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Abstract: Background/Objectives: Coated tongue is a common oral condition with notable
clinical relevance, often overlooked due to its asymptomatic nature. Its presence may reflect
poor oral hygiene and can serve as an early indicator of underlying systemic diseases.
This study aimed to develop a robust diagnostic model utilizing convolutional neural
networks and machine learning classifiers to improve the detection of coated tongue lesions.
Methods: A total of 200 tongue images (100 coated and 100 healthy) were analyzed. Images
were acquired using a DSLR camera (Nikon D5500 with Sigma Macro 105 mm lens, Nikon,
Tokyo, Japan) under standardized daylight conditions. Following preprocessing, feature
vectors were extracted using CNN architectures (VGG16, VGG19, ResNet, MobileNet, and
NasNet) and classified using Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
and Multi-Layer Perceptron (MLP) classifiers. Performance metrics included sensitivity,
specificity, accuracy, and F1 score. Results: The SVM + VGG19 hybrid model achieved the
best performance among all tested configurations, with a sensitivity of 82.6%, specificity
of 88.23%, accuracy of 85%, and an F1 score of 86.36%. Conclusions: The SVM + VGG19
model demonstrated high accuracy and reliability in diagnosing coated tongue lesions,
highlighting its potential as an effective clinical decision support tool. Future research
with larger datasets may further enhance model robustness and applicability in diverse
populations.

Keywords: coated tongue; convolutional neural network; deep learning; machine learning;
oral diagnosis; support vector machine

1. Introduction
Coated tongue is characterized by a painless, white or whitish-yellow layer on the

dorsum of the tongue. This coating consists of desquamated epithelial cells, bacteria, blood
metabolites, secretions from the nasopharynx and gingiva, as well as saliva. Coated tongue
commonly appears during febrile conditions such as scarlet fever, primary herpetic gin-
givostomatitis, multiple aphthous ulcers, and bullous diseases—clinical scenarios that are
frequently associated with painful oral lesions. In elderly individuals, the coating tends to
be thicker and may present with a more atypical coloration compared to younger popula-
tions. Additionally, coated tongue has been reported as a potential risk factor for aspiration
pneumonia in individuals aged 65 years and older [1,2]. Furthermore, individuals with
gastrointestinal or hepatic disorders have been observed to exhibit a thicker tongue coating
than healthy individuals [3]. Differential diagnoses should include conditions such as hairy
tongue and oral candidiasis; however, histopathological examination is not required in
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most cases [1]. Epidemiological studies conducted in different populations indicate that
the prevalence and presentation of tongue lesions vary across communities [4,5]. Therefore,
understanding and identifying the prevalence of tongue lesions specific to each population
is of great importance for the development of regionally tailored public health policies.
Patients often visit dentists primarily due to tooth pain. However, since dentists tend to
focus on pain management and treatment of the patient’s main complaints, comprehensive
examinations of the oral mucosa and tongue are often overlooked. As coated tongue
and other tongue lesions are usually asymptomatic, they are frequently neglected or left
untreated as potential underlying causes of symptoms such as halitosis, burning mouth
sensation, and taste disorders. Recent advancements in artificial intelligence (AI) have led
to a profound transformation in the healthcare field, enabling the development of innova-
tive approaches for the diagnosis, management, and prevention of various diseases [6–8].
Subfields of AI, particularly machine learning and deep learning, make it possible to de-
velop highly accurate diagnostic tools by identifying complex patterns and relationships
within large medical datasets [9,10]. In particular, convolutional neural network (CNN)
models based on deep learning have become some of the most widely used techniques
in medical imaging, supporting advanced applications such as organ segmentation, de-
tection, classification, and disease diagnosis [11,12]. In the field of dentistry, these models
have been applied to the detection of caries, lesions, and cysts, as well as in treatment
planning [7,13,14]. Additionally, systemic conditions with oral manifestations and various
oral diseases have been analyzed using artificial neural networks trained on intraoral
photographs, demonstrating the diagnostic and clinical decision-support potential of AI
in such contexts [8,15]. In conventional tongue examinations, external factors such as
lighting conditions, the ambient environment, and even seasonal variability may lead to
inconsistencies in diagnostic outcomes. CNNs, however, learn features directly from data,
thereby minimizing the impact of such external variations and providing a more consistent
diagnostic process. The fundamental goal of these networks is to optimize the weight
parameters across layers to achieve high levels of accuracy and generalizability [16,17].

This study aims to develop an innovative decision support system to assist clinicians
in the diagnosis of coated tongue lesions. By adopting a hybrid approach that integrates
deep learning and machine learning techniques, the study seeks to enhance diagnostic
accuracy, reduce subjective assessments, and offer a reliable tool for clinical applications.

The contributions of this study to the literature are summarized below in bullet points.

• It aims to provide an AI-assisted approach for the diagnosis of coated tongue, a com-
monly overlooked oral condition, thereby promoting early detection and awareness.

• A new data set has been added to the literature and shared.
• A highly accurate diagnostic model has been developed by integrating deep learning-

based CNN architectures with traditional machine learning classifiers.
• The superior performance of the VGG19 + SVM combination offers valuable insights

into effective model configurations for similar problems in the literature.
• It contributes to the development of reliable, automated diagnostic systems that can

be used as supportive tools in clinical applications.
• By introducing a standardized approach to intraoral imaging and evaluation, it has

the potential to reduce the impact of external factors (e.g., lighting, seasonal variations)
on diagnostic consistency.

• The early detection of coated tongue, which has been linked to serious conditions such
as aspiration pneumonia in individuals aged 65 and over, is emphasized as a public
health priority.

• It provides a new perspective on the diagnostic evaluation of coated tongue in relation
to gastrointestinal, hepatic, and systemic diseases.
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2. Materials & Methods
2.1. Patient Selection and Image Acquisition

This study utilized tongue images obtained during routine examinations of patients
presenting with various complaints to the Department of Oral and Maxillofacial Radiology
at the Faculty of Dentistry, Fırat University. The dataset consisted of 200 tongue images,
evenly divided between 100 coated tongues and 100 healthy tongues, with stabilization
achieved using gauze. All images were captured under standardized natural daylight
conditions using a professional single-lens reflex camera (Nikon D5500 with Sigma Macro
105 mm lens, Nikon, Tokyo, Japan). Image acquisition was performed by an oral and
maxillofacial radiology research assistant (M.H.T.) and an oral and maxillofacial radiologist
(S.C.B.). To ensure optimal image quality, any out-of-focus images were excluded. The final
dataset images were saved in JPEG format, in RGB color mode, with a resolution of
6000 × 4000 pixels and an uncompressed 1:1 aspect ratio. Figure 1a provides examples of
coated tongues, while Figure 1b illustrates healthy tongues.
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Figure 1. Coated tongue images (a), healthy tongue images (b).

2.2. Image Evaluation

The dataset used for the diagnosis of coated tongue consists of tongue photographs
taken from individuals with healthy and coated tongues. These images were used for direct
classification without segmentation. This approach prioritizes distinguishing between
“coated” and “healthy” tongues, eliminating the need for segmentation and providing
practical advantages. CNN models require input data of certain sizes according to their
architectural designs. To meet these requirements, the first step of the study included
standardizing the dataset by resizing all images. The images were set to 224 × 224 pixels
for the VGG, ResNet, and MobileNet architectures and 331 × 331 pixels for NasNet.
Additionally, the images were normalized by scaling the pixel values to a range between
0 and 1 using min-max normalization to speed up the learning process of the model and
ensure more balanced weight updates. After the preprocessing steps, the CNN models
(VGG16, VGG19, ResNet18, ResNet50, MobileNet, and NasNet) had weights trained on
the ImageNet dataset and were applied for feature extraction with the transfer learning
method. Feature extraction was performed in the last convolutional layer of each model,
which showed the best discriminative features. In VGG models, a “flattening” layer is
used, especially before the “fc7” fully connected layer. In ResNet models, features are
obtained using the last global average pooling (GAP) layer. In MobileNet and NasNet
models, features are extracted using deep discrete convolutional layers. After the feature
extraction processes, a feature vector was created for each image and given as input to
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the proposed hybrid structure machine learning classifiers. Thus, the features required
for the classification process were obtained by utilizing the high representation power of
different CNN models. The flow of the proposed method is given in Figure 2. The features
obtained from CNN models were classified using traditional machine learning methods.
At this stage, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Multilayer
Perceptron (MLP) algorithms were included in the study.
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RBF kernel was used while performing hyperparameter tuning for the SVM model.
The C parameter, which determines the complexity of the model, was set to 1 and the
gamma parameter was set to automatic. The number of neighbors for the KNN model was
determined as k = 5 by performing k = (3,5,7) trials. The MLP model was designed in a
structure with a single hidden layer, and 128 neurons and the Adam optimizer were used.

In order to increase the reliability of the study, separation of the training and test
data was performed using the balanced separation method so that there was an equal
number of examples from each class. The data set was divided into 80% training and
20% test. Thus, the ratio of classes in the data set was preserved and the model was not
affected by the unbalanced data distribution. In addition, during the model evaluation,
a five-fold cross-validation method was applied to ensure the reliability of the results
and to increase the generalization of the model. Classifier performance was evaluated
using accuracy, precision, recall, and F1 score measurements. By integrating CNN-derived
features with various classifiers, the study achieved high accuracy rates while increasing
model generalizability. This hybrid approach has proven to be critical in improving both
the accuracy and robustness of the diagnostic model.

3. Results
An evaluation of the findings was conducted using sensitivity, accuracy, F1 score, and

specificity metrics. The combined application of these metrics provided a comprehensive
assessment of model performance, both in terms of overall accuracy and inter-class distinc-
tion. Analyzing these metrics collectively established a reliable foundation for identifying
model deficiencies and determining the best-performing configuration. The formulas for
the metrics used in the performance evaluation process are presented in Table 1.

Table 1. Performance evaluation metrics.

Metrics Formulas

Accuracy (Acc) (TP + TN)/(TP + TN + FN + FP)

Sensitivity (Sen) TP/(TP + FN)

Specificity (Spe) TN/(TN + FP)

F1 Score 2TP/(2TP + FN + FP)
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• True Positive (TP): The number of images correctly identified as “coated” among the
images of coated tongues.

• True Negative (TN): The number of images correctly identified as “healthy” among
the images of healthy tongues.

• False Positive (FP): The number of images incorrectly identified as “healthy” among
the images of coated tongues.

• False Negative (FN): The number of images incorrectly identified as “coated” among
the images of healthy tongues.

The performance metrics obtained after the classification process are summarized in
Table 2. This table was utilized to compare the different models and identify the one with
the highest overall performance.

Table 2. Classification results.

Classifier Model Sen (%) Spe (%) Acc (%) F1 Score
(%)

SVM

VGG16 86.36 83.33 85 86.36

VGG19 82.6 88.23 85 86.36

ResNet 61.11 81.81 72.5 66.66

MobileNet 83.33 86.36 85 83.33

NasNet 66.66 95.45 82.5 77.41

KNN

VGG16 77.77 77.27 77.5 75.67

VGG19 77.77 77.27 77.5 75.67

ResNet 50 86.36 70 60

MobileNet 73.07 78.57 75 79.16

NasNet 73.91 94.11 82.5 82.92

MLP

VGG16 100 50 77.5 83.01

VGG19 82.6 88.23 85 86.36

ResNet 68.18 66.66 67.5 69.76

MobileNet 83.33 72.72 77.5 76.92

NasNet 77.27 88.88 82.5 82.92

Upon analyzing Table 2, it is evident that multiple hybrid models achieved identical
accuracy rates. In such cases, a comprehensive evaluation incorporating all performance
metrics provided a more reliable basis for a comparative analysis. When all metrics were
considered collectively, the SVM + VGG19 hybrid model demonstrated the highest overall
performance. The calculated performance metrics for this model were as follows: 82.6%
precision, 88.23% specificity, 85% accuracy, and an F1 score of 86.36%. These results
highlight the model’s balanced approach to minimizing both false positives and false
negatives, ultimately achieving a high level of classification performance.

In this study, the Support Vector Machine (SVM) method is recommended because,
although similar accuracy rates were obtained with the Multi-Layer Perceptron (MLP),
SVM offers several advantages. These include lower computational requirements, fewer
hyperparameters to tune, and more stable performance, particularly on small to medium-
sized datasets. Additionally, SVM provides more clearly defined decision boundaries,
enhancing the interpretability of the model and reducing the risk of overfitting. Therefore,
among models with comparable performance, SVM stood out as the most suitable and
reliable choice.
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The results indicate that the proposed method, utilizing the SVM + VGG19 hybrid
model, reliably diagnosed coated tongue and effectively distinguished between coated and
healthy tongues. The model’s high specificity reflected a low false positive rate for healthy
individuals, thereby reducing the risk of misdiagnosis. Additionally, the elevated F1 score
highlighted the model’s ability to achieve a well-balanced performance between precision
and recall (sensitivity), underscoring its overall robustness in classification tasks.

Figure 3 illustrates the confusion matrix for the hybrid model, which integrated the
VGG19 architecture with the SVM classifier. The high values for true positives and true
negatives in the matrix emphasize the model’s effectiveness in distinguishing between
the two classes. The overall accuracy was further enhanced by the low numbers of false
positives and false negatives. These findings suggest that the proposed hybrid method is a
promising tool for clinical applications and provides an efficient solution for the diagnosis
of coated tongue.
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4. Discussion
In this study, we aimed to diagnose coated tongue lesions by applying AI algorithms

to intraoral photographs. The results demonstrated that the proposed model exhibited high
performance in terms of classification and diagnostic accuracy. This success particularly
highlights the potential of AI-based diagnostic systems to bridge the gap between clinical
subjectivity and objective assessment—especially in conditions such as coated tongue,
which may be overlooked during routine dental examinations. Systemic conditions with
oral manifestations, as well as various oral diseases, have been investigated using artificial
neural networks trained on intraoral images, and the diagnostic and decision-support
capabilities of AI in these contexts have been clearly demonstrated (Table 3) [18–24].

This table presents a compilation of artificial intelligence-based studies focused on
the diagnosis of coated tongue, systematically comparing them in terms of dataset size,
classification objectives, applied methods, and reported findings. A common feature
among these studies is their methodological focus on identifying coated tongue. Our study
proposes a specific diagnostic model aimed at differentiating coated tongue from healthy
tongue, achieving high accuracy and F1-score using a VGG-19 + SVM architecture without
requiring segmentation. In this respect, it distinguishes itself from other multi-class or
region-based analytical studies. Overall, these AI-supported studies on coated tongue
detection not only provide promising solutions for clinical decision support systems but
also serve as valuable references for the development of future multidimensional diagnostic
models.
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Table 3. Comparison of AI-Based Studies on Coated Tongue Imaging.

Authors Dataset Objective Methods Results

Tiryaki et al. [19]

A total of
623 tongue images,
including
84 coated tongue
images

Classification of
various tongue
lesions, including
coated tongue,
fissured tongue,
and others.

Deep learning
model with
majority voting

For coated tongue:
an accuracy of
87.36%, sensitivity
of 90.48%, and
specificity of
97.96%

Tang et al. [22]

274 samples of
tongue images,
186 normal tongue
coating images
and
88 rotten-greasy
ones

Tongue coating
classification based
on Traditional
Chinese Medicine
(TCM)

MI-SVM

An accuracy of
85% was achieved
in differentiating
between coated
and normal
tongues

Okawa et al. [20] 395 tongue images Segmental analysis
of tongue coating

YOLOv2 +
ResNet-18

High level of
agreement with
human evaluators,
with a kappa
coefficient of 0.826

Zhao et al. [21]

Interpretative
literature review;
the sample size
was not specified.

Classification of
tongue
characteristics
based on
Traditional
Chinese Medicine
(TCM), including
color, fissures,
shape, coating
thickness, and
type, etc.

SVM optimized
using the
Sequential
Minimal
Optimization
(SMO) algorithm

A total of
24 features,
including coated
tongue, were
successfully
classified with
high accuracy

Li et al. [24] 482 tongue images

Classification of
tongue
characteristics
based on
Traditional
Chinese Medicine
(TCM), including
color, fissures,
shape, coating
thickness, and
type, etc.

UNet + ResNet-34

An accuracy of
86.14% was
achieved in the
classification of
tongue coating
type, thickness,
and color

Kim et al. [18] 711 tongue images

Tongue
segmentation and
coated tongue
classification

Graph-based
segmentation
combined with
HSV color space
and discriminant
analysis

An accuracy of
85% was achieved
for the presence
and type of tongue
coating

Chang et al. [23]

696 images with
thick and yellow
tongue
coating/764 total
labeled tongue
images

Classification of
tongue
characteristics
based on
Traditional
Chinese Medicine
(TCM), including
color, fissures,
shape, coating
thickness, and
type, etc.

YOLOv4-tiny

AP50: 75.92% for
thick coating,
47.67% for yellow
coating; real-time
detection model

This study

A total of
200 images,
including 100 with
coated tongue and
100 from healthy
subjects

Coated tongue
diagnosis and
differentiation
between healthy
and coated tongue

VGG-19 + SVM

An accuracy of
85% and an
F1-score of 86.36%
were achieved.
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Kim et al. developed a system for automatic tongue segmentation and coated tongue
classification using 711 tongue images obtained through the Digital Tongue Diagnosis
System (DTDS). In their study, the tongue region in visual images was segmented using a
graph-based segmentation method. The segmented regions were then converted into HSV
(hue, saturation, value) color space, and second-order discriminant analysis was applied to
classify coating types (white, yellow, mixed, none). When compared with labels provided
by traditional medicine practitioners serving as reference standards, the system achieved
an accuracy of 85% [18]. In our study, a machine learning classifier (SVM) supported by
transfer learning-based deep learning architectures (specifically VGG-19) was developed
to distinguish between coated and healthy tongue images. Using a balanced dataset
(n = 200), the model achieved an accuracy of 85%, sensitivity of 82.6%, specificity of 88.23%,
and an F1-score of 86.36%. Both studies demonstrate high accuracy in the automated
analysis of tongue images and highlight the clinical potential of digital diagnostic systems.
However, our approach offers a more practical and faster solution for clinical settings
due to its simplified structure that eliminates the need for segmentation and its hybrid
classification strategy.

In the study conducted by Tiryaki et al., a five-class tongue lesion classification was per-
formed, which included 84 specifically labeled coated tongue images. Using a fusion-based
majority voting strategy, the developed model achieved an accuracy of 87.36%, a sensitivity
of 90.48%, and a specificity of 97.96%. The multi-class structure and increased class diversity
introduced additional complexity in distinguishing lesion types [19]. In contrast, our study
focused on binary classification, specifically differentiating between coated and healthy
tongues. The proposed hybrid model integrated VGG-19-based feature extraction with
an SVM classifier and achieved 85% accuracy, 82.6% sensitivity, 88.23% specificity, and an
F1-score of 86.36%. While Tiryaki et al.’s model benefited from a larger and more diverse
dataset contributing to its overall robustness, our balanced and binary-structured dataset
yielded a strong F1 performance by effectively balancing both false positive and false
negative rates. Moreover, the high classification performance achieved using a relatively
limited dataset and leveraging transfer learning underscores the practicality and potential
integration of our model into clinical decision support systems.

Okawa et al. developed a deep learning-based system aimed at automating the
traditionally subjective visual assessment of tongue coating in elderly individuals. In their
study, tongue region detection was performed using YOLOv2, and the tongue surface was
divided into a 7 × 7 grid. Each region was then classified based on its coating score using a
ResNet-18-based classification network. The system demonstrated strong agreement with
human evaluators (Cohen’s kappa: 0.826, ICC: 0.807), indicating that tongue coating can be
reliably assessed in a regional and detailed manner [20]. While the approach by Okawa
et al. offers a multidimensional and region-specific analysis, our model provides a faster
and more direct diagnostic process. Both methods contribute to clinical decision support at
different levels and from complementary perspectives.

Within the framework of the Zheng classification system, which is widely used in
Traditional Chinese Medicine (TCM), numerous studies have investigated changes in
tongue color, shape, and texture. These studies have employed machine learning techniques
to highlight the diagnostic potential of tongue analysis [21–24]. Zhao et al. applied machine
learning methods for tongue segmentation and performed classification of 24 different
tongue types using 21 tongue features—including coated tongue—such as color, shape,
fissure pattern, and coating thickness. A performance analysis revealed that the Support
Vector Machine (SVM) algorithm, optimized with Sequential Minimal Optimization (SMO),
achieved the highest accuracy among the tested models [21]. This study underscores
the strong classification capability of SVM, particularly in datasets with complex feature
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representations. While the study by Zhao et al. primarily focused on segmentation and
multi-class classification, our approach specifically addresses the binary classification
task of distinguishing between coated and healthy tongues. The hybrid architecture
integrating deep learning (VGG-19) and machine learning (SVM) in our study enhances
diagnostic performance in this specific context. Tang et al. conducted a tongue image
classification study within the scope of Traditional Chinese Medicine (TCM), using a
dataset of 274 images obtained through the DS01-B system. Of these, 186 images were
classified as normal, and 88 as “rot-greasy” tongue coatings according to TCM principles.
The classification task involved distinguishing between these two groups, and the study
employed a hybrid MI-SVM approach, achieving an accuracy rate of 85% [22]. Similarly,
in our study, a comparable accuracy was achieved in differentiating coated and healthy
tongues using a hybrid architecture based on VGG-19 and SVM.

In a recent study conducted by Chang et al., efforts were made to objectify tongue
diagnosis practices commonly used in TCM. A deep learning-based model was developed
to detect various tongue features such as fissures, tooth marks, and thick yellow coatings.
The model was trained on a dataset consisting of 764 manually labeled images and im-
plemented using the YOLOv4-tiny object detection algorithm. As a result, a lightweight
system capable of real-time operation was obtained, with a model size of only 22.4 MB.
The model demonstrated high performance in detecting prominent features such as thick
coating and total fissure area, with AP50 scores ranging between 47.67% and 75.92% [23].
While the study by Chang et al. focused on detecting multiple localized features on the
tongue surface, our study specifically targeted the binary classification of coated versus
healthy tongues. Moreover, in our approach, the deep features extracted from various CNN
architectures were analyzed using conventional machine learning algorithms such as SVM,
KNN, and MLP for image classification. Although Chang et al.’s study offers significant
contributions in terms of visual localization and interpretability of tongue features, our
model complements this work by providing a practical classification framework suitable
for clinical decision support systems. In the future, a hybrid diagnostic system that com-
bines both approaches could offer not only high diagnostic accuracy but also interpretable
features tailored for clinical use.

Li et al. utilized a deep learning framework involving UNet for tongue segmentation
and a ResNet-34-based model for classification on a high-resolution dataset comprising
482 tongue images. A total of 11 features—including tongue coating color, thickness, and
type—were classified. The system demonstrated strong performance, achieving an overall
accuracy of 86.14% and an F1-score of 87.2% [24]. While the study by Li et al. focused on
multi-feature classification, our study targeted a more clinically specific issue: the binary
classification of coated versus healthy tongue. Despite using a smaller dataset, our carefully
designed hybrid architecture, which integrates VGG-19 with SVM, demonstrated strong
diagnostic performance, highlighting its potential applicability in clinical practice.

Lo et al. conducted a study aimed at distinguishing patients with stage 0 and stage 1
breast cancer from healthy individuals by utilizing nine tongue features, including tongue
color, texture, fissured tongue, coated tongue, red spots, ecchymosis, tooth marks, salivary
secretion, and tongue shape. Based on a dataset comprising 137 individuals, the study
demonstrated that tongue features may serve as a non-invasive screening tool for the
early detection of breast cancer [25]. Similarly, Hsu et al. developed an automated tongue
diagnosis system by comparing the tongue features of 199 individuals diagnosed with type
2 diabetes and 372 healthy controls. The same nine features were used in this study, which
revealed significant differences in the diabetic group, such as yellow coating, thick coating
layers, and bluish tongue color [26]. Furthermore, Deng et al. integrated tongue image
features with oral and gut microbiota data to develop a machine learning model for the
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diagnosis of prediabetes and type 2 diabetes. In that study, tongue imaging parameters
such as TB-a and perALL were combined with microbial biomarkers such as Escherichia
and Porphyromonas-A. The SVM-based model achieved a diagnostic accuracy of 78.9%
and an AUC of 86.9%, indicating strong diagnostic performance [27]. All three studies
highlight the value of tongue analysis as a source of robust biomarkers for the diagnosis of
systemic diseases and demonstrate the effectiveness of AI-assisted systems in this context.
In a similar vein, our study employed an AI-based hybrid architecture for automated
tongue analysis, with a specific focus on distinguishing coated tongue from healthy tongue.
As coated tongue is often clinically overlooked despite containing potentially valuable
information, its accurate identification underscores the potential utility of such technologies
not only in the diagnosis of specific lesions but also in broader systemic disease detection.

Jurczyszyn et al. conducted a study using intraoral photographs from 63 participants,
including 21 cases of leukoplakia, 21 cases of lichen planus, and 21 healthy volunteers. They
applied factor analysis and artificial neural networks (ANNs), reporting a sensitivity of 94%
for normal mucosa, 57% for leukoplakia, and 38% for lichen planus. Specificity values were
88% for normal mucosa, 81% for lichen planus, and 74% for leukoplakia [28]. That study
provides valuable insight into the applicability of artificial intelligence in distinguishing oral
precancerous lesions and aligns with our approach of utilizing intraoral photographs and
AI for the diagnosis of coated tongue. Keser et al. evaluated intraoral images of 65 healthy
mucosa and 72 oral lichen planus lesions and developed a deep learning approach based
on TensorFlow and the Google Inception V3 architecture. Their model distinguished both
healthy and diseased mucosa with 100% classification accuracy, strongly highlighting
the potential of deep learning in oral diagnostics [29]. This exceptional level of accuracy
emphasizes the feasibility of AI-based methods in detecting subtle differences between oral
mucosal conditions, even in diagnostically challenging scenarios. Similarly, our proposed
algorithm for coated tongue diagnosis also demonstrated high performance in terms of
sensitivity, specificity, and overall accuracy. Shamim et al. evaluated the performance of
six deep convolutional neural network (DCNN) models using a transfer learning approach
for the diagnosis of precancerous tongue lesions and tongue anomalies. Their study
successfully classified five specific lesions—including black hairy tongue, fissured tongue,
geographic tongue, strawberry tongue, and oral hairy leukoplakia—with high accuracy.
The authors concluded that the classification performance of these models was notably
strong [30]. In a comparable manner, our study also achieved high accuracy in the diagnosis
of coated tongue, demonstrating that AI-based approaches can offer effective solutions for
specific clinical challenges.

Wang et al. proposed a deep CNN-based artificial intelligence framework for rec-
ognizing tongues with tooth marks. In their study, feature extraction and classification
were performed using the ResNet-34 CNN architecture on a dataset of 1548 tongue images,
resulting in an impressive accuracy rate exceeding 90% [31]. This study demonstrates
the effectiveness of CNN-based approaches in extracting meaningful diagnostic features
from tongue images and highlights the growing importance of artificial intelligence in
non-invasive medical diagnostics. In our proposed study, a hybrid diagnostic approach
was developed by integrating machine learning techniques with a deep neural network
structure. VGG-19 was employed for feature extraction, followed by classification using the
SVM algorithm, achieving an accuracy of 85%. The lower accuracy compared to the results
reported by Wang et al. may be attributed to the differing diagnostic focus of our study,
which specifically targeted the distinction between coated and healthy tongue—a more nu-
anced and potentially challenging classification task. Liang et al. introduced the IF-RCNet
model, which was designed to distinguish among thin, normal, and thick tongue types
based on a dataset of 1446 tongue images. This two-stage model integrates segmentation
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and classification tasks using the RCA-UNet for segmentation and RCA-Net for classifi-
cation, incorporating mixed input and feature fusion strategies. The approach achieved
strong results, with an accuracy of 84.87% and an F1-score of 84.22% [32]. While Liang
et al.’s study presents a powerful example of morphological analysis based on tongue shape,
our model focuses on detecting structural changes in the mucosal surface. In the future,
integrating both approaches could contribute to the development of a multidimensional
diagnostic system that combines shape-based morphological analysis with mucosa-based
lesion classification.

Kusakunniran et al. developed a novel architecture called Deep Upscale U-Net (DU-
UNET) for tongue segmentation, which outperformed the conventional U-Net in terms
of accuracy and Intersection over Union (IoU). The model was specifically designed for
clinical scenarios related to oropharyngeal cancer, where tracking tongue movement is es-
sential. DU-UNET demonstrated superior performance on both publicly available datasets
(99.2% accuracy, 97.8% IoU) and their own datasets involving various tongue positions [33].
In contrast, our study adopts a classification-based approach rather than segmentation,
aiming to detect the presence of coated tongue through CNN-supported feature extraction
and machine learning algorithms. While Kusakunniran et al.’s study focused on precisely
delineating tongue boundaries, our work analyzed the mucosal structure of the tongue sur-
face for diagnostic classification purposes. In the future, combining these two approaches
could enable the development of a comprehensive, two-stage system that performs both
automatic tongue region detection and lesion classification—ultimately offering a more
robust solution for clinical diagnostic workflows. More recently, Hosseini et al. proposed a
novel convergent metaheuristic algorithm, the Seed Growth Algorithm (SGA), inspired
by natural growth processes, to overcome the limitations of gradient-based methods in
neural network training [34]. Our proposed CNN-based system could potentially benefit
from such advanced optimization strategies to further improve its classification perfor-
mance in future applications. The integration of metaheuristic approaches like SGA into
deep learning-based diagnostic systems represents a promising direction to enhance the
robustness and efficiency of these models.

Although it has advantages over the analyzed studies, this study has limitations.

• Despite the promising findings of this study, the relatively small and homogeneous
dataset used represents a limitation. Future research should focus on expanding the
dataset to include diverse populations and systemic conditions, which would further
enhance the robustness and generalizability of the proposed model.

• Deep learning models were used to extract features. No end-to-end retraining (fine-
tuning) was performed. This may limit the scope of the model. In future studies, full
model training can be tried together with transfer learning.

• In this study, the models were only examined using accuracy, sensitivity, and other
statistical measures. However, how the models perform in real clinical conditions has
not yet been tested. This can be tested in a clinical setting in future studies.

5. Conclusions
Regular tongue examinations are essential for monitoring both oral and general health,

playing a strategic role in the early detection and management of potential health issues.
Recognizing benign lesions that do not require treatment or further evaluation helps
avoid unnecessary tests and ensures more efficient patient care. This study highlights the
importance of leveraging AI-driven systems to address clinical challenges, particularly
for diagnosing overlooked and asymptomatic conditions like coated tongue, which are
often neglected during routine dental evaluations. Rapidly advancing AI technologies
offer transformative opportunities in recognizing asymptomatic and difficult-to-diagnose
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lesions, developing tailored treatment strategies, and enhancing patients’ quality of life.
This study presents a novel and practical solution for diagnosing coated tongue lesions
using AI-based methodologies. With further validation and larger-scale studies, such
systems could play a pivotal role in improving oral diagnostics and potentially contribute
to the early detection of systemic diseases and malign conditions.
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