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Abstract: This is a focused review of imaging literature to scope the utility of hybrid brain 

imaging in neuropsychiatric disorders. The review focuses on brain imaging modalities  

that utilize hybrid (fusion) techniques to characterize abnormal brain molecular signals  

in combination with structural and functional changes that have been observed in 

neuropsychiatric disorders. An overview of clinical hybrid brain imaging technologies for 

human use is followed by a selective review of the literature that conceptualizes the use of 

these technologies in understanding basic mechanisms of major neuropsychiatric disorders 

and their therapeutics. Neuronal network abnormalities are highlighted throughout this 

review to scope the utility of hybrid imaging as a potential biomarker for each disorder. 
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1. Introduction 

Neuropsychiatric disorders represent a group of syndromes exhibiting abnormalities in cognition, 

emotions and/or behaviors. The burden of neuropsychiatric disorders is substantial. The 2004 World 

Health Organization (WHO) report on the global burden of disease indicates a high prevalence of these 

disorders worldwide. These diseases affect millions of people each year: unipolar depression 151.2 million; 

bipolar disorder 29.5 million; schizophrenia 26.3 million; Alzheimer’s disease and other dementia  

24.2 million. In all regions of the world, neuropsychiatric disorders account for about one-third of 

adult disability, as measured by years of healthy life lost due to living in less than optimum health [1]. 

1.1. Issues with Clinical Classification 

In general, neuropsychiatric disorders tend to cluster into cognitive, affective, and/or psychotic 

domains with significant overlap in symptomatology across these domains. The field of psychiatry 

classifies mental health disorders categorically based on phenomenological criteria (symptoms and 

course of illness). The current classification system is based on expert consensus and listed in the 

International Classification of Disease, 10th edition (ICD-10) [2] and the fifth edition of the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [3]. The classification system is 

necessary for clinicians and researchers to communicate about these disorders, but because of the 

many sub-components of neuropsychiatric disorders, it has arguably fallen short in depicting the true 

nature of these illnesses [4]. A clinical phenomenon in neuropsychiatry can result from a variety of 

illnesses; for example deficits in executive function can be part of schizophrenia, but also mood 

disorders, attention deficit hyperactivity disorder (ADHD), or dementia. Misdiagnosis or late diagnosis 

of psychiatric disorders is a major challenge for clinicians. For example, in one community sample of 

bipolar disorder patients, approximately 70% had a missed diagnosis [5], which can have detrimental 

consequences for a disorder that is often associated with suicidal ideation. 

The heterogeneity in presentation of neuropsychiatric disorders makes it difficult to identify specific 

biomarkers, which has led some experts to relate biomarkers to symptom clusters rather then to the 

illness as a whole [6]. Taken together, these findings highlight major dilemmas for psychiatrists trying 

to provide effective treatment for neuropsychiatric disorders: (1) Correctly diagnosing the underlying 

illness causing the symptoms; (2) Initiating and individualizing treatment as early as possible; and  

(3) Monitoring the impact of different therapeutics in a valid and reliable way. 

1.2. Brain Imaging as the Biomarker for Neuropsychiatric Disorders 

Neuropsychiatric disorders likely represent a complex interplay between biological, psychological 

and social factors. The final common pathway to psychiatric symptoms is usually an interaction 

between vulnerability and psycho-social factors, with disease vulnerability coming from several 

sources such as genetic/epigenetic factors, developmental insult (biological and/or psychological), 

acquired brain insult (traumatic, vascular, toxic, infectious etc.), or neurodegeneration (Figure 1). 

Despite decades of research, the biological underpinnings of most neuropsychiatric disorders 

remain elusive. This is mainly due to the low specificity of several biomarkers investigated, rendering 

them less useful in identifying disorders, predicting disease progression or treatment responses. A 
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biomarker is defined as “a characteristic that is objectively measured and evaluated as an indicator of 

normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention” [7]. For some disorders with neuropsychiatric aspects like Huntington’s disease, genetic 

biomarkers can predict the diagnosis with nearly perfect certainty [8]. Genetic confirmation is 

expanding in other neuropsychiatric illnesses such as frontotemporal lobar degeneration (FTLD) [9] 

and in Alzheimer’s disease (AD) [10,11], although with significant variability in heritability patterns, 

pathological and clinical phenotype expression. Despite our current understanding of some mental 

illnesses like schizophrenia as being highly heritable [12], no reliable genetic biomarker with a clear 

link to disease mechanism has been identified [13]. 

