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Abstract

Background/Objectives: Pneumonia is a critical lung infection that demands timely and
precise diagnosis, particularly during the evaluation of chest X-ray images. Deep learning
is widely used for pneumonia detection but faces challenges such as poor denoising,
limited feature diversity, low interpretability, and class imbalance issues. This study aims
to develop an optimized ResNet-50 based framework for accurate pneumonia detection.
Methods: The proposed approach integrates Multiscale Curvelet Filtering with Directional
Denoising (MCF-DD) as a preprocessing step to suppress noise while preserving diagnostic
details. Multi-feature fusion is performed by combining deep features extracted from
ResNet-50 with handcrafted texture descriptors such as Local Binary Patterns (LBPs),
leveraging both semantic and structural information. Precision attention mechanisms are
incorporated to enhance interpretability by highlighting diagnostically relevant regions.
Results: Validation on the Kaggle chest radiograph dataset demonstrates that the proposed
model achieves higher accuracy, sensitivity, specificity, and other performance metrics
compared to existing methods. The inclusion of MCF-DD preprocessing, multi-feature
fusion, and precision attention contributes to improved robustness and diagnostic reliability.
Conclusions: The optimized ResNet-50 framework, enhanced by noise suppression, multi-
feature fusion, and attention mechanisms, offers a more accurate and interpretable solution
for pneumonia detection from chest X-ray images, addressing key challenges in existing
deep learning approaches.

Keywords: attention mechanism; chest X-ray; deep learning; feature fusion; pneumonia
detection; texture features; ResNet-50

1. Introduction
Pneumonia is a critical respiratory illness that predominantly affects the tiny air sacs

within the lungs that are essential for gas exchange. During infection, these sacs become
filled with fluid, leading to breathing difficulties. Morbidity and mortality from pneumonia
remain high, especially in populations with preexisting health conditions [1].

Chest X-rays are widely utilized for pneumonia diagnosis due to their rapid imaging
capabilities and cost efficiency [2]. However, the visual patterns associated with pneumonia
infection can overlap with other lung pathologies, making accurate diagnosis challenging
for radiologists. The use of AI in developing automated solutions for pneumonia diagnosis
has grown substantially. Manual feature extraction was a prerequisite in traditional machine
learning frameworks like supervised learning [3], where these features served as inputs to
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the classification algorithms. On the other hand, deep learning models [4,5] are capable of
learning by extracting the features by themselves without any need of manual interference.

Though CNN has been preferred as the current standard practice for medical image
analysis, it has several challenges in the same field. Existing CNN models inadequately
handle image noise, often applying generic denoising techniques that either fail to suppress
artifacts or compromise clinically relevant structures. CNN has greater reliance on deep fea-
tures, which results in the neglection of fine-grained texture patterns. These texture patterns
like pixel intensity, edge variations, etc., are vital pneumonia infection signs. The inter-
pretability of such models also remains limited, with few offering visual explanations or
attention maps that can support clinical decision making. Standard pneumonia detection
datasets have imbalanced class distributions, which results in biased model learning and
reduced generalization. In response to these issues, efforts have been directed toward
building a resilient automated model for detecting pneumonia.

A hybrid deep learning model that effectively merges deep semantic features with
fine-grained handcrafted descriptors is described in this work to solve the above said
challenges. The proposed framework employs the Multiscale Curvelet Filtering with
Directional Denoising (MCF-DD) method to effectively suppress noise in the input images.
By integrating attention modules, the system directs its focus toward pneumonia infected
areas, thereby boosting diagnostic accuracy and enhancing the model’s interpretability.

The primary contributions of this study are summarized as follows:

• Enhanced ResNet-50-Based Architecture: A customized ResNet-50 model was adapted
and fine tuned for grayscale chest X-ray images to facilitate faster training convergence
and enhance feature extraction specific to medical imaging.

• Noise-Robust Preprocessing with MCF-DD: For better diagnostic accuracy in chest
radiographs, the proposed framework integrates Multiscale Curvelet Filtering with
Directional Denoising (MCF-DD) as a preprocessing step. This technique dynamically
identifies and suppresses both Poisson and Gaussian noise while preserving fine
structural and anatomical details critical for accurate diagnosis.

• Hybrid Feature Fusion (HFF): A hybrid fusion strategy of deep multiscale features
from ResNet-50 with handcrafted descriptors such as local binary patterns (LBPs) is
introduced, improving feature diversity and enhancing pneumonia classification.

• Incorporation of Attention Mechanism: Incorporating CBAM allowed the model to
selectively attend to spatial and channel-wise informative features, particularly those
associated with pneumonia lesions, leading to improved diagnostic accuracy and
model transparency.

2. Related Works
Pneumonia infection is one of the factors contributing to the higher mortality of young

children less than 5 years and adults with low immunity. The high mortality rate due to
COVID-19 infection which caused pneumonia is one incident which gives a clear picture of
the extent to which it can affect human life.

In chest radiographs radiographic features of a normal person include clear dark lung
fields, well-defined lung borders, clear vascular markings, and a midline trachea. The chest
radiograph of a person infected with pneumonia will exhibit localized or diffuse opacities,
caused by fluid or pus-filled alveolar spaces. In Figure 1, we can observe the differences in
the two types of images.

