ratio were computed from the RR intervals by
using the NeuroKit2 Library [14]. The normalized LF and HF power were determined by
calculating the percentage of LF and HF power in relation to the total power, respectively.
The LF/HF ratio was calculated by dividing the LF power by the HF power.

Information including age, sex, comorbidities, cause of ICU admission, intubation
status, time of ED arrival, and time of intubation in the case group was acquired through
medical record review performed by trained medical record reviewers. Demographic
information for the control group patients was obtained from the OR-VitalDB dataset.

2.5. Model Development

The case–control matched dataset was randomly divided into a derivation set (75%)
and a validation set (25%). Therefore, patients did not overlap between the two sets. The
derivation set was exclusively utilized for constructing the model, whereas the validation
set was reserved solely for the purpose of validating the model’s performance.

Given the repeated 5 min interval HR and HRV measurements for each patient, we
constructed a generalized linear mixed model (GLMM) using all of the available repeated
measurements. The following variables were considered fixed effects for the model: age,
sex, hypertension history, diabetes mellitus history, HR, SDRR, RMSSD, normalized LF
power, normalized HF power, and LF/HF ratio. Backward elimination was employed to
eliminate nonsignificant variables. Consequently, we developed a GLMM (Model 1) that
included diabetes mellitus, HR, SDRR, and RMSSD as fixed effects, with patients treated as
a random effect.

A previous study demonstrated improved predictive performance for sepsis severity
with HRV metrics adjusted by reference values of the same age and sex [7]. By using a
similar approach, we computed adjusted SDRR and RMSSD values by subtracting the
reference values of the same age and sex from a patient’s SDRR and RMSSD values.
The reference values were obtained from a previous study that analyzed 5 min HRV
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measurements of 8 million individuals (Appendix A) [15]. As a result, another GLMM
(Model 2) that included diabetes mellitus incidence, HR, adjusted SDRR, and adjusted
RMSSD as fixed effects was constructed, with patient treatment as a random effect.

2.6. Outcomes

The main outcome of this study was the area under the receiver operating characteristic
curve (AUC) of the models for predicting ICU admission. Secondary outcomes included
the sensitivity and specificity of the models. Predicting ICU admission is equivalent to
predicting case patients, as all case patients were admitted to the ICU or faced ED mortality,
whereas none of the control patients were admitted to the ICU or faced in-hospital mortality.

2.7. Statistical Analysis

Categorical variables are presented as numbers and proportions, and comparisons
were conducted by using the chi-square test. Continuous variables are expressed as medians
and interquartile ranges (IQRs), and comparisons were made by using the Wilcoxon
rank-sum test. The mean values of the repeatedly measured HR and HRV metrics for
each patient were compared between groups. Odds ratios (ORs) with 95% confidence
intervals (CIs) were analyzed by using the coefficients of the fixed effects of the GLMM.
The variance inflation factor (VIF) was assessed to evaluate multicollinearity among the
included variables.

We calculated the AUC, sensitivity, specificity, and 95% CIs by using the following
three approaches with data from the validation set: the first data point for each patient, the
last data point for each patient, and a single randomly sampled data point at any time for
each patient. Sensitivity and specificity were determined by maximizing Youden’s index.
Model calibration was assessed by using calibration plots.

We assessed the applicability of the developed models in scenarios where HR and HRV
metrics were measured by using a PPG sensor. By adopting the approach of a previous
study, we estimated the beat-to-beat intervals from 5 min PPG signals. The subsequent
steps paralleled those used for obtaining HRV metrics from an ECG sensor.

We conducted a sensitivity analysis focusing solely on patients in the derivation set
who were intubated and sedated. This was to determine whether the association between
HRV metrics and ICU admission persisted regardless of intubation and sedation. For the
case group, only patients who were intubated (with sedation) were selected, and HR and
HRV data collected post-intubation were analyzed. In the control group, we included
only the data from patients who were under general anesthesia. GLMMs using the same
variables as Model 1 and Model 2 were fitted, and the ORs with 95% CIs of the fixed effects
were analyzed.

A two-sided p value less than 0.05 was considered to indicate statistical significance.
Statistical analyses were performed by using Python (Python Software Foundation, Wilm-
ington, DE, USA) version 3.9.16, NeuroKit2 version 0.2.7, and SAS version 9.4 (SAS Institute,
Inc., Cary, NC, USA).

3. Results

A total of 122 patients from the case group and 4167 patients from the control group
met the inclusion criteria. Among these, 122 patients from the case group and 488 patients
from the control group were matched and included in the analysis, respectively (Figure 1).
The case group exhibited a greater mean HR (median [IQR]: 105.4 [91.5–116.7] vs. 69.5
[63.3–77.1]) and lower mean SDRR (median [IQR]: 41.6 [24.3–61.8] vs. 66.2 [45.3–89.2]) and
RMSSD (median [IQR]: 51.0 [25.6–81.0] vs. 60.3 [35.1–90.2]) than the control group (Table 1).



Diagnostics 2024, 14, 816 5 of 12

Diagnostics 2024, 14, x FOR PEER REVIEW 5 of 13 
 

 

[63.3–77.1]) and lower mean SDRR (median [IQR]: 41.6 [24.3–61.8] vs. 66.2 [45.3–89.2]) and 
RMSSD (median [IQR]: 51.0 [25.6–81.0] vs. 60.3 [35.1–90.2]) than the control group (Table 
1). 

 
Figure 1. Study flowchart. Abbreviations: HRV, heart rate variability; ICU, intensive care unit. 

Table 1. Demographics and vital sign measurements of patients who were or were not admi ed to 
the intensive care unit. 

 Total Case Group Control Group p-Value 
Number of patients 610 122 488  

Number of data points 10,189 1594 8595  

Age, years 63 (56–69) 63 (56–69) 63 (56–69) 0.78 
Sex, male 400 (65.6) 80 (65.6) 320 (65.6) 1.00 

Hypertension 198 (32.5) 37 (30.3) 161 (33.0) 0.57 
Diabetes mellitus 75 (12.3) 26 (21.3) 49 (10.0) <0.01 
HR, beats/min * 72.1 (64.8–84.4) 105.4 (91.5–116.7) 69.5 (63.3–77.1) <0.01 

SDRR, ms * 61.3 (41.0–86.4) 41.6 (24.3–61.8) 66.2 (45.3–89.2) <0.01 
Adjusted SDRR, ms * 20.6 (−1.5–46.4) 1.8 (−15.5–21.1) 24.4 (3.4–49.2) <0.01 

RMSSD, ms * 59.5 (32.3–89.7) 51.0 (25.6–81.0) 60.3 (35.1–90.2) 0.04 
Adjusted RMSSD, ms * 31.2 (6.2–63.0) 24.0 (−1.2–54.4) 33.1 (7.9–65.0) 0.04 

Normalized LF power, % * 23.6 (19.0–27.6) 22.4 (16.1–28.8) 23.9 (19.4–27.3) 0.13 
Normalized HF power, % * 40.8 (31.9–48.1) 41.3 (31.3–48.1) 40.7 (32.0–48.2) 0.98 

LF/HF ratio 0.81 (0.51–1.31) 0.62 (0.42–1.00) 0.87 (0.53–1.39) <0.01 
* The means of the measured HR and HRV metrics for each patient were calculated and compared. 
Categorical variables are presented as numbers and proportions, while continuous variables are 
presented as medians and interquartile ranges. Abbreviations: HR, heart rate; SDRR, standard de-
viation of R-R intervals; RMSSD, root mean square of successive R-R interval differences; LF, low 
frequency; HF, high frequency. 

Among the 122 patients in the case group, 37 patients were admi ed due to sepsis, 
15 due to respiratory causes, 27 due to major bleeding, 22 due to major trauma, and 21 
due to other causes. Among the 488 patients in the control group, 458 (93.9%) underwent 
surgery under general anesthesia, whereas 30 (6.1%) underwent surgery under spinal an-
esthesia. Demographics and vital sign measurements of patients in the derivation (n = 457) 
and validation (n = 153) sets showed no significant differences (Appendix B). 

By analyzing the coefficients of the GLMM, we observed that a history of diabetes 
mellitus (OR [95% CI]: 3.33 [1.71–6.48]), a higher HR (OR [95% CI]: 3.40 [2.97–3.90] for 
every 10 increase), and a higher RMSSD (OR [95% CI]: 1.36 [1.22–1.51] for every 10 in-
crease) increased the odds of ICU admission. In contrast, a higher SDRR decreased the 

Figure 1. Study flowchart. Abbreviations: HRV, heart rate variability; ICU, intensive care unit.

Table 1. Demographics and vital sign measurements of patients who were or were not admitted to
the intensive care unit.

Total Case Group Control Group p-Value

Number of patients 610 122 488
Number of data points 10,189 1594 8595

Age, years 63 (56–69) 63 (56–69) 63 (56–69) 0.78
Sex, male 400 (65.6) 80 (65.6) 320 (65.6) 1.00

Hypertension 198 (32.5) 37 (30.3) 161 (33.0) 0.57
Diabetes mellitus 75 (12.3) 26 (21.3) 49 (10.0) <0.01
HR, beats/min * 72.1 (64.8–84.4) 105.4 (91.5–116.7) 69.5 (63.3–77.1) <0.01

SDRR, ms * 61.3 (41.0–86.4) 41.6 (24.3–61.8) 66.2 (45.3–89.2) <0.01
Adjusted SDRR, ms * 20.6 (−1.5–46.4) 1.8 (−15.5–21.1) 24.4 (3.4–49.2) <0.01

RMSSD, ms * 59.5 (32.3–89.7) 51.0 (25.6–81.0) 60.3 (35.1–90.2) 0.04
Adjusted RMSSD, ms * 31.2 (6.2–63.0) 24.0 (−1.2–54.4) 33.1 (7.9–65.0) 0.04

Normalized LF power, % * 23.6 (19.0–27.6) 22.4 (16.1–28.8) 23.9 (19.4–27.3) 0.13
Normalized HF power, % * 40.8 (31.9–48.1) 41.3 (31.3–48.1) 40.7 (32.0–48.2) 0.98

LF/HF ratio 0.81 (0.51–1.31) 0.62 (0.42–1.00) 0.87 (0.53–1.39) <0.01

* The means of the measured HR and HRV metrics for each patient were calculated and compared. Categorical
variables are presented as numbers and proportions, while continuous variables are presented as medians and
interquartile ranges. Abbreviations: HR, heart rate; SDRR, standard deviation of R-R intervals; RMSSD, root mean
square of successive R-R interval differences; LF, low frequency; HF, high frequency.

Among the 122 patients in the case group, 37 patients were admitted due to sepsis,
15 due to respiratory causes, 27 due to major bleeding, 22 due to major trauma, and 21 due to
other causes. Among the 488 patients in the control group, 458 (93.9%) underwent surgery
under general anesthesia, whereas 30 (6.1%) underwent surgery under spinal anesthesia.
Demographics and vital sign measurements of patients in the derivation (n = 457) and
validation (n = 153) sets showed no significant differences (Appendix B).

By analyzing the coefficients of the GLMM, we observed that a history of diabetes
mellitus (OR [95% CI]: 3.33 [1.71–6.48]), a higher HR (OR [95% CI]: 3.40 [2.97–3.90] for
every 10 increase), and a higher RMSSD (OR [95% CI]: 1.36 [1.22–1.51] for every 10 increase)
increased the odds of ICU admission. In contrast, a higher SDRR decreased the odds
of ICU admission (OR [95% CI]: 0.68 [0.60–0.78] for every 10 increase). Although the
SDRR and RMSSD demonstrated a positive correlation, the VIFs for all of the fixed-effect
variables remained below 10, thus suggesting the absence of significant multicollinearity
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(Appendix C). The ORs remained similar when age- and sex-adjusted values were used for
the SDRR and RMSSD (Table 2).

Table 2. Odds ratios for each fixed-effect variable in the GLMM.

OR (95% CI)

Model 1
Diabetes mellitus, yes vs. no 3.33 (1.71–6.48)

HR (for every 10 increase) 3.40 (2.97–3.90)
SDRR (for every 10 increase) 0.68 (0.60–0.78)

RMSSD (for every 10 increase) 1.36 (1.22–1.51)

Model 2
Diabetes mellitus, yes vs. no 3.27 (1.69–6.36)

HR (for every 10 increase) 3.44 (3.00–3.95)
Adjusted SDRR (for every 10 increase) 0.72 (0.63–0.82)

Adjusted RMSSD (for every 10 increase) 1.33 (1.20–1.48)
Abbreviations: OR, odds ratio; CI, confidence interval; HR, heart rate; SDRR, standard deviation of R-R intervals;
RMSSD, root mean square of successive R-R interval differences.

When evaluated by using randomly sampled data points from each patient in the
validation set, the AUC for predicting ICU admission was 0.942 (95% CI: 0.897–0.987) for
Model 1 and 0.947 (95% CI: 0.906–0.987) for Model 2 (Figure 2a,b). The sensitivity and
specificity of both models were 0.871 (95% CI: 0.753–0.989) and 0.910 (95% CI: 0.859–0.961),
respectively (Table 3). The models tended to slightly underestimate the probability within
the predicted probability range of 0.4 to 0.8 (Figure 2c,d).
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Table 3. Discriminative performance for each model using data from different time points of the
validation set.

AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Model 1
Randomly sampled data point 0.942 (0.897–0.987) 0.871 (0.753–0.989) 0.910 (0.859–0.961)

First data point 0.921 (0.852–0.989) 0.807 (0.667–0.946) 0.943 (0.901–0.984)
Last data point 0.883 (0.806–0.961) 0.871 (0.753–0.989) 0.812 (0.742–0.881)

Model 2
Randomly sampled data point 0.947 (0.906–0.987) 0.871 (0.753–0.989) 0.910 (0.859–0.961)

First data point 0.923 (0.855–0.990) 0.807 (0.667–0.946) 0.943 (0.901–0.984)
Last data point 0.886 (0.809–0.962) 0.839 (0.709–0.968) 0.861 (0.799–0.922)

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval.

With respect to the validation set of 153 patients, we successfully acquired PPG-derived
HRV measurements for 133 patients. The discriminative performance of the models was
consistent when these PPG-derived metrics were used instead of ECG-derived HRV data.
When evaluated with randomly sampled data points from each patient, the AUC for
predicting ICU admission was 0.928 (95% CI: 0.855–1.000) for Model 1 and 0.926 (95% CI:
0.853–0.998) for Model 2 (Table 4).

Table 4. Discriminative performance for each model using heart rate variability metrics derived from
photoplethysmography.

AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Model 1
Randomly sampled data point 0.928 (0.855–1.000) 0.929 (0.794–1.000) 0.824 (0.755–0.892)

First data point 0.920 (0.828–1.000) 0.929 (0.794–1.000) 0.832 (0.765–0.899)
Last data point 0.911 (0.838–0.984) 0.786 (0.571–1.000) 0.916 (0.866–0.966)

Model 2
Randomly sampled data point 0.926 (0.853–0.998) 0.929 (0.794–1.000) 0.807 (0.736–0.878)

First data point 0.920 (0.830–1.000) 0.857 (0.674–1.000) 0.899 (0.845–0.953)
Last data point 0.910 (0.835–0.985) 0.786 (0.571–1.000) 0.916 (0.866–0.966)

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval.

In the sensitivity analysis focusing on patients who were intubated and sedated in the
derivation set, 494 data points from 29 patients in the case group and 6242 data points from
346 patients in the control group were analyzed (Appendix D). Although statistically not
significant, a history of diabetes mellitus, higher HR, higher RMSSD, and lower SDRR were
associated with increased odds of ICU admission, demonstrating a trend consistent with
the main analysis (Appendix E).

4. Discussion

In this retrospective case–control matched analysis, we developed GLMMs that uti-
lized patient demographics, HR, and HRV data to predict ICU admission. We found that a
history of diabetes mellitus, a higher HR and RMSSD, and a lower SDRR were associated
with increased odds of ICU admission. The models accurately predicted ICU admission,
achieving an AUC of 0.88–0.95. Although these models were initially developed by using
HRV metrics derived from ECG signals, they also performed accurately with HRV metrics
obtained from PPG signals. Given that the models require only a simple set of demographic
information and vital signs acquired from a single PPG or ECG sensor, they can be easily
adopted in various settings.
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The SDRR is known to reflect both sympathetic and parasympathetic nervous system
activities, with lower values linked to poorer health outcomes. The RMSSD, which is
strongly correlated with HF power, is predominantly influenced by the parasympathetic
nervous system [6]. Previous research has indicated that sympathovagal balance is dis-
rupted in severely ill patients. In such patients, decreased sympathetic activity impairs
the body’s ability to respond adequately to stressors, such as maintaining normal blood
pressure. Conversely, an increase in the relative strength of the parasympathetic nervous
system is observed, which is associated with the severity of the illness [7,16]. The findings
of our study, which showed that a higher RMSSD and lower SDRR were correlated with
increased odds of ICU admission, align with these previous studies.

Given that our study employed a case–control design with patients matched by age
and sex, these factors were not significant predictors according to Model 1. Nevertheless,
age and sex are widely recognized as influencing ICU admission risk and are known to
correlate with HRV values [15,17]. Model 2, which adjusts for age and sex in the SDRR and
RMSSD calculations, could address this limitation of Model 1. Although Model 2 did not
show significantly enhanced performance in our validation set compared to Model 1, it is
anticipated to be more robust in populations with different age and sex distributions.

Our study included a sensitivity analysis to account for the impact of sedation and
intubation on HRV parameters, as these procedures can alter autonomic balance and
potentially skew the association with ICU admission risk [18,19]. By isolating the subset
of patients who received both interventions, we aimed to ensure that our findings on the
predictive value of HRV for ICU admission were not confounded by these factors. Although
we did not observe statistically significant results due to a reduced sample size, the trend
of association between HRV parameters and ICU admission was maintained. This result
strengthens the utility of HRV as a biomarker for assessing ICU admission risk, highlighting
its effectiveness beyond the physiological changes induced by medical interventions.

Earlier investigations have attempted to identify ED patients at high risk of ICU
admission by using various variables related to patient characteristics and vital signs.
Early warning scores, such as the National Early Warning Score, have demonstrated
efficacy in predicting ICU admissions [20]. Machine learning models that incorporate
a comprehensive set of variables have also shown strong performance in this task [17].
However, a common limitation among these previously developed models and early
warning scores is their reliance on a detailed set of vital sign data for predictions. In cases
where patients appear to be relatively stable upon ED presentation and vital sign monitoring
occurs at intervals of several hours, risk prediction and the detection of deteriorating
patients could be significantly delayed.

Recent technological advances have enabled the acquisition of ECG or PPG signals by using
compact wearable devices, such as smartwatches and single-lead ECG devices [15,21]. Our
models, which require only beat-to-beat intervals for calculating HR and HRV, are readily
adaptable to these devices. This adaptability allows for the monitoring and prediction
of ICU admission risk in ED patients even without beds or multiline monitoring devices.
A prior study noted that nearly 30% of patients who arrived at the ED with normal vital
signs experienced deterioration within 24 h [22]. With respect to overcrowded EDs where
continuous bed monitoring may not be feasible, our model can offer a viable solution when
used with a wearable device.

Study Limitations

This study had several limitations that warrant consideration. First, due to the case–
control design that was used for developing and validating the models, their prediction
probabilities may not be appropriately calibrated. Consequently, recalibration of the models
according to the target population for deployment is necessary. Second, compared with
patients not under anesthesia, the control group consisted of stable patients who underwent
surgery and may have exhibited physiological differences. This approach was adopted in
response to the limited vital sign data that are available for stable ED patients, who are
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typically not subjected to continuous monitoring. Moreover, patients from the OR-VitalDB
dataset admitted to the ICU were not included in the case group. This exclusion was due
to the routine practice of ICU admission after major surgeries, irrespective of vital signs or
health status, and the OR-VitalDB dataset’s lack of detailed reasons for ICU admissions
post-surgery. Third, this was a retrospective single-center study; therefore, the results may
not be generalizable to different settings. Fourth, we excluded children and elderly patients
older than 75 years; thus, the performance of these models in these age groups remains to
be validated. Last, our prediction models were limited to incorporating only hypertension
and diabetes mellitus as comorbidities, due to the absence of other comorbidity data in
the OR-VitalDB dataset. To address some of the aforementioned limitations, the study
investigators are currently conducting a prospective validation study in an ED setting.

5. Conclusions

In conclusion, the developed models, which incorporate HRV metrics for predicting
ICU admission, demonstrated strong predictive performance. The input variables can be
easily obtained from a single PPG or ECG sensor, thus offering potential for the models to
be used for patient risk monitoring in crowded EDs.
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Appendix A

Reference Values of SDRR and RMSSD, Adjusting Age and Sex Based on Previ-
ous Study

1. Male reference

SDRRreference(age) = 61.5 ×
(age

30

)−0.566
(ms)

RMSSDreference(age) = 44.8 ×
(age

30

)−0.804
(ms)

2. Female reference

SDRRreference(age) = 54.7 ×
(age

30

)−0.524
(ms)

https://vitaldb.net/dataset/
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RMSSDreference(age) = 43.7 ×
(age

30

)−0.666
(ms)

3. Calculation of SDRR and RMSSD values adjusted for age and sex

SDRRage and sex adjusted = SDRRmeasured − SDRRre f erence

RMSSDage and sex adjusted = RMSSDmeasured − RMSSDre f erence

Appendix B

Table A1. Demographics and Vital Sign Measurements of Patients in the Derivation and Validation Set.

Total Derivation Set Validation Set p-Value

Number of patients 610 457 153
Number of data points 10,189 7661 2528

Age, years 63 (56–69) 63 (56–69) 63 (56–68) 0.44
Sex, male 400 (65.6) 299 (65.4) 101 (66.0) 0.92

Hypertension 198 (32.5) 156 (34.1) 42 (27.5) 0.12
Diabetes mellitus 75 (12.3) 54 (11.8) 21 (13.7) 0.54
HR, beats/min * 74.2 (65.2–87.3) 74.4 (64.9–88.2) 73.0 (66.0–85.4) 0.40

SDRR, ms * 64.2 (40.5–98.7) 63.1 (39.4–97.6) 68.9 (46.8–103.3) 0.16
Adjusted SDRR, ms * 24.4 (−1.5–57.2) 23.6 (−1.9–54.4) 27.6 (2.7–64.5) 0.29

RMSSD, ms * 51.9 (26.5–98.6) 48.9 (26.8–97.6) 59.8 (25.0–103.1) 0.23
Adjusted RMSSD, ms * 23.4 (−1.9–70.4) 20.8 (−1.1–68.8) 31.6 (−2.9–78.3) 0.35

Normalized LF power, % * 22.2 (15.9–29.6) 22.3 (16.3–29.4) 21.7 (14.9–30.4) 0.93
Normalized HF power, % * 40.7 (25.3–51.6) 40.2 (25.1–51.5) 41.9 (25.6–52.5) 0.55

LF/HF ratio 0.62 (0.37–1.30) 0.63 (0.37–1.34) 0.60 (0.37–1.24) 0.68
ICU admission 122 (20.0) 91 (19.9) 31 (20.3) 0.93

* The means of the measured HR and HRV metrics for each patient were calculated and compared. Categorical
variables are presented as numbers and proportions while continuous variables are presented as medians and
interquartile ranges. Abbreviations: ICU, intensive care unit; HR, heart rate; SDRR, standard deviation of R-R
intervals; RMSSD, root mean square of successive R-R interval differences; LF, low frequency; HF, high frequency.
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Appendix D

Table A2. Demographics and Vital Sign Measurements of Patients Who Were Intubated and Sedated
in the Derivation Set.

Total Case Group Control Group p-Value

Number of patients 375 29 346
Number of data points 6736 494 6242

Age, years 63 (56–69) 63 (56–68) 63 (56–69) 0.73
Sex, male 242 (64.5) 21 (72.4) 221 (63.9) 0.36

Hypertension 130 (34.7) 11 (37.9) 119 (34.4) 0.70
Diabetes mellitus 46 (12.3) 7 (24.1) 39 (11.3) 0.04
HR, beats/min * 69.9 (63.8–78.7) 106.5 (93.3–120.2) 69.1 (63.4–76.9) <0.01

SDRR, ms * 63.7 (42.6–90.3) 41.2 (25.1–53.5) 66.2 (45.0–90.6) <0.01
Adjusted SDRR, ms * 22.9 (0.9–50.7) −3.5 (−15.5–16.7) 24.4 (3.8–52.0) <0.01

RMSSD, ms * 60.2 (33.3–89.8) 44.1 (25.6–67.2) 60.8 (35.1–89.8) 0.08
Adjusted RMSSD, ms * 32.3 (6.7–64.4) 13.2 (−5.7–40.8) 33.3 (8.1–64.5) 0.08

Normalized LF power, % * 23.6 (19.0–26.6) 22.7 (14.2–26.2) 23.6 (19.4–26.6) 0.16
Normalized HF power, % * 40.8 (32.6–47.8) 37.8 (33.5–48.3) 40.8 (32.6–47.8) 0.97

LF/HF ratio 0.82 (0.52–1.28) 0.59 (0.35–0.98) 0.83 (0.54–1.32) 0.02

* The means of the measured HR and HRV metrics for each patient were calculated and compared. Categorical
variables are presented as numbers and proportions, while continuous variables are presented as medians and
interquartile ranges. Abbreviations: HR, heart rate; SDRR, standard deviation of R-R intervals; RMSSD, root mean
square of successive R-R interval differences; LF, low frequency; HF, high frequency.

Appendix E

Table A3. Odds Ratios for Each Fixed Effect Variable in the Sensitivity Analysis.

OR (95% CI)

Model 1
Diabetes mellitus, yes vs. no 2.03 (0.27–15.10)

HR (for every 10 increase) 5.35 (3.39–8.44)
SDRR (for every 10 increase) 0.73 (0.51–1.05)

RMSSD (for every 10 increase) 1.19 (0.90–1.59)

Model 2
Diabetes mellitus, yes vs. no 2.42 (0.34–17.25)

HR (for every 10 increase) 5.23 (3.34–8.19)
Adjusted SDRR (for every 10 increase) 0.75 (0.53–1.06)

Adjusted RMSSD (for every 10 increase) 1.20 (0.91–1.59)
Abbreviations: OR, odds ratio; CI, confidence interval; HR, heart rate; SDRR, standard deviation of R-R intervals;
RMSSD, root mean square of successive R-R interval differences.
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