 

Figure 1. Multiple factors contribute to neuropsychiatric disorder susceptibility. These 

factors include genetic predisposition, developmental insult, brain injury and natural  

(or disease-state) aging. Together these factors can influence the molecular, physiological 

and structural characteristics of the brain. Environmental (or external) factors, such as the 

demands of life, loss of a loved one or experiencing abuse can also have a negative impact 

on brain health. Taken together, neuropsychiatric disorder development is extremely 

cofounded with multiple variables, resulting in individualized trajectories to the same end 

point: a neuropsychiatric disorder. 

With the brain being the organ of the mind, brain imaging received significant attention as a 

possible surrogate biomarker for neuropsychiatric disorders. For a neuroimaging biomarker to serve as 

a surrogate endpoint for the clinical phenomenon, it needs to be validated against a gold standard 

where there is a high level of certainty in treatment response, the projected outcome of a disease and 

especially in diagnosis [14]. This became a possibility in the field of AD where antemortem diagnostic 

markers can be verified against reliable postmortem neuropathological markers like amyloid plaques 

and neurofibrillary tangles [15]. 
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The wide clinical availability of brain imaging modalities such as computed tomography (CT) and 

later magnetic resonance (MR) imaging resulted in a tremendous amount of literature on brain 

structure abnormalities in neuropsychiatric disorders. However, a recent meta-analysis of structural 

imaging studies by Goodkind et al. (2015) identified gray matter loss in dorsal anterior cingulate and 

the insula that was common across six distinct diagnostic groups (schizophrenia, bipolar disorder, 

depression, addiction, obsessive-compulsive disorder, and anxiety), with only few specific findings that 

distinguished depression and schizophrenia from other diagnoses [16]. This highlights the need for a 

better understanding of the underlying molecular changes that lead to volume loss and differential 

therapeutic options and highlights the difficulty in identifying specific biomarkers for each disorder by 

using only structural imaging acquisitions. 

1.3. Evolution of Network Models in Neuropsychiatric Disorders 

Numerous theoretical and empirical studies now approach the function of the brain from a structural 

and functional network architecture perspective [17]. It offers a powerful framework, which can be 

explored in investigating cognition and affective dysfunction in neuropsychiatric disorders. A brain 

network is currently defined as a set of brain systems (cytoarchitectonically or functionally distinct 

regions with connections between regions) that serve a specific or set of specific behaviors. The brain 

networks have nodes (regions or vertices) and connections between them called edges [17]. The 

Human Connectome project that is currently underway [18] provides great potential for learning about 

disease states by mapping large numbers of healthy participants in an attempt to understand the range 

of variability that is acceptable. It is now clear that defects in functional integration and aberrant 

connectivity is present in neuropsychiatric disorders [19]. 

Most of the brain’s cognitive functions are based on the coordinated interactions of large numbers  

of neurons that are distributed within and across different specialized brain areas. A fundamental,  

yet unresolved, problem of modern neuroscience is how this coordination is achieved. Integration and 

segregation of neural activity needs to occur at various spatial and temporal scales, and these scales 

must be dynamically adjusted depending on the nature of the respective cognitive tasks. 

Brain networks on their own and as a group must work in harmony in order to regulate certain 

functions, including thinking (cognition), emotion, motivation, and behavior. The last few decades of 

brain research has been driven by advances in imaging, allowing scientists to characterize an increasing 

number of brain networks in hopes of better understanding human behavior. This has resulted in 

significant progress in identifying patterns of brain structure and function in healthy individuals and 

those with psychiatric disorders. Animal models of neuropsychiatric disorders offered significant 

advancements to understand molecular signaling in the brain across different neuronal networks.  

On the other hand, some highly evolved brain networks could not be modeled in available animal 

models. The evolution of functional neuroimaging including functional MR imaging (fMRI), Positron 

Emission Tomography (PET) and Diffusion Tensor Imaging (DTI) gave rise to the field of research  

into large-scale brain networks in neuropsychiatry [20]. Resting-state fMRI studies have repeatedly 

demonstrated the existence of a high degree of temporal correlations in the BOLD (blood-oxygen-level 

dependent) contrast imaging fluctuations of several brain regions, strengthening the notion that distinct 

large-scale networks constitute the physiological basis for mental functions [21,22]. While different 
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methods of anatomical parcellation and image processing have yielded a number of variations in the 

make-up of these large-scale networks [23], three specific networks appear to be more consistent than 

the others [19,22,24]. These major core functional networks are thought to be involved in the interface 

between cognition and emotions and are called the default mode network (DMN), the salience network 

(SN) and the central executive network (CEN). The DMN is composed of central structures including 

the medial prefrontal cortex (mPFC) and the posterior cingulate cortex (PCC). The DMN is busy when 

you are mentally passive or not engaged in a specific task. The CEN includes the dorsolateral 

prefrontal cortex (DLPFC) and inferior parietal cortex (IPC) and is involved in attention and executive 

function. Unlike the DMN, the CEN is engaged in higher-order cognitive and attentional control. 

Lastly, the salience network (SN) is composed of the anterior insula (AI), mainly in the right side, and 

anterior cingulate cortex (ACC) and is involved in coordinating switching between DMN and CEN 

based on the individual’s needs [25]. 

It is thought that there is a dynamic relationship between these networks whereby the SN coordinate 

activation-deactivation of CEN and DMN based on emotional salience. During various brain states  

(i.e., resting and task-performing states), the DMN and CEN respectively, show more BOLD activity 

than the other [21,26]. Pivotal work carried out by Sridharan et al. [27], implied that the anterior 

insula, an important hub in the SN, acts as a driver node. The preceding states of anterior insula 

predicted the activity in both the DMN and CEN, during both resting and task-performance states. 

Thus, a third brain state, the state of switching between the two other states, is associated with the 

activity of the SN [24]. 

2. Hybrid Imaging 

Hybrid (multimodal or fusion) imaging is an integrated technology that combines functional/molecular 

imaging and structure imaging technologies [28]. The strengths of each modality synergistically 

complement each other to create a new and more powerful tool, overcoming their stand-alone limitations. 

Many hybrid imaging platforms are capable of true simultaneous data acquisition and therefore leads 

to an increased level of confidence with which disease abnormalities can be localized [29]. The 

potential of hybrid imaging to reveal molecular processes in vivo, while simultaneously depicting their 

anatomic location, provides many benefits to many different disciplines. Specifically, the generalized 

benefits include increased diagnostic accuracy, reduced radiation exposure, advancements to 

individualized medicine (or molecularly targeted medicine), and enables the precise monitoring of 

interventional procedures. These benefits are useful in oncology, cardiology, neurology, psychiatry and 

pharmacology for facilitating diagnosis, staging the disease, defining treatment plans, and monitoring 

treatment response; outcomes that anatomical imaging techniques (i.e., MR imaging or CT) alone 

cannot provide. Furthermore, functional and metabolic changes can and do occur without a 

corresponding anatomical abnormality [30]. Hence, hybrid imaging will play a major role in advancing 

our understanding of diseases and theranostics for years to come. 

There are many hybrid imaging modalities currently available: PET/CT; Single-photon emission 

computed tomography (SPECT)/CT; MR/PET; MR/SPECT; ultrasound/MR; ultrasound/CT; MR/CT 

and two different ways in which imaging modalities are combined [31]. The software fusion  

approach aligns two image sets post hoc after being acquired on different scanners at different times 



Diagnostics 2015, 5 582 

 

 

(reviewed by [32]). In addition, the hardware fusion method combines instrumentation for two 

imaging modalities and acquires both images within the same reference frame. This is more novel than 

the software approach and groundbreaking in medical imaging by being able to acquire co-registered 

structural and functional information of the system in a single scan. There has been a significant  

amount of focus on hardware fusion hybrid imaging modalities ever since tomographic imaging of 

function/metabolism (PET) was combined with anatomical localization (CT) and voted “Medical 

Invention of the Year” in 2000 by Time magazine (Time 4 December 2000). 

2.1. Hybrid PET/CT: Development and Utility in Neuroimaging 

Prior to the commercial introduction of hybrid PET/CT in 2001, individual PET scanners were 

marketed primarily for research. However, the clinical acceptance of this technology was quick to 

occur, with oncology being the first discipline to see the potential of PET/CT and accept its clinical 

capability in the early 2000s [33]. The adoption of PET/CT as a clinical tool, continued to grow so 

rapidly that it eventually was no longer commercially viable to market stand-alone PET systems.  

In fact, more than 95% of all PET scanners sold in 2004 were hybrid PET/CT scanners and by 2006, 

practically all stand-alone PET scanners had been replaced by PET/CT scanners. 

Individual disciplines have had different levels of success and challenges they have had to face in 

implementing PET/CT into clinical practice. In oncology, for instance, most clinical investigations 

need only one PET probe and the uni-spectral nature of PET is quite acceptable with CT providing 

anatomical context and attenuation correction for PET quantitation. However, in cardiology, PET/CT 

is not ideal, as PET images can take up to 30 min or more and CT takes seconds. Specifically, 

physiological motion associated with the heart and lungs generally gives errors in the superposition (i.e., 

co-registration) of the cardiac PET and CT three-dimensional data [34]. In brain imaging this 

registration is not a problem, provided patients do not move their head during the PET data collection 

or between the PET and CT imaging sessions. By 2010, international acceptance for hybrid imaging of 

the brain was obvious, after more than 60% of all surveyed European institutions reported using 

PET/CT for neurology [35]. 

PET relies on exogenous chemical radiolabeled molecules being injected into the bloodstream  

that have an affinity component and a signaling component [28]. The most widely used tracer in 

oncology and neurology, to date, is the PET imaging glucose analog 18F-fluorodeoxyglucose (18F-FDG). 

In neurology, the gray matter of the brain preferentially uses glucose as a metabolic substrate and both 

increased and decreased metabolism is used to evaluate neurological abnormalities. 

It may appear that PET is limited by the development of safe PET radiotracers for use in humans. 

However, novel PET radiotracers are developed continuously and now exist for many metabolic substrates, 

hypoxia agents, neurotransporters, and drugs [36]. The utility of these tracers can be highlighted by 

certain PET studies into pre-symptomatic (or pre-clinical) Alzheimer’s disease, which have been 

proven to detect dementia earlier than other imaging modalities or neurological tests [37,38]. Hence, 

PET tracers are likely to change the way in which disease processes are understood and treated. 

However, the major drawback to using PET/CT imaging routinely, is patient exposure to both external 

radiation from the CT scan and internal radiation from the injected tracer [39]. This ultimately limits 
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the ability to do repeat PET studies using different PET tracers, especially in healthy controls, and has 

generated a greater interest in non-ionizing techniques such as MR imaging. 

2.2. Hybrid PET/MR: Development and Utility in Neuroimaging 

MR imaging is a much more complex and versatile modality, compared to CT, in terms of the 

different characteristics of human tissue it is able to measure. MR imaging reveals structure and 

function through atomic (primarily protons) interactions with a strong magnetic field. The primary 

method of revealing function by MR imaging is the utilization of the BOLD signal [40]. This 

specialized brain scan has the ability to map neural activity by imaging the hemodynamic response 

(blood flow) that is directly correlated to energy use by brain cells [41]. Therefore, the desire to 

combine this useful modality of brain mapping with PET imaging has been long-standing, though 

technically difficult. This difficulty arises because PET detection had been dependent, since its 

development, on photomultiplier tubes (PMT) that will not function in the magnetic fields associated 

with MR. Therefore, the major hurdle that had to be overcome was the complete redesign of the  

PET detector assembly such that it would be magnetically insensitive. This hurdle left PET/MR in the 

pre-clinical stage, until 2006 when the first simultaneous PET/MR imaging of the human brain took 

place [42]. Currently, many technical challenges, including possible interference between these 

modalities, have mostly been resolved [43] and the first commercially marketed PET/MR scanner was 

available by 2010. Figure 2 shows an example of simultaneous hybrid imaging scans of an older 

adult’s brain acquired on a commercial Siemens Biograph mMR PET/MR hybrid scanner. The 

synergistic nature of combining PET and MR imaging modalities is depicted in Figure 3 by showing 

separate PET and MR imaging scans and contrasting these with a hybrid image overlay. 

MR imaging offers better contrast among soft tissues as well as functional-imaging capabilities, 

compared to CT. For example, PET/MR data acquisition is simultaneous, versus sequentially collected 

in PET/CT imaging. This gives PET/MR essentially perfect temporal correlation of dynamically 

acquired data sets from both modalities [44]. The excellent soft-tissue contrast and the fact that it 

reduces the effective radiation dose are additional advantages of MR for pre-clinical research studies 

and in clinical applications [39,43]. The major advantage of PET/MR imaging over PET/CT in 

neuroscience research is likely to be forthcoming within the next few years. Specifically,  

multi-parametric analysis of complex functions in neural networks is possible through PET/MR 

imaging [45]. Therefore, neurotransmitter release, combined with simultaneous functional measures 

(i.e., changes in the BOLD signal measured by fMRI) has the potential to reveal system-level process 

abnormalities in the brain [46]. This is not made possible with PET/CT, as steady-state conditions are 

required because data is acquired sequentially versus simultaneously. This exciting perspective on 

measuring network level processes by PET/MR technology is key to understanding neuropsychiatric 

disorders, as research findings suggest that major psychopathologies involve dysfunction of cognitive 

and emotion regulation processes and effect distributed brain regions within multiple spanning  

lobes [19]. An integrated model of network-based cognitive and affective dysfunction in 

psychopathology is discussed next to frame the importance of imaging brain networks in 

understanding major neuropsychiatric disorders. 
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Figure 2. PET and MR images of a 77-year-old male injected with 198 MBq of  
18F-flurodeoxyglucose (FDG) while patient was lying supine in a Siemens Biograph mMR 

PET-MR hybrid scanner (Siemens Healthcare, Erlangen, Germany). A 60 min dynamic  

PET scan was acquired during multispectral MR imaging. These images illustrate the 

capacity to perform multi-parametric mapping in a single session simultaneously, to  

improve characterization of neuropsychiatric conditions. Axial images are from (top) left 

to right: T1-weighted (MRPAGE) for tissue-specific volumetric measurements,  

T2-weighted (FLAIR) for assessment of white matter lesions, and susceptibility-weighted 

imaging for detection of microbleeds and cerebral amyloid angiopathy; (bottom) left to 

right: fractional anisotropy image from diffusion tensor imaging for quantification of white 

matter structural integrity, perfusion weighted-imaging (ASL) for hemodynamic 

measurements and a PET-18F-FDG glucose consumption image. Images are presented with 

permission from patient and are courtesy of Lawson imaging, Lawson Health Research 

Institute (LHRI), London, ON, Canada. 
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Figure 3. Coronal high-resolution T1-weighted MR (left) and PET (center) images of two 

pulmonary carcinoma patients scanned at LHRI, London, Ontario, Canada using a Siemens 

Biograph mMR PET-MR hybrid scanner. The PET-18F-FDG and MR images were 

acquired simultaneously and, the PET was later superimposed onto the MR images (right).  

To illustrate the synergistic effect of PET’s high sensitivity and MR’s high spatial 

resolution to improve the specificity of characterizing neuropsychiatric disorders, two case 

studies are presented. (Top) row: A focal area of increased FDG-PET uptake in a 

metastatic lesion can be seen on the top row images that is well defined when the PET 

image is overlayed onto the MR image; (Bottom) row: Areas of hypometabolism in  

PET-18F-FDG images, a result of prior traumatic brain injury, are delineated in the fused 

PET and MR images. Images are presented with permission from patients. 

2.3. Utility of Hybrid Imaging in Understanding Brain Connectivity in Neuropsychiatric Disorders 

In recent times, functional neuroimaging methods such as Magnetoencephalography (MEG) have 

been employed to examine the physiological basis of the salience network model [47]. Nevertheless, 

this mechanistic model is largely built on cross-sectional studies of BOLD signal variations in different 

patient groups in comparison with healthy controls. Despite the growing number of studies examining 

connectivity metrics using various mathematical derivatives, the physiological basis of the correlations 

in fluctuating BOLD signal is still unclear [48,49]. BOLD signal from a voxel in the fMRI reflects a 

measure of haemodynamic variations within the voxel space. Around 106 neuronal cell bodies are 

present in a typical voxel unit observed in fMRI studies, alongside numerous glial cells that exceed 

neuronal count by several orders [50]. While BOLD signal fluctuations at rest are often interpreted as 

proxy signals for neuronal oxygen consumption (and thus neuronal activity), this has not been 

conclusively proven as of yet [51]. Regional variations in vascular supply, and/or neurovascular 

coupling are strong suspects in generating the apparent patterns of connectivity as read by BOLD 

signal correlations [52]. Pathological states that affect certain specialized brain regions more than the 
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others could result in alteration of neurovascular coupling, thus resulting in patterns of perturbed 

connectivity. Combined PET/MR imaging that allows simultaneous study of BOLD-based 

connectivity and quantitative assessment of cerebral blood flow and oxygen extraction, can provide the 

much needed insight into the basis of dysconnectivity in the so called connectopathies such as 

schizophrenia and autism. In addition the role of microglial activity in dysconnectivity can be 

discerned by using one of the several PET ligands that focus on the study of microglia, in PET/MR 

hybrid imaging studies (for example, [53]). 

3. Alzheimer’s Disease as a Prototypical Neuropsychiatric Disorder 

Alzheimer’s disease (AD) represents a major public health issue with high prevalence that increases 

with age [54]. With reliable neuropathological biomarkers including amyloid plagues and neurofibrillary 

tangles and prominent cognitive and behavioral symptomatology, AD can be considered a prototypical 

neuropsychiatric disorder. The availability of reliable biomarkers that brain imaging could be verified 

against have brought brain imaging closer to diagnostic utility. 

3.1. Large Investments Result in Tangible Progress for Neuropsychiatric Disorders 

Large investment projects, such as the Alzheimer’s disease Neuroimaging Initiative (ADNI) have 

resulted in tangible progress in identifying reliable biomarkers. In its second phase now, the ADNI was 

funded with 67 million US dollars by government agencies and industry, enrolled 800 participants with 

mild cognitive impairment (MCI), those with early AD and healthy subjects. With over 200 publications 

to date, this initiative has resulted in large collections of clinical data, brain imaging information, 

genetic profiles and cerebrospinal fluid (CSF) sets, which have all contributed to uncovering unique 

disease markers. Clinical profiles can now be correlated with imaging, genetic and biochemical data, 

given the standardized simultaneous acquisition. Blood, CSF and molecular imaging data facilitated 

better profiling of the core pathology tied to the disease mechanism(s); mainly the amyloid and TAU 

(tubulin associated unit) cascades [55]. An extension of this initiative started in 2010 and will continue 

until 2016, with a plan to enroll an additional 550 participants. Key achievements from this initiative 

were summarized in 2005 and 2013 [56,57]. Briefly, a standardized protocol to acquire clinical, 

imaging, blood and CSF markers across multiple sites resulted in better assessment of the diagnostic 

utility of these markers and the added value of combining different modalities to allow testing models 

of the disease. 

There are several published reviews and consensus papers on the utility of brain imaging in AD and 

related disorders. Some of the neuroimaging techniques have been recommended for clinical use such 

as structural image (CT or MR imaging) to rule out space occupying lesions or silent cerebrovascular 

lesions and to add to diagnostic certainty by examining brain atrophy patterns. Furthermore, 

hypoperfusion patterns and/or glucose hypometabolism can be helpful to differentiate between AD and 

other forms of dementia like frontotemporal dementia (FTD) (for review see [58,59]). Efforts to 

modify core biomarkers in AD have begun [60]. For example, trials to remove amyloid from the brain 

or prevent its aggregation have been conducted with anti-amyloid monoclonal antibodies. Although 

initial results of trials in mild to moderate AD has been clinically disappointing, there is clear evidence 

of removal of amyloid from the brain especially in those carrying Apolipoprotien-E4 alleles (a known 
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susceptibility gene marker for the risk to develop AD) [61]. More trials are now underway targeting 

earlier stages of AD pathology, including those in the pre-clinical stage, those with genetic risk, and 

those showing positive PET amyloid scans [62,63]. In particular, one notable method by which the 

Amyloid-β mechanism is commonly explored is by employing carbon 11-labeled Pittsburgh compound 

B (11C-PiB) with PET imaging. This specific PET radiotracer can specifically bind to deposition in the 

human brain and is able to provide quantitative information on burden in vivo [64,65]. Therefore, 

molecular imaging is now at the forefront in the development of therapeutics targeting the underlying 

disease processes in AD. 

3.2. Neuroimaging the Neuropsychiatric Characteristics of Alzheimer’s Disease 

Less is known when it comes to neuroimaging correlates of neuropsychiatric symptoms of AD. In 

the first population-based study of a community, 75% of patients with AD and other dementia 

manifested at least one neuropsychiatric symptom, leading the authors to conclude that 

neuropsychiatric symptoms occur in the majority of persons with dementia [66]. The rate of 

neuropsychiatric symptoms in residential facilities, such as nursing homes, can be as high as 78% [67]. 

Neuropsychiatric symptoms of dementia include several domains and can be clinically rated with the 

Neuropsychiatric Inventory (NPI) scale [68]. These symptoms can be clustered under affective 

(apathy, depression, anxiety, euphoria, irritability, disinhibition), psychotic (delusions, hallucinations) 

or behavioral (agitation, aberrant motor function, eating and sleep abnormalities). These symptoms are 

a core part of AD and result in significant distress to patients, their caregivers and the system of care. 

They can also result in grave consequences including rapid deterioration, earlier institutionalization, 

and faster mortality [69]. Attempts to treat these symptoms with psychotropic medications that are 

used to treat primary psychiatric illnesses yield mixed and at best modest efficacy, but with significant 

increased risk for strokes and mortality [70]. 

3.2.1. Psychosis and Alzheimer’s Disease 

Only recently have basic mechanism of neuropsychiatric symptoms of AD been studied with 

neuroimaging. Psychosis studies of AD including delusions and hallucinations have reported volume 

loss in gray matter of brain areas involved in large-scale brain networks (CEN, DMN and SN). When it 

comes to delusions in AD, gray matter volume loss has been reported in the AI [71,72] and ACC [73], 

both components of the SN. Evidence also suggest the involvement of structures in the CEN in 

delusions of AD including left and right inferior frontal areas, left middle frontal area, left inferior 

parietal lobule and left claustrum [74] and lateral frontal and parietal areas [73]. In a systematic review 

including 25 studies using imaging to investigate delusions in AD, Ismail et al. (2012) concluded that 

the majority of studies implicated right-sided predominance involving mainly frontal areas in paranoid 

delusions, but involving temporal areas in misidentification delusions that are thought to be different in 

origin [75]. Only few studies examined change in metabolic signal in the brain on those with AD and 

delusions. In this regard Sultzer et al. (2014) reported hypometabolism (18F-FDG-PET study) in the 

right lateral frontal cortex, orbitofrontal cortex, and bilateral temporal cortex in patients with delusions 

and AD. They also reported that low cortical metabolic activity in bilateral medial frontal cortex was 

associated with poor insight [76]. 
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When it comes to hallucinations in AD, evidence extracted from the ADNI database identified  

relative gray matter volume loss in the anterior part of the right insula, left superior frontal gyrus and 

lingual gyri and relative hypometabolism in a large right ventral and dorsolateral prefrontal area in AD 

patients with hallucinations compared to those without. The “core region” identified as being 

associated with hallucinations was the right anterior part of the insula, which is the central node in SN. 

Four of their AD-hallucination group had mixed AD and alpha-synclein pathology prominent in Lewy 

Body Dementia, which demonstrates the need for a better understanding of the underlying molecular 

changes in the affected areas and related network [77]. Others reported that reduced supramarginal 

cortical thickness was predictive of increasing hallucinations over time, further highlighting the issue 

with specificity of structural imaging findings [78]. 

3.2.2. Agitation and Alzheimer’s Disease 

Other neuropsychiatric symptoms on AD that received some attention in neuroimaging literature 

include agitation. This symptom can be difficult to define, given that it can arise for different reasons 

and can be driven by unmet physical or mental needs [79,80]. Areas representing the SN are affected  

in “agitation” of AD. These include the ACC and AI [74,81]. Using connectivity as a biomarker, 

Balthazar et al. (2014) reported hyperconnectivity between ACC and right insula in patients with AD 

and agitation [82]. A summary of imaging findings by Rosenberg et al. (2015) speculated that agitation 

in AD is associated with deficits in structure and function of the frontal cortex, ACC, posterior 

cingulate cortex, amygdala, and hippocampus and may be associated with mechanisms underlying 

misinterpretation of threats and affective regulation [83]. 

3.2.3. Apathy and Alzheimer’s Disease 

Apathy is a common symptom in AD. It involves the lack of concern and motivation, diminished 

emotionality and goal directed activities from a lack of motivation, but without emotional distress [84,85]. 

This symptom has been associated with gray matter atrophy in many areas of the brain, including the 

left and right ACC [74]. Reduced baseline inferior temporal cortical thickness has also been found to 

be predictive of increasing apathy over time in a mixed cohort of 812 community dwelling individuals 

including healthy controls, MCI and AD [78]. MCI patients with apathy had significantly decreased 

metabolism in the posterior cingulate cortex in a study using ADNI database 18F-FDG-PET data [86].  

A study by Lanctot et al. (2007) compared non-depressed patients with AD and apathy verses those 

with AD and no apathy and found that apathy was associated with hypoperfusion in the left ACC and 

right orbitofrontal cortex with relative hyperperfusion of the right and left hippocampi, left medial 

superior temporal gyrus, and the middle medial temporal cortex [87]. Taken together the three  

large-scale brain networks are also involved in apathy, but again the specificity of this involvement 

needs to be clarified. 

3.3. Network Neuroimaging Limitations in Alzheimer’s Disease 

While molecular imaging of amyloid, tau cascades and other targets has made significant progress 

in therapeutic trials by targeting the underlying pathology of AD, there have been no such studies 
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reported on imaging neuropathological correlates of neuropsychiatric symptoms of AD. Postmortem 

pathological studies have shown that AD patients with psychosis tend to have higher phosphorylated 

tau in frontal areas [88] and co-occurrence of alpha-synclein pathology [89]. However, no imaging 

studies have looked at these in vivo as potential biomarkers of neuropsychiatric symptoms of AD as of yet. 

There are several limitations in the neuroimaging literature around neuropsychiatry of AD.  

In addition to limitations inherent in the clinical definition of these symptoms, the majority of studies 

used volumetric measures as a main outcome. These measures use cross-sectional identification 

methods to assess relative loss of gray matter in patients with and without neuropsychiatric symptoms. 

This does not take into account the severity of the underlying neurodegeneration and other co-morbidities 

such as vascular factors and mixed neuropathology (for example alpha-synclein). Areas identified as 

having volume loss and part of the neurodegenerative process are responsible for a wide range of 

cognitive and psychiatric symptoms, making it difficult to sort out the contribution of these changes to 

neuropsychiatric symptoms specifically. Areas responsible for these symptoms have been identified in 

the CEN, DMN and SN, but despite the evidence available from perfusion scans and metabolism scans, 

we do not have information about the molecular changes involved in structural and functional changes. 

There is emerging evidence for abnormalities in the SN in other forms of dementia such as  

fronto-temporal dementia (FTD). This illness is characterized by a dramatic decline in interpersonal 

function including lack of empathy, disinhibition, apathy, executive dysfunction, aberrant motor 

function and compulsive fixations with relative preservation of memory encoding function [90,91].  

With the early behavioral changes, volume loss in areas involved in the SN has been reported (right 

AI, pregenual anterior cingula, and amygdala) [92]. More work is needed to investigate neuroimaging 

correlates in other forms of dementia including Lewy Body disease, which has hallucinations as a core 

feature [93] in order to understand the underlying mechanism of neuropsychiatric symptom profiles in 

dementia-related illnesses. 

4. Psychoses 

Psychotic disorders (or psychoses) are major mental disorders that cause abnormal thoughts and 

perceptions in the sufferer. Schizophrenia is a type of psychotic disorder, but other illnesses such as 

bipolar disorder (BD) or AD can also be accompanied with psychotic symptoms. The two main 

symptoms of psychosis are delusions (false beliefs) and hallucinations (false perceptions), such as 

feeling, seeing or hearing something that is not there. For several decades now, dopaminergic 

manipulation has been the primary source of therapeutic symptom relief in patients experiencing 

hallucinations and delusions. Despite the immediate relief in psychotic symptoms brought on by 

dopaminergic blockade, in clinical practice several patients do not show adequate response to these 

agents. In addition, a substantial number of patients who initial show a positive response to these 

medications tend to relapse, despite the continued use of antipsychotic agents [94]. 

4.1. Network Abnormalities in Psychosis 

A number of multimodal imaging studies now consistently point towards an abnormality in the 

function of the SN in various psychiatric disorders [19], especially psychosis [95]. The lack of a 

smoothly operating function switching mechanism among various task-specific networks and between 
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executive and DMN could provide a neural model for disease, explaining the plethora of seemingly 

unrelated psychiatric symptoms that occur together in syndromes such as schizophrenia [96–99]. 

Experimental studies point towards an association between cortical and subcortical dysconnectivity 

and the severity of psychotic symptoