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Abstract: Background: Biological age (BA) is a better representative of health status
than chronological age (CA), as it uses different biological markers to quantify cellular
and systemic change status. However, BA can be difficult to accurately estimate using
current methods. This study uses multiple adaptive regression spline (MARS) to build
an equation to estimate BA among healthy postmenopausal women, thereby potentially
improving the efficiency and accuracy of BA assessment. Methods: A total of 11,837 healthy
women were enrolled (≥51 years old), excluding participants with metabolic syndrome
variable values outside two standard deviations. MARS was applied, with the results
compared to traditional multiple linear regression (MLR). The method with the smaller
degree of estimation error was considered to be more accurate. The lower prediction errors
yielded by MARS compared to the MLR method suggest that MARS performs better than
MLR. Results: The equation derived from MARS is depicted. It could be noted that BA
could be determined by marriage, systolic blood pressure (SBP), diastolic blood pressure
(DBP), waist–hip ratio (WHR), alkaline phosphatase (ALP), lactate dehydrogenase (LDH),
creatinine (Cr), carcinoembryonic antigen (CEA), bone mineral density (BMD), education
level, and income. The MARS equation is generated. Conclusions: Using MARS, an
equation was built to estimate biological age among healthy postmenopausal women in
Taiwan. This equation could be used as a reference for calculating BA in general. Our
equation showed that the most important factor was BMD, followed by WHR, Cr, marital
status, education level, income, CEA, blood pressure, ALP, and LDH.
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1. Introduction
Aging can be defined as the gradual functional and structural decline of the human

body, leading to increased vulnerability to various diseases and, eventually, death [1].
Chronological age (CA) is the duration between one’s birth to a specific later date. It is
measured by days, months, and years, and it is ordinarily used to determine one’s age [2].
However, in addition to CA, an individual’s health status is subject to further lifestyle,
nutritional, education, and environmental factors. Thus, CA is not a precise measurement
of an individual’s physiological deterioration. Comfort was the first to propose the concept
of biological age (BA), using different biological markers to quantify cellular and systemic
changes during the aging process [3]. He suggested that this a better method to determine
one’s health status than the CA. There have been many studies focused on this area. A vast
number of publications are noted [4–6]. Among these studies, the most used methods were
multiple logistic regression and principal component analysis [5,7–9].

With recent advances in artificial learning methods, machine learning (Mach-L) tech-
niques have been widely applied in medical research [10].

Since Mach-L has two characteristics, it does not need a hypothesis as traditional
statistic methods do, and it can capture non-linear relationships in the data. Mach-L has
been used in many areas of medical fields. For example, artificial intelligence is applied to
analyze X-rays and computer tomography scans [11,12]. At the same time, it is also used
in cancer diagnosis [13], staging, and diagnosis of Parkinson’s disease [14]. It should be
noted that the aforementioned studies are only the tips of the iceberg, and it is predicted
that more and more applications of Mach-L will emerge in the medical fields in the future.

Unlike traditional statistical analysis methods, Mach-L does not need a hypothesis, and
it is able to capture non-linear relationships within a dataset. In 1991, Freidman introduced
the multiple adaptive regression spline (MARS) method, a multivariate non-parametric
regression technique that can be used to build predictive equations [15]. In the past, MARS
has been used to measure age-related studies, such as subadult age estimation via skeletal
growth [16,17] and bone mineral density [18]. However, to our knowledge, there has been
no study using MARS to estimate BA.

Since MARS can include both continuous and nominal variables and can clearly
present interactions between the variables, in terms of interpretability, it provides an
important advantage over other Mach-L methods, which are largely ‘black-boxes’. The
present study only enrolled healthy postmenopausal women in Taiwan and applied MARS
to build an equation for calculating BA for comparison with CA. Given the healthy status
of the study cohort, the resulting equation could be used as a benchmark for estimating the
BA of other individuals and cohorts.

2. Materials and Methods
2.1. Participant and Study Design

Following our previous work [19], the data for this study were sourced from the
Taiwan MJ cohort, an ongoing prospective cohort of health examinations conducted by
the MJ Health Screening Centers in Taiwan [20]. This organization is a privately operated
group of three clinics that provide regular health examinations to their members. These ex-
aminations cover more than 100 important biological indicators, including anthropometric
measurements, blood tests, imaging tests, etc. Each participant also completed a self-
administered questionnaire to collect information of personal and family medical history,
current health status, lifestyle, physical exercise, sleep habits, and dietary habits [21].

All participants signed general consent forms for future participation in anonymized
studies. All participant data and physiological samples are maintained by the MJ Health
Research Foundation, a non-profit affiliate of the MJ Health Screening Centers. All or
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part of the data used in the present study were authorized by and received from this
foundation (Authorization Code: MJHRF2022009A). The study protocol was approved
by the Institutional Review Board of the Kaohsiung Armed Forces General Hospital (IRB
No. KAFGHIRB 111-015). Since the present study did not include any sample collection
from the patients, a short review of the IRB was applied, and no additional participant
consent was needed. In total, 125,984 healthy participants were enrolled. After excluding
subjects for various causes and those with incomplete data, 11,837 participants remained
for analysis, as shown in Figure 1.
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Figure 1. Subject identification process.

During each health screening session, senior nursing staff recorded the subject’s
medical history, including information on any current medications, and performed a
physical examination. The waist circumference was measured horizontally at the level of
the natural waist. The WHR was calculated based on the smallest point of the waist and
the widest part of the hip. Systolic blood pressure (SBP) and diastolic blood pressure (DBP)
were measured using standard mercury sphygmomanometers on the right arm of each
subject while seated.

As previously published [22], the procedures for collecting demographic and biochemi-
cal data were as follows. After fasting for 10 h, blood samples were collected for biochemical
analyses. Plasma was separated from the blood within 1 h of collection and stored at 30 ◦C
until the analysis of fasting plasma glucose (FPG) and lipid profiles. FPG was measured
using the glucose oxidase method (YSI 203 glucose analyzer; Yellow Springs Instruments,
Yellow Springs, OH, USA). The total cholesterol and triglyceride (TG) levels were measured
using the dry multilayer analytical slide method with a Fuji Dri-Chem 3000 analyzer (Fuji
Photo Film, Tokyo, Japan). The serum high-density lipoprotein cholesterol (HDL-C) and
low-density lipoprotein cholesterol (LDL-C) concentrations were analyzed using an enzy-
matic cholesterol assay, following dextran sulfate precipitation. BMD was measured by
dual-energy X-ray absorptiometry (Lunar, General Electric Company, Madison, WI, USA).

Table 1 defines the 38 clinical variables (independent variables), including demo-
graphic, biochemistry, and lifestyle variables, and also presents the statistical analysis
results. Drinking was defined as the multiple of total alcohol consumption duration and
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frequency along with alcohol content percentage. Similarly, smoking was the multiple of
the duration and frequency of tobacco consumption along with the number of cigarettes
consumed. Sport was the multiple of exercise duration, frequency, and type. Sleep time
was an ordinal variable. Finally, age was a numerical variable, used as a dependent
(target) variable.

Table 1. Demographic data of participants.

Ordinal Variable (Unit) N (%) Interval Variable (Unit) Mean ± SD

Education level

Illiterate 2663 (22.50%) WBC: White blood cells (×103/µL) 5.85 ± 1.52

Elementary school 5118 (43.24%) Hb: Hemoglobin (g/dL) 13.24 ± 1.07

Secondary 1245 (10.52%) Plt: Platelets (×103/µL) 234.99 ± 57.95

High school 1462 (12.35%) FPG: Fasting plasma glucose
(mg/dL) 97.85 ± 9.60

College 636 (5.37%) TB: Total bilirubin (mg/dL) 0.74 ± 0.29

The University 600 (5.07%) Alb: Albumin (g/dL) 4.41 ± 0.26

Graduate School 113 (0.95%) Glo: Globulin (g/dL) 3.18 ± 0.39

Marriage
Unmarried 2913 (24.61%) ALP: Alkaline phosphatase (U/L) 152.47 ± 56.17

Married 8924 (75.39%) SGOT: Serum glutamic-oxaloacetic
transaminase (IU/L) 24.66 ± 15.62

Income (NTD)

≤200,000 6501 (54.92%) SGPT: Serum glutamic-pyruvic
transaminase (IU/L) 23.92 ± 23.49

200,001–400,000 3010 (25.43%) r-GT: Gamma glutamyl
transpeptidase (IU/L) 19.88 ± 22.86

400,001–800,000 1492 (12.60%) LDH: Lactate dehydrogenase (IU/L) 323.02 ± 78.09

800,001–1,200,000 599 (5.06%) Cr: Creatinine (mg/dL) 0.84 ± 0.28

1,200,001–1,600,000 132 (1.12%) UA: Uric acid (mg/dL) 5.50 ± 1.32

1,600,001–2,000,000 47 (0.40%) TG: Triglycerides (mg/dL) 110.58 ± 43.37

>2,000,000 56 (0.47%) HDL-C: High-density lipoprotein-
cholesterol (mg/dL) 58.58 ± 13.73

Sleep time (hours)

<4 NA LDL-C: Low-density lipoprotein-
cholesterol (mg/dL) 128.78 ± 29.08

4–6 335 (2.83%) Ca: plasma calcium level (mg/dL) 9.24 ± 0.41

6–7 3476 (29.37%) P: plasma phosphate level (mg/dL) 3.73 ± 0.45

7–8 7067 (59.70%) AFP: Alpha-fetoprotein (ng/mL) 3.40 ± 10.31

8–9 959 (8.10%) CEA: Carcinoembryonic antigen
(ng/mL) 1.76 ± 5.97

>9 NA TSH: Thyroid-stimulating hormone
(µIU/mL) 1.82 ± 3.43

CRP: C-reactive protein (mg/dL) 0.25 ± 0.55

Age (years) 57.96 ± 6.50 FEV1: Forced expiratory volume in
one second 1.65 ± 0.41

SBP: Systolic blood pressure (mmHg) 126.37 ± 16.54 BMD: Bone mass density 0.58 ± 0.11

DBP: Diastolic blood pressure (mmHg) 73.57 ± 9.49 Drink area 0.91 ± 6.09

WHR: Waist–hip ratio (%) 0.80 ± 0.06 Smoke area 0.87 ± 6.00

PR: Pulse rate (time/min) 72.58 ± 9.86 Sport area 6.05 ± 8.05

RR: Respiratory rate (time/min) 17.54 ± 1.52
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2.2. Machine Learning Method

In this study, MARS was used. All methods were performed using R software version
4.0.5 [23] and RStudio version 1.1.453 [24] with the required packages installed. The
implementations of MARS were the “earth” R package version 5.3.3 [25] and the “caret” R
package version 6.0–94 [26]. MLR was implemented using the “stats” R package version
4.0.5, using the default settings to construct the models.

The dataset is scrutinized using MARS, a valuable approach for crafting adaptable
models suited for high-dimensional data. This modeling method adopts an expansion struc-
ture reliant on product spline basis functions. Both the count of fundamental functions and
the attributes connected to each, encompassing product degree and knot placements, are
autonomously established through data-driven mechanisms [15]. This strategy draws inspi-
ration from the principles of recursive partitioning, akin to methods like classification and
regression trees, and mirrors its proficiency in capturing intricate higher-order interactions.

In the analysis phase, the dataset was initially partitioned into an 80% training dataset
for model construction and a separate 20% testing dataset for model assessment. In the
training phase, MARS uses specific hyperparameters that require tuning. To facilitate
tuning, the training dataset was once more divided at random to yield a segment for
model formulation using a distinct set of hyperparameters, while the other segment was
used for validation purposes. A systematic exploration of all conceivable hyperparameter
combinations was conducted using a comprehensive grid search approach. Subsequently,
the model characterized by the lower root mean square error when applied to the validation
dataset was deemed the optimal choice for each compared to MLR.

In the evaluation phase, the testing dataset was used to gauge the predictive efficacy of
the MARS model. Given that the target variable in this study is a numerical parameter, the
evaluation metrics chosen to compare the performance of the constructed models include
relative absolute error (RAE), root relative squared error (RRSE), and root mean squared
error (RMSE). The specific metric values can be found in Table 2.

Table 2. Equations for calculating performance metrics.

Metric Description Calculation

RAE Relative absolute error RAE =

√
∑n

i=1(yi−ŷi)
2

∑n
i=1(yi)

2

RRSE Root relative squared error RRSE =

√
∑n

i=1(yi−ŷi)
2

∑n
i=1

(
yi−y.

i

)2

RMSE Root mean squared error RMSE =

√
1
n

n
∑

i=1
(yi − ŷi)

2

ŷi and yi represent predicted and actual values, respectively; n stands for the number of instances.

3. Results
A total of 11,837 participants were enrolled in this study. MLR is a widely used

traditional regression method so was included as a benchmark for performance comparison
of the developed MARS model. The comparison results in Table 3 show that MARS yielded
lower prediction errors than the MLR method.

Table 3. The results of equations for calculating performance metrics.

Methods RAE RRSE RMSE

MARS 1.234 1.263 7.879
MLR 1.253 1.411 8.805
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As previously noted, MARS is particularly advantageous in this study for capturing
non-linear relationships between parameters, and the hypothesis we had was that MARS
is more appropriate than the traditional MLR model in estimating BA. As previously
noted, MARS is particularly advantageous in this study for predicting BA. MARS is more
appropriate than the traditional MLR model. In other words, MARS can provide valuable
information for reference. Due to MARS’ ability to capture non-linearity in the data through
the assessment of knots and the formation of basis functions, the BFs, knots, and coefficients
in the MARS model are listed in Table 4. Taking BF2 and BF3, for example (both were SBP),
the value of SBP was input into two equations: Max (0, 135-SBP) and Max (0, SBP-135).
For each equation, the maximum value is taken into the whole equation. If the SBP is
120 mmHg, for the first equation, the result would be (0, 15), and for the second, the result
would be (0, −15). According to the definition of ‘Max’, 0 would be chosen in the second
equation, and −15 would be neglected.

Table 4. Basis functions and important variables of the MARS model.

Corresponding Equations of the Model

Equation Coefficients

Intercept - 60.494
BFs
BF1 Max(0, Marriage) −1.761
BF2 Max(0, 135-SBP) −0.070
BF3 Max(0, SBP-135) 0.095
BF4 Max(0, DBP-58) −0.081
BF5 Max(0, 0.747-WHR) −9.012
BF6 Max(0, WHR-0.747) 19.321
BF7 Max(0, 146-ALP) 0.005
BF8 Max(0, ALP-146) −0.013
BF9 Max(0, LDH-274) 0.008

BF10 Max(0, 1.4-Cr) −5.774
BF11 Max(0, Cr-1.4) −0.693
BF12 Max(0, 3.8-CEA) −0.627
BF13 Max(0, 0.647-BMD) 39.739
BF14 Max(0, BMD-0.647) −6.217
BF15 Max(0, 2-Education level) 1.473
BF16 Max(0, 2-Income) 0.629
BF17 Max(0, Income-2) −0.157

Note: Education level stage—Illiterate = 1, Elementary school = 2, Secondary = 3, High school = 4, College = 5,
The University = 6, Graduate School = 7. Income stage—≤ 200,000 = 1; 200,001–400,000 = 2; 400,001–800,000 = 3;
800,001–1,200,000 = 4; 1,200,001–1,600,000 = 5; 1,600,001–2,000,000 = 6; >2,000,000 = 7. The equation is the
hinge function, which takes the form of max(0, variable − knot) or max(0, knot − variable). SBP: systolic blood
pressure; DBP: diastolic blood pressure; WHR: waist–hip ratio (%); ALP: alkaline phosphatase (U/L); LDH:
lactate dehydrogenase (IU/L); Cr: creatinine (mg/dL); CEA: carcinoembryonic antigen (ng/mL); BMD: bone
mass density.

As shown in the table, eleven key variables were selected by MARS along with the
corresponding knots, for which a total of seventeen BFs with seventeen knots were acquired.
Based on Table 4, the MARS equation is generated below:
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BA = 60.494 −1.761 × Max(0, Marriage)− 0.070 × Max(0, 135 − SBP)
+0.095 × Max(0, SBP − 135)− 0.081 × Max(0, DBP
−58)− 9.012 × Max(0, 0.747 − WHR)
+19.321 × Max(0, WHR − 0.747) + 0.005 × Max(0, 146
−ALP)− 0.013 × Max(0, ALP − 146)
+0.008 × Max(0, LDH − 274)− 5.774 × Max(0, 1.4
−Cr)− 0.693 × Max(0, Cr − 1.4)− 0.627 × Max(0, 3.8
−CEA) + 39.739 × Max(0, 0.647 − BMD)

−6.217 × Max(0, BMD − 0.647) + 1.473 × Max(0, 2
−Educationlevel) + 0.629 × Max(0, 2 − Income)
−0.157 × Max(0, Income − 2)

Note: SBP: systolic blood pressure; DBP: diastolic blood pressure; WHR: waist–hip
ratio (%); ALP: alkaline phosphatase (U/L); LDH: lactate dehydrogenase (IU/L); Cr: creati-
nine (mg/dL); CEA: carcinoembryonic antigen (ng/mL); BMD: bone mass density.

In order to let the readers more easily understand and use the equation, Table 5 shows
the equation in the format of an Excel file. Copy and paste this file into Excel and type all
the information accordingly from A1 to A16, and the BA will be calculated in A20.

Table 5. The details of the equation in the Excel file.

A B C

1 Type Marriage =MAX(0, A1) =−1.761 × B1
2 Type SBP =MAX(0, 135-A2) =−0.070 × B2
3 =MAX(0, A2-135) =0.095 × B3
4 Type DBP =MAX(0, A4-58) =−0.081 × B4
5 Type WHR =MAX(0, 0.747-A5) =−9.012 × B5
6 =MAX(0, A5-0.747) =19.321 × B6
7 Type ALP =MAX(0, 146-A7) =0.005 × B7
8 =MAX(0, A7-146) =−0.013 × B8
9 Type LDH =MAX(0, A9-274) =0.008 × B9

10 Type Cr =MAX(0, 1.4-A10) =−5.774 × B10
11 =MAX(0, A10-1.4) =−0.693 × B11
12 Type CEA =MAX(0, 3.8-A12) =−0.627 × B12
13 Type BMD =MAX(0, 0.647-A13) =39.739 × B13
14 =MAX(0, A13-0.647) =−6.217 × B14
15 Type Education level =MAX(0, 2-A15) =1.473 × B15
16 Type Income level =MAX(0, 2-A16) =0.629 × B16
17 =MAX(0, A16-2) =−0.157 × B17
18
19 BA
20 =60.494 + SUM(C1:C17)

Note: SBP: systolic blood pressure; DBP: diastolic blood pressure; WHR: waist–hip ratio (%); ALP: alkaline
phosphatase (U/L); LDH: lactate dehydrogenase (IU/L); Cr: creatinine (mg/dL); CEA: carcinoembryonic antigen
(ng/mL); BMD: bone mass density.

To clearly understand the effect of the eleven key variables within the BF structure on
BA, Figure 2 presents a visualization of the influence of the important variables on BA. Each
panel in the figure features one of the important variables along with its corresponding BF.
For instance, the SBP has two BFs, drawn by combining the BFs and knots of the SBP. This
concept and approach were consistently applied across all panels in Figure 2, visualizing
the influence of marriage, SBP, DBP, WHR, ALP, LDH, Cr, CEA, BMD, education level, and
income on BA.
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Figure 2. Influence of important variables on biological age. (A) Marriage. (B) Systolic blood
pressure. (C) Diastolic blood pressure. (D) Waist–hip ratio. (E) Alkaline Phosphatase. (F) Lactic
dehydrogenase (G) Creatinine. (H) Carcinoembryonic Antigen. (I) Bone Mass Density. (J) Education
level. (K) Income.

Due to considerations of length, we only describe Figure 2A–C. Figure 2A shows
that unmarried has no impact on BA, but the BA gradually decreases after marriage. In
Figure 2B, 135 mmHg is the SBP knot, and an SBP between 80 and 135 mg correlates with
reduced BA, while an SBP above 135 mg correlates with increased BA. In Figure 2C, a DBP
below 58 mmHg has no effect on BA, but BA decreases after the DBP exceeds 58 mmHg.

4. Discussion
The present study builds an equation by using MARS based on a participant group

consisting of healthy postmenopausal Chinese women without the use of medication
for metabolic syndrome. Participants were also excluded if they had values exceeding
two standard deviations for WHR, BP, FPG, LDL-C, or TG. Thus, the resulting equation
could be used widely in clinical practice to estimate biological age based on each of the
included variables. For example, if a subject has higher levels for WHR, FPG, and lipids,
the estimated BA should exceed the CA.

It is interesting to note that BMD had the highest coefficient among all other variables.
At the same time, it is not surprising, since Xuan et al. reported that BMD is negatively
correlated with age (r = −0.24, p < 0.001), aligning with accelerated biological aging in
postmenopausal women [27]. Another longitudinal study of 3222 women reported a
mean BMD change of −10.1% (p < 0.0001) [28]. The underlying pathophysiology for this
relationship could be due to increased bone absorption and decreased bone formation
deriving from the shift from osteoblastogenesis to mainly adipogenesis in the bone marrow.
Our results are consistent with these findings, but it is surprising that BMD had the highest
correlation with age.
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The second important factor was WHR. In a large cohort of 40,980 postmenopausal
women, Kaye et al. reported that WHR was significantly correlated with age (β = 0.003,
p = 0.0001) after adjusting for other confounding factors [29]. Another much smaller Iranian
study also found WHR to be positively related to age (r = 0.206, p = 0.001). WHR could be
regarded as a marker for fat distribution. After menopause, there is an acceleration of fat
accumulation in the waist area [30], possibly due to decreased estrogen levels, which have
an effect on fat distribution [31].

Serum Cr is used as a marker for evaluating renal function. It is well known that Cr
increases with increasing age. For example, Jiang et al. reported that, for women, estimated
glomerular filtration rate (eGFR) declined by 1.06 mL/min/1.73 m2/year (95% CI: 0.99,
1.12). At the same time, for men, the decline is 0.91 mL/min/1.73 m2/year (95% CI: 0.86,
0.95) [32]. The equation to calculate eGFR includes age as a variable. Oo et al. modified
the Gockroft–Gault equation and showed that eGFR declines approximately 1 (mL/min)
per year after the age of 40 years [33]. Thus, our findings are consistent with the generally
recognized relationship between age and Cr, though our study found it to be only the third
most important factor.

Many previous studies have found that subjects whose reported marital status is never
married, divorced, or widowed have higher mortality rates than married subjects [34–36].
The longevity of married persons could be explained by two reasons. First, individuals
tend to select low-risk individuals as marital partners [37]. Secondly, marriage can provide
protective effects for the individual [38]. It is interesting to note that one key reason for this
phenomenon is health care utilization toward the end of life, since the health care expense
increases continuously [39]. However, this conclusion might not be suitable to explain the
findings of the present study, since the cost of health care in Taiwan is relatively low due
to the country’s national healthcare program. Other more reasonable causes are likely to
include ‘marriage protection’ effects, such as increased social support and income; reduced
risky behavior; and reduced stress.

All other factors in our equation have been reported to be related to age, including
education level [9], income [40], CEA [41,42], blood pressure [43], ALP [44], and LDH [45].
Since all of these factors had coefficients less than 1, they are less important in this equation
and, thus, are not discussed in detail. The present study is subject to certain limitations.
First, the proposed equation includes many complicated methods and uncommon labo-
ratory data, such as BMD or CEA, and thus, application is limited to subjects who are
able to provide such data. Secondly, the present study was only performed on ethnic Chi-
nese, and thus, extrapolation of our findings to other ethnic groups should be performed
with caution.

5. Conclusions
MARS was used to build an equation for estimating BA in a group of postmenopausal

Chinese women. To ensure the equation’s accuracy, outliers with certain factors within
two standard deviations were excluded. Our equation showed that the most important
factor for determining BA was BMD, followed by WHR, Cr, marriage, education level,
income, CEA, blood pressure, ALP, and LDH. The proposed equation could be used to
estimate BA as a comparison to CA.
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