The recent studies on pneumonia detection systems are based on CNN-based deep
learning algorithms due to their remarkable results. Current models for pneumonia detec-
tion can be broadly classified into machine learning techniques, deep learning frameworks,
transfer learning models, and ensemble approaches.
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In machine learning (ML) approaches, the features are extracted manually and these
features are given as input to machine learning classification models [6–8]. Transparency,
low computational needs, and lesser resources were some of the advantages of machine
learning approaches. But to identify the complex visual patterns present in chest X-rays,
it is necessary to have strong feature representation. Recently, hybrid methods have been
developed by combining deep features from CNNs with classical ML classifiers, resulting
in improved performance [9–11]. The major challenges of this approach are scalability and
feature robustness. Numerous research studies [12,13] have proved the effectiveness of deep
learning approaches. Their ability to model a large number of spatial and textural features
helped to perform the classification accurately. Unlike machine learning models, CNN
has the ability to capture complex and significant features using backpropagation [14–16].
In a recent study [17], the robustness of CNN models to different imaging conditions is
highlighted, which is critical for the accurate diagnosis of the disease in remote areas where
medical group support is less available. Performing the training on smaller datasets can lead
to problems, like overfitting, poor generalization, etc. Also, incorrect diagnosis can occur as
a result of poorly labeled datasets. Several customized CNN architecture designs [18–20]
are specifically tailored for pneumonia detection. These architectures contain custom
layers, specialized filters, or specific configurations to optimize performance for tasks for
pneumonia detection in medical images. Some popular CNN architectures which can be
used for pneumonia classification are ResNet, DenseNet, VGG, and Inception.

(a) (b) (c) (d)

Figure 1. Normal images (a,b); pneumonia images (c,d).

Even though CNN has the ability to extract meaningful features from images, it
requires large labeled data for training. To solve this drawback of CNN, transfer learning
approaches were used, where the pretrained CNN models solve unseen new problems.
In [21], five ResNet variants were used for pneumonia detection in chest rays and the
customized ResNet model achieved higher accuracy. In [22], VGG 19, Xception, ResNet-
50, and DenseNet121 CNN architectures were used to classify pediatric chest rays for
pneumonia detection and Xception gave better results. Several other works [23–28] also
applied transfer learning for pneumonia classification. The strengths of transfer learning
approaches are the need for less labeled data and less training time. The application of
transfer learning models leads to overfitting as the training is performed on homogeneous
data, which can lead to strong performance on training data and poor generalization on
unseen cases.

Later, ensemble learning methods were developed where multiple model predic-
tions are combined to generate a better generalized prediction. The different ensemble
learning approaches can be categorized by bagging, boosting, and stacking methods.
Bagging involves training several instances of the same model independently, each on a
different bootstrap sample drawn from the original training data. In [29], MobileNetV2
and NASNetMobile were used together with a weighted average bagging scheme, which
achieved 98.63% accuracy while maintaining computational efficiency suitable for a low-
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resource setting. Classifiers are used together using the simple bagging method like voting
in [30], which demonstrated strong recall of 95.6% for classifications. In boosting, training
of the models is performed sequentially, where each successive model is trained specifically
to address and reduce cumulative prediction error by learning from the mistakes of prior
models. The weighted sum of the predictions from all the models is calculated as the final
prediction and more weight is given to models with better performance. In stacking, base
learners are trained and then meta learner is used to combine their predictions. Some
recent works using stack approaches are [31–36]. The challenges of ensemble learning are
high computational cost and increased model complexity. Recent studies on pneumonia
detection from chest X-ray images are summarized in Table 1.

Table 1. Recent studies on pneumonia detection from chest X-ray images.

S.No Title Methodology Dataset Contribution Challenges

1 Interpretable DL for
Pneumonia [37]

ResNet-50 and CAM
and LRP

Kaggle Chest X-ray
Images

Robust classification
with explainability

Lack of
interpretability

2
MobileNet-based
Pneumonia
Detection [38]

MobileNetV2
Kaggle Chest X-ray
Images and
ChestX-ray14

Lightweight model
suitable for mobile
deployment

Lack of explainability
tools and dataset bias

3
Ensemble DCNNs for
Pneumonia
Detection [39]

DenseNet169,
MobileNetV2, and
Vision Transformer

Kaggle Chest X-ray
Image

Fusion of
architectures for
robustness

Hyper parameter
tuning and lack of
interpretability

4 Pneumonia Detection
with Weak Labels [40]

Weak supervision
with ResNet34

Kaggle Chest X-ray
Images and RAIG
dataset

Accurate detection
and localization with
weak supervision

Lack of quantitative
analysis for
localization accuracy

5
Hybrid
Inception-Residual
Model [41]

Fine-tuned Inception
ResNetV2 and
transfer learning

Labeled Optical
Coherence
Tomography (OCT)
and Chest X-Ray
Images

Superior feature
extraction and
computational
efficiency

Model generalization
and overfitting

6
Pneumonia Detection
via CNN-ViT
Fusion [42]

ResNet34 and Vision
Transformer fusion

Kaggle Chest X-ray
Images

Combined
local/global attention
for classification

Image quality
requirements

7
Cardio-Respiratory
Disease Detection via
DL Ensembles [43]

Deep Learning
Ensemble approach

NIH Chest X-ray
dataset

Architecture fusion
for reliability

Lack of model
interpretability and
computational
complexity

8 Radiologist-Level DL
(CheXNet) [44]

DenseNet-121
pretrained ChestX-ray14

Exceeded
radiologist-level
performance

Computational
complexity

9
AI Model for
Pneumonia
Classification [45]

Ensemble classifiers NIH ChestX-ray14
Dataset

Hybrid AI
framework
combining deep
features and
PSO-based feature
optimization

Absence of
explainability

10
DL-Based Lung
Condition Classifier
(CXR + CT) [46]

Transfer learning
model Kaggle dataset

Sorting system for
COVID-19
implemented

Higher
computational
resources and time

11
ViT-Based
Pneumonia
Detection [47]

Vision Transformer
(ViT) architecture

Kaggle Chest X-ray
(CXR)

Proposal of a
ViT-based
Architecture

Data scarcity and real
world validation

12
Transformer Model
for X-ray Pneumonia
Detection [48]

Ensembling Vision
Transformer and
Convolutional
Neural Network

Kaggle Pediatric
Pneumonia Dataset

Improved accuracy
using ViT

High computational
resource requirement
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Table 1. Cont.

S.No Title Methodology Dataset Contribution Challenges

13
TB Classification via
CNN and
Transformer [49]

Ensembling
data-efficient image
transformer and the
Residual Network-16
model

TBX11K dataset
Hybrid
CNN-Transformer
detection model

Limited
generalization due to
dataset bias

14

Twin-layer attention
graph convolutional
network (TLA-GCN):
Enhancing
abnormality
detection in chest
X-rays [50]

Twin-Layer Attention
Graph Convolutional
Network (TLA-GCN)

NIH Chest X-ray and
COVID-19 dataset

Better representation
of inter-region
dependencies in
chest X-rays

High
computational cost

Even though there are significant advantages to applying AI to pneumonia detection in
chest X-rays, existing approaches exhibit notable limitations. The dependency on handcrafted
features, which lack the capability of capturing radiographic patterns and poor generalization,
is a challenge faced by machine learning approaches. On the other hand, deep learning
approaches are powerful, but the working of deep learning approaches is like black boxes.
Also, the demand for large labeled datasets raises challenges in medical image environments.
The need of training time is reduced in transfer learning, but if the source and targets are
of different domains, it can lead to poor domain adaptation. Ensemble models improve
accuracy, but it causes complexity, redundancy, and reduced interpretability.

To address these gaps, our study proposes an enhanced ResNet-50 based architecture,
in which the input images are preprocessed using a Multiscale Curvelet Filtering with
Directional Denoising framework to improve image quality by suppressing noise and
enhancing edge details. The handcrafted texture descriptors with deep features are fused
together to enhance the representation capacity. The class imbalance problem is addressed
by using the weighted random sampler function. Overall, our approach presents a balanced,
interpretable, and computationally efficient solution without the complexity of traditional
ensemble techniques.

3. Methodology
The proposed framework uses standard ResNet-50 as the backbone structure. Initially,

the input image undergoes the preprocessing stage, in which the Curvelet transform along
with directional denoising is used to enhance the image quality. The Curvelet transform
captures the smooth edges and the elongated structures, which are very common features
in lung structures. The preprocessing of the image is continued with the image resizing
and intensity normalization operations. In the next stage a dual-path strategy is used for
feature extraction. To capture both semantic and texture-level information, deep features
are obtained from a modified ResNet-50 architecture, and texture features are extracted
using the local binary pattern method. The standard ResNet-50 architecture is modified
to accept single channel inputs and also an attention module is integrated to focus on the
most relevant spatial and channel wise regions. The fused representation of deep and LBP
features is given as input to a customized classification head to generate the final output.
The class imbalance nature of the dataset is handled by the weighted random sampling
technique, which is performed in the training phase. A stratified and well balanced version
of the Kaggle Chest Ray dataset is used for fine-tuning the model. The steps of the proposed
methodology are illustrated in the enhanced ResNet-50 framework, Figure 2.
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Figure 2. Enhanced ResNet-50 framework.

3.1. Dataset

For this study, the Kaggle Chest X-ray Pneumonia Dataset [51] developed by Paul
Mooney is employed, consisting of 5856 grayscale chest X-ray images. In the original
dataset, the training set had 1341 normal and 3875 pneumonia images, while the validation
set was critically under represented with only 8 images per class. A stratified splitting
strategy is applied to maintain the original class proportions across all data partitions,
thereby improving model generalizability and reducing sampling bias. In this approach,
all the images are aggregated according to their labels such as normal and pneumonia from
all the sets in the original dataset. The stratified sampling process is performed on the basis
of this aggregated set of labeled image paths. A first level stratified split is performed by
dividing seventy percent of dataset into the training set and the remaining thirty percent
into the temporary set, ensuring both sets contained the same proportion of normal and
pneumonia images as the original dataset. A second level stratified split is performed on the
temporary set to obtain the final validation set and test set, each containing fifteen percent
of the data by preserving the class distribution. As a result of this two level stratification,
each subset of the dataset contains a balanced train, test, and validation set, which is
represented in Table 2.
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Table 2. Stratified dataset details.

Subset Normal Images Pneumonia Images Total Images

Train 1108 2991 4099

Test 237 641 878

Validation 238 641 879

Analyzing the stratified dataset details, it is clear that the pneumonia class constitutes
about 72% of the samples in each subset of the dataset. To address this issue, a weighted
random sampler function is performed during model training. In this method, sampling
weights are applied inversely according to their class frequency. So, the class with a lower
number of samples will be getting more weights than the classes with a larger number of
samples. Unlike oversampling or downsampling techniques, this strategy retains the full
dataset and preserves real-world class proportions.

3.2. Data Preprocessing

Preprocessing is a vital step in improving the informative content of chest radiographs,
facilitating more accurate and effective interpretation. The preprocessing pipeline consists
of three major components, such as Curvelet transform with directional denoising, image
resizing, and normalization.

3.2.1. Curvelet Transform with Directional Denoising

Medical images contain Gaussian and Poisson noises, which obscure the fine features
present in the chest radiograph images. Curvelet transform outperforms the other wavelet
transforms in capturing the smooth edges and the elongated structures. Let f(x, y) be the
grayscale input image. The Curvelet transform Cj,l,k [52] of the image can be expressed as

Cj,l,k = ⟨ f (x, y), ψj,l,k(x, y)⟩ (1)

where j, is the scale index, l represents the orientation, k represents the spatial position, and
ψj,l,k is the Curvelet basis function .

After decomposition, the noise is removed by using directional filters, such as the
Gabor and anisotropic Gaussian filters. Gabor filters [53] are sensitive to orientation and
frequency. It gives importance to ridge like pneumonia patterns. On the other hand,
anisotropic filters [54] preserve directional structure and random noise.

After applying the directional filters, the inverse Curvelet transform is used for the
reconstruction of the denoised image from the coefficients using the equation

f̂ (x, y) = ∑
j,l,k

Ĉj,l,k · ψj,l,k(x, y) (2)

where Ĉj,l,k are the modified coefficients obtained after directional denoising using filter banks.
The weighted averaging of the directionally filtered outputs is used for the final

denoised image as follows:

IMCF-DD = α · IGaussian + β · IGabor + γ · IAnisotropic (3)

with α + β + γ = 1, typically chosen as α = 0.4, β = 0.3, and γ = 0.3.

3.2.2. Image Resizing

For CNN architectures, all input images should be resized to the fixed dimension
224 × 224, which ensures a consistent tensor shape for batch processing and also makes
the framework compatible with the pretrained backbone ResNet-50.
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3.2.3. Image Normalization

Normalization is used for mapping the input image pixels within a common range.
Min-Max normalization is used, which prevents saturation of activation functions and
improves the convergence of gradient-based optimization.

3.3. Feature Extraction
3.3.1. Extraction of Deep Features

In order to capture the deep features from chest radiograph images, different deep
learning architectures were considered. Among these architectures ResNet-50 was selected
as the backbone for the extraction of deep features due to its specific advantages over
the other models. The vanishing gradient problem observed in deeper networks was
resolved in ResNet-50 by its deep architecture, built upon residual learning with identity
shortcut connections. Also, ResNet-50 provides a balanced tradeoff between depth and
computational efficiency. To capture the deep features from chest radiograph images for
pneumonia detection, a modified ResNet-50 architecture is used. The model uses both
residual learning and attention mechanisms to focus more on infection-affected lung regions
while suppressing irrelevant background structures.

Input Adaptation

The standard ResNet-50 architecture [55,56] is designed to accept three channel RGB
images, on the other hand, chest radiographs are grayscale images. To adapt the ResNet-50
model to accommodate this change, the first convolutional layers are modified to receive
and process one channel instead of three channels. The first convolutional layer extracts
fundamental structural elements like edges and corners from the input image. Sixty four
filters with a kernel size of 7 × 7 are used in this layer. This large kernel size captures the
board spatial features.

Max Pooling Layer

To reduce spatial resolution and control overfitting, a Max Pooling layer with a stride
of 2 and kernel size of 2 × 2 is employed, downsampling the feature maps from 112 × 112 to
56 × 56, in which a kernel size of 3 × 3 is used. This stage introduces local translation
invariance, which helps the model to remain robust to small shifts in the feature location.
Max Pooling ensures that the important visual signals are dominant, preventing irrelevant
background textures.

ResNet-50 Architecture

The core part of the ResNet-50 architecture is the four stages of the bottleneck residual
block, which solves the vanishing gradient problem by using shortcut connections. There
are three convolutional layers for each bottleneck layer, 1 × 1 for compression, 3 × 3 for
spatial processing, and 1 × 1 for expansion, which is followed by a shortcut connection
that implements residual learning. The feature channel is increased from 64 to 2048 as a
result of this residual architecture, which is given in Table 3.

At the end of the ResNet-50 architecture, the deep network provides outputs of a
2048-dimensional feature vector for each input image. Each of these 2048 values produces
a different learned pattern, such as edges, lung opacity patterns, etc. These are known as
deep features, and they are rich, high-level representations of the image content.
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Table 3. ResNet-50 architecture-residual block.

Stage Layer Name Output Size

1 Convolution layer 1 112 × 112 × 64

2 MaxPool 56 × 56 × 64

3 Convolution layer 2 56 × 56 × 256

4 Convolution layer 3 28 × 28 × 512

5 Convolution layer 4 14 × 14 × 1024

6 Convolution layer 5 7 × 7 × 2048

Convolutional Block Attention Module

After completing the final convolutional operations, CBAM [57] is embedded into the
architecture to introduce spatial and channel-wise attention. This module analyzes the
interchannel relationships in the input F ∈ RC×H×W 2048 and generates a channel attention
map Mc ∈ RC×1×1 that weights each channel according to their significance. For the
computation of Mc, the two descriptors used are Global Average Pooling and Global Max
Pooling, which can be mathematically represented as

f c
avg =

1
H × W

H

∑
i=1

W

∑
j=1

F(c, i, j) (4)

f c
max = max

i,j
F(c, i, j) (5)

These descriptors are passed through Perceptron with multiple layers, which contains
layers such as a hidden layer and ReLU activation layer. The outputs are summed and
passed through a sigmoid activation function:

Mc(F) = σ
(

MLP( f c
avg) + MLP( f c

max)
)

(6)

The final channel attention map is applied to the input feature map using element-
wise multiplication:

F′ = Mc(F)⊗ F (7)

Global Averaging Layer

The attention-refined feature map F′′ ∈ RC×H×W from the CBAM layer is passed to
a Global Average Pooling (GAP) operation. The GAP layer then compresses the spatial
dimensions, generating a compact and discriminative feature vector. The GAP operation is
defined as

fc =
1

H × W

H

∑
i=1

W

∑
j=1

F′′(c, i, j), for c = 1, 2, . . . , C (8)

The resulting output is a C-dimensional vector:

f = [ f1, f2, . . . , fC] ∈ RC (9)

This feature vector refined through both attention and spatial aggregation fuses to-
gether the texture descriptor features in the next stage.

3.4. Texture Feature Extraction from Original and LBP Images

A set of texture features were extracted from both the original chest X-ray image and
its local binary pattern (LBP) transformed image. The original images have rich gray level
intensity variations and structural anatomy and texture patterns that represent the global
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and local lung tissue characteristics. But the small and granular patterns will be missed
when processing the raw input image. So, to capture the micropatterns, LBP transformation
is applied where the local texture variations are encoded as relationship between a pixel
and its neighbors. By extracting features from both, we will be able to extract the global
structure features and local texture pattern features.

3.4.1. Local Binary Pattern (LBP) Transformation

Local binary pattern [58] is a powerful feature descriptor for a texture classification.
For a given pixel Ic, the local binary pattern (LBP) is computed by thresholding its P
neighbors using a circular radius R:

LBPP,R =
P−1

∑
p=0

s(Ip − Ic) · 2p (10)

where the function s(x) is defined as

s(x) =

1 if x ≥ 0

0 otherwise
(11)

A uniform LBP operator with P = 8 and R = 1 is used in the framework, which produces
a 26-bin histogram representing uniform patterns. The resulting LBP image highlights local
edge, spot, and flat region structures.

3.4.2. Texture Descriptors from Original and LBP Images

The following texture features are extracted from both the original chest radiograph
and its corresponding LBP images.

Gray-Level Co-Occurrence Matrix (GLCM)

The Gray-Level Co-occurrence Matrix (GLCM) [59,60] is used to analyze texture by
measuring the spatial relationships between pairs of pixels at defined orientations and
distances within the image. From the GLCM matrix, the following statistical features
such as contrast, Correlation, Energy, and Homogeneity are calculated. Each of these four
features are calculated for four values of

θ ∈ {0◦, 45◦, 90◦, 135◦}

and so a total of 16 GLCM features are extracted for a single image.

Shannon Entropy

Shannon Entropy [61] is a statistical measurement which gives the randomness in the
intensity distribution. It quantifies the disorder in the texture pattern. A higher entropy
value represents a higher degree of disorder in the image intensities, which can occur as a
result of some abnormalities in the image. It can be defined as

H = −
N

∑
i=1

pi log2(pi) (12)

where pi is the probability of occurrence of the ith gray level in the image histogram, and N
is the number of gray levels. A higher entropy value indicates a higher degree of texture
complexity or disorder.
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Hu’s Invariant Moments

The invariant in the image patterns are represented by Hu’s Invariant moments [62].
These are a set of seven features derived from central image moments that are invariant to
translation, scale, and rotation. The normalized central moments ηpq are given by

ηpq =
µpq

µ
(1+ p+q

2 )
00

(13)

Zernike Moments

To calculate the Zernike moments, image pixels are projected onto orthogonal poly-
nomials defined over the unit disk. Zernike polynomials form a set of orthogonal basis
functions on the unit disk, allowing for compact representation of the shape information. A
total of 10 Zernike moments are extracted per image, comprising 5 magnitudes and 5 phase
components to capture rotation-invariant global shape features from both the original and
LBP-transformed chest X-ray images [63].

Fractal Dimension (FD)

The complexity and self-similarity of texture patterns within an image are quantified
by this feature. One of the most commonly used approaches to estimate the FD is the
box-counting method, which evaluates how detail in a pattern changes with scale.

LBP Histogram Statistics

From the 26-bin uniform LBP histogram, we compute 5 statistical descriptors, such as
the mean, standard deviations, skewness, kurtosis, and histogram entropy. These features
provide a summarized representation of local binary patterns. These features are extracted
from the LBP image only.

3.4.3. Feature Fusion Layer

In the feature fusion layer, the deep features from the modified ResNet-50 architec-
ture and the texture descriptor features from the original and its LBP image are fused
together. Early fusion, known as feature-level fusion, is used in this framework where
the deep features are concatenated with the texture feature by the direct concatenation
method. In this method the features are combined into a single vector by joining them
end to end, without applying any transformation or weighting beforehand. As shown in
Table 4, the expanded summary of the fused feature vector illustrates the distribution and
characteristics of the combined LBP and deep features used for classification.

With direct concatenation, you form a new vector:

f = [d ∥ h] (14)

where

• d ∈ R2048 is the deep feature vector;
• h ∈ R75 is the handcrafted feature vector;
• f ∈ R2123 is the resulting fused feature vector.
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Table 4. Expanded summary of the fused feature vector.

Feature Type Source Feature Count

Deep Features (ResNet-50) Chest X-ray Image 2048

GLCM Features (0°, 45°, 90°, 135°) Original + LBP Image 16 × 2 = 32

Shannon Entropy Original + LBP Image 1 × 2 = 2

Hu’s Invariant Moments Original + LBP Image 7 × 2 = 14

Zernike Moments (Mag. + Phase) Original + LBP Image 10 × 2 = 20

Fractal Dimension Original + LBP Image 1 × 2 = 2

LBP Histogram Statistics (mean, std,
skew, kurtosis, entropy) LBP Image Only 5

Total Handcrafted Features — 75

Total Fused Feature Vector — 2048 + 75 = 2123

Feature Normalization

It is essential to normalize the combined feature vector because the features originate
from different domains and will have their values in different numerical ranges. Deep fea-
tures may span large continuous ranges, while handcrafted texture descriptors like GLCM
contrast or Hu’s moments often lie within much smaller intervals. Without normalization,
high magnitude features can dominate the learning process, causing the classifier to ignore
informative but smaller-scaled features. To ensure the equal contribution of all features
and to improve training stability and convergence, feature normalization becomes a critical
step. Min Max normalization is used, which rescales each feature dimension to lie within
the range of [0, 1].

Feature Selection

After feature fusion and normalization, the resultant feature vector contains 2123 fea-
tures for a single image. This feature vector may contain redundant, irrelevant features.
Processing these types of features causes problems, like increased computational cost and
reduced model generalization capability. Recursive Feature Elimination (RFE) [64] with
a linear Support Vector Machine (SVM) as the base estimator is used as the feature selec-
tion strategy. RFE works by recursively training the model, ranking features based on
their importance. This ranking continues until the optimal number of features is retained,
determined through cross-validation performance on the validation set.

The number of features to be selected was not fixed in the initial stage. After applying
Recursive Feature Elimination (RFE) with a linear Support Vector Machine, each feature
in the fused vector was ranked according to its importance score. The importance of each
feature in an SVM model can be inferred from the absolute magnitude of its corresponding
weight in the learned decision function, with higher magnitudes suggesting stronger
influence on the classification outcome. The value of the weights ranges from 0 to 1,
where 1 represents strong features and values closer to 0 represent weaker features. We
evaluated subsets of features based on these scores, specifically the top 500, 1000, and 1500.
Among them, the top 1000 features, identified based on Recursive Feature Elimination
(RFE) scoring, yielded the highest classification performance in terms of accuracy, AUC,
and F1-score. Consequently, these top 1000 features were selected for the final model. Out
of 1000 features, 860 features are deep features and 140 are texture descriptor features. The
top 15 features, selected using Recursive Feature Elimination (RFE) with a linear Support
Vector Machine (SVM) classifier, are presented in Table 5.
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Table 5. Top 15 features selected using Recursive Feature Elimination (RFE) with linear SVM.

Rank Feature Name Type Score

1 Deep_Feature_1493 Deep (ResNet-50) 1.000

2 GLCM_Contrast_90deg_LBP Handcrafted 0.986

3 Deep_Feature_876 Deep (ResNet-50) 0.974

4 Zernike_Magnitude_3_org Handcrafted 0.966

5 Deep_Feature_112 Deep (ResNet-50) 0.954

6 Hu_Moment_2_LBP Handcrafted 0.942

7 Deep_Feature_1985 Deep (ResNet-50) 0.939

8 FD_LBP Handcrafted 0.932

9 Deep_Feature_320 Deep (ResNet-50) 0.921

10 LBP_Histogram_Entropy Handcrafted 0.915

11 Deep_Feature_2021 Deep (ResNet-50) 0.901

12 Zernike_Phase_2_LBP Handcrafted 0.899

13 Deep_Feature_1055 Deep (ResNet-50) 0.885

14 Shannon_Entropy_Orig Handcrafted 0.874

15 GLCM_Homogeneity_135deg_org Handcrafted 0.861

3.4.4. Softmax Classification

The selected features are given as input to the Softmax classifier [65], which performs
the final classification. The classifier was trained using cross-entropy loss to optimize class
separation. Since this is a binary classification task of classifying the image to pneumonia
or normal, the output corresponds to the probability of each class, and the final prediction
is made by choosing the class with the maximum probability. This approach ensures inter-
pretability, probabilistic confidence, and compatibility with modern neural and statistical
modeling frameworks. After training, the Softmax classifier outputs class probabilities for
each sample.

4. Results
4.1. Evaluation Metrics

The evaluation metrics used for analyzing the performance of the proposed pneu-
monia detection framework are accuracy, specificity, sensitivity, precision, and area under
the curve.

• Accuracy (%): It is calculated by taking the ration of correctly classified instances over
the total number of cases.

• Sensitivity (%): This metric indicates the model’s ability to correctly identify pneumo-
nia positive cases.

• Specificity (%): This model is used to represent the model’s ability to correctly identify
pneumonia negative cases.

• Precision (%): The proportion of correctly identified pneumonia cases among all
predicted pneumonia cases is given by this metric.

• Area Under the Curve (AUC): This represents the model’s ability to discriminate
between the pneumonia and normal classes across all thresholds. An AUC of 1.0
indicates perfect classification, while 0.5 represents random chance.

Quantitative Evaluation

For the experimental evaluation, the publicly available chest ray dataset is used. The strat-
ified dataset is used where 70% is used for training and 15% is used for testing and validation
each. But as we can see in Table 2, in the stratified dataset, the number of pneumonia cases
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is 72% of the samples in each subset. To handle this class imbalance problem, the weighted
random sampler function is used and a comparative study between two training settings
is performed. In the first variant, standard uniform sampling and unweighted loss is im-
plemented, and in the second one, an integrated approach combining weighted random
sampling, class-weighted loss, and targeted augmentation is used. The baseline ResNet model
without imbalance handling exhibited high overall accuracy of 83.6% but significantly lower
sensitivity of 93.2% for the minority normal class, which indicates a strong bias toward the
majority pneumonia class. After applying class imbalance techniques, the updated model
achieved an improved accuracy of 85.9%, with sensitivity increasing to 98.2%.

For the quantitative evaluation of the improved ResNet-50 architecture, four different
models were evaluated.

• Variant 1: Standard ResNet-50.
• Variant 2: ResNet-50 with CBAM.
• Variant 3: ResNet-50 with CBAM and LBP Fusion.
• Variant 4: ResNet-50 with MCF-DD and CBAM and LBP Fusion.

To systematically evaluate the effects of preprocessing, feature fusion, and attention
mechanisms on classification performance, four ResNet-50-based model variants were
implemented. The baseline model utilized the standard ResNet-50 architecture with class
imbalance handling mechanisms.

A second variant was considered in which a Convolutional Block Attention Mod-
ule (CBAM) was integrated after the final convolutional block of ResNet-50 to enhance
the model’s ability to focus on pathology relevant regions by applying both spatial and
channel attention. In the third variant, ResNet-50 with the CBAM module was considered.
In this model, the deep features from ResNet-50 were fused with local binary pattern
(LBP) descriptors extracted from the original X-ray images and the LBP images. These
combined features were concatenated before the final dense layers. Recursive Feature
Elimination (RFE) was used to select the top 1000 most informative features, which were
then normalized and forwarded to the classification head. The fourth variant incorporated
a preprocessing step using Multi Curvelet Filtering with Directional Denoising (MCF-DD),
applied to the input X-rays prior to feature extraction. This preprocessing pipeline included
Curvelet based decomposition followed by directional filtering and adaptive coefficient
fusion, aiming to suppress noise and enhance pathological structures. The fused features
from ResNet-50 and LBP were then passed through CBAM-enhanced blocks to emphasize
diagnostic regions before classification.

All the models were trained using a categorical cross-entropy loss function with the
Adam optimizer with an initial learning rate = 1 × 10−4 and a batch size = 32 for 50 epochs.
Table 6 presents the performance comparison of the four model variants, highlighting
the differences in accuracy, sensitivity, specificity, precision and AUC, in which the best
performing results in each column are highlighted in bold.

Table 6. Performance comparison of four model variants.

Metric Variant 1 Variant 2 Variant 3 Variant 4

Accuracy (%) 85.90 82.40 84.60 96.08

Sensitivity 0.982 0.972 0.985 0.9595

Specificity 0.654 0.577 0.615 0.9496

Precision (PPV) 0.825 0.793 0.810 0.9809

AUC 0.949 0.960 0.963 0.985

A balanced and clinically meaningful performance is achieved by variant 1 with a
classification accuracy of 85.9%. Sensitivity with 98.2% indicates a strong capability to
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identify the pneumonia cases correctly. But the specificity is relatively lower at 65.4%,
suggesting a higher rate of false positives for normal cases. The precision of 82.5% reflects
good confidence in positive and negative predictions, respectively. With an AUC of 0.949
as shown in Figure 3, the model demonstrates robust discriminative ability between the
classes, confirming its effectiveness, especially in identifying diseased cases with high recall.

Figure 3. ROC curve for variant 1 showing AUC performance.

Variant 2 demonstrates a strong pneumonia detection capability with a very high
sensitivity of 97.2%, meaning it effectively identified nearly all pneumonia cases. However,
its specificity is relatively low at 57.7%, indicating more false positives among normal cases,
which reduces its overall accuracy to 82.4%. The precision of 79.3% suggests that while
positive predictions include some false alarms, the negative predictions are still highly
reliable. The AUC of 0.960 as shown in Figure 4 confirms that the model maintains good
class separability, but the lower specificity may impact clinical usability where reducing
unnecessary alerts is critical.

Figure 4. ROC curve for variant 2 showing AUC performance.

Variant 3 achieves a strong balance between sensitivity and overall classification
performance. It reports an accuracy of 84.6%, with a notably high sensitivity of 98.5%,
indicating its consistent ability to correctly detect pneumonia cases. The specificity is
61.5%, showing a moderate improvement in correctly identifying normal cases compared
to variant 2. The precision of 81% indicates reliable positive predictions. With an AUC
of 0.963 as shown in Figure 5, this variant shows excellent discriminative power between
normal and pneumonia cases, making it a well-rounded model for clinical applications.
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Figure 5. ROC curve for variant 3 showing AUC performance.

Variant 4 delivers the best overall performance among all the evaluated models,
achieving an accuracy of 96.08%, which indicates a highly reliable classification system. It
maintains a sensitivity of 95.95%, confirming its strong ability to detect pneumonia cases,
while also significantly improving its specificity to 94.6%, minimizing false positives in
normal cases. The model demonstrates excellent precision at 98.09%. Notably, the model
achieves an AUC of 0.985 as shown in Figure 6, demonstrating excellent discrimination
between pneumonia and normal cases. This positions variant 4 as the most reliable and
clinically effective configuration.

Figure 6. ROC curve for variant 4 showing AUC performance.

The confusion matrix in Figure 7 demonstrates the classification performance of the
proposed model on the test dataset. Out of the total 238 normal cases, 226 were correctly
classified as normal, while 12 were misclassified as pneumonia, indicating a relatively
low false-positive rate. Similarly, among 641 pneumonia cases, 615 were accurately iden-
tified, with only 26 instances misclassified as normal, reflecting a low false-negative rate.
These results correspond to a high overall classification accuracy and balanced sensitivity
and specificity.
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Figure 7. Confusion matrix for Variant 4.

4.2. Qualitative Assessment of True and False Predictions Using Grad-CAM

The Grad CAM visualizations shown in Figure 8 provide a qualitative interpretation
of the model’s decision-making process across different prediction outcomes.

In true-positive (TP) instances (615 samples), the Grad-CAM maps predominantly
highlight pneumonia-affected regions, with dense activations over lung fields, especially
the lower lobes, suggesting that the model has successfully learned to localize pathological
features. This strong spatial correspondence justifies the high sensitivity observed in
the evaluation.

In true-negative (TN) cases (226 samples), the activation maps display scattered
or minimal intensity across noncritical lung regions, affirming that the model avoids
overattending to normal anatomical structures. The background-focused attention confirms
that no abnormal features influenced the model’s decision, supporting the 95% specificity.

Conversely, in false-positive (FP) samples (12 instances), the visualizations often show
misdirected attention toward ribs, cardiac shadows, or peripheral noise, indicating that
subtle structural textures have been misinterpreted as pneumonia markers. This highlights
the model’s vulnerability to non-pathological variations and borderline cases.

False-negative (FN) visualizations (26 samples) typically reveal weak or misplaced
activations, often missing the true infection zones, suggesting that the model failed to
recognize subtle or atypical pneumonia presentations. These errors underline the challenge
of detecting early-stage or mild infections where visual cues may be ambiguous.

Across the evaluated configurations, variant 4 proved to be the most effective model,
attaining the highest classification accuracy of 96.08%, specificity of 94.96%, and AUC of
0.98 while maintaining an excellent sensitivity of 95.95%. This indicates that variant 4
not only detects pneumonia cases effectively but also significantly reduces false positives,
making it highly reliable in clinical settings.
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Figure 8. Grad-CAM visualization.
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5. Discussion
The proposed system uses a hybrid approach by combining the deep features ex-

tracted from a modified ResNet-50 with handcrafted texture features derived from both
original and LBP transformed chest X-ray images. This integration captures both high
level semantic representations and low level structural patterns, improving classification
performance, especially in distinguishing subtle textural differences between pneumonia
and normal lungs.

A high sensitivity of 95.95% ensures that most of the pneumonia cases are identified ac-
curately. This is crucial in clinical screening applications, where minimizing false negatives
is essential to avoid missed diagnoses. The fusion of features enhances representational
richness, and the inclusion of handcrafted descriptors like GLCM, entropy, Hu moments,
and Zernike moments allow for improved interpretability and robustness. Furthermore,
variant 4 achieved a balanced improvement in both sensitivity and specificity, indicating
the strength of feature normalization and selection in reducing overfitting.

Computational Efficiency and Practicality

To assess the computational efficiency of the proposed RFE-based feature selection
strategy, we benchmarked its training and inference times against the baseline ResNet-50
model. Feature extraction using the pretrained ResNet-50 took approximately 1.8 min.
The subsequent Recursive Feature Elimination (RFE) step, applied to reduce the original
2048 features to the top 1000 most informative features using a linear SVM estimator,
required about 2.0 min. The total training time for the proposed pipeline was around
3.8 min. During inference, the reduced feature set enabled faster classification, with an
average prediction time of 60 ms per image, compared to 90 ms in the baseline ResNet-50
model without feature reduction. These experiments were performed on Google Colab Pro
utilizing an NVIDIA A100 GPU (NVIDIA Corporation, Santa Clara, CA, USA). The results
indicate that the proposed feature selection method significantly improves classification
performance while also reducing inference latency, rendering it highly suitable for time-
sensitive clinical applications. Computational cost and performance comparison between
baseline ResNet-50 and proposed framework in given in the Table 7.

Table 7. Computational cost and performance comparison between baseline ResNet-50 and pro-
posed framework.

Metric/Step Baseline
ResNet-50

Proposed RFE-
Optimized Pipeline

Feature Extraction Time 1.8 min 1.8 min

Feature Selection Time (RFE-1000 feats) — 2.0 min

Total Training Time 1.8 min 3.8 min

Inference Time per Image 90 ms 60 ms

Classification Accuracy 85.90% 96.02%

Despite its strong performance, the system exhibits certain limitations. Variants 1 to
3 showed lower specificity, indicating a higher false-positive rate, which could result in
over-diagnosis when used as a standalone tool. The high dimensionality of features prior
to selection increases training time and memory usage. Moreover, the reliance on LBP
transformed images assumes that texture information is consistently diagnostically relevant,
which may not hold across all imaging conditions or datasets. Furthermore, the current
framework is limited to 2D chest radiographs, does not scale to volumetric data such as 3D
CT scans, and lacks clinical validation through expert radiologist. Comparison of recent
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studies for pneumonia detection using chest X-rays Kaggle dataset with the proposed
framework is depicted in Table 8.

Table 8. Comparison of recent studies for pneumonia detection using chest X-rays.

Study Dataset Accuracy (%) Sensitivity (%) Specificity (%) AUC/F1 Score

Pneumonia Classification via
MobileNet [38]

Kaggle Chest X-Ray
Images [51] 94.23 – – -

DCNN with Attention
Ensemble for
Pneumonia [66]

Kaggle Chest X-Ray
Images [51] 95.19 93.84 97.43 AUC: 0.9564

CNN-Based Pneumonia
Detection with Integrated
Gradients [67]

Kaggle Chest X-Ray
Images [51] 97.23 – – –

Model-Level Ensemble of
CNN and ViT for
Pneumonia Detection [68]

Kaggle Chest X-Ray
Images [51] 94.87 – – –

Proposed-Enhanced
ResNet-50 (Variant 4 )

Kaggle Chest X-Ray
Images [51] 96.08 95.95 94.96 AUC: 0.98

Future research can address these challenges through several directions. Extending
the method to multiclass classification, such as differentiating between bacterial and vi-
ral pneumonia or other chest pathologies, will improve its clinical applicability. Finally,
validating the system on larger, diverse, and real world datasets will ensure robustness
and generalization. In future work, we plan to conduct a radiologist in the loop evaluation
to further assess the clinical relevance and diagnostic reliability of the proposed frame-
work. This will involve comparing the model’s predictions with annotations and diagnoses
provided by multiple expert radiologists.

6. Conclusions
A hybrid structured framework for detecting pneumonia from chest X-ray images

by combining deep features extracted from ResNet-50 with handcrafted texture descrip-
tors from both original and LBP-transformed images is discussed in this work. Feature
fusion was performed through direct concatenation, followed by normalization and Recur-
sive Feature Elimination to reduce dimensionality and enhance discriminative capability.
Among the evaluated variants, the proposed variant 4 achieved the highest performance,
demonstrating the benefit of integrating handcrafted features with deep representations.
This hybrid approach not only enhances classification accuracy but also plays a signifi-
cant role in improving the interpretability and robustness, making it a promising tool for
supporting computer-aided diagnosis in practical, real-world clinical environments.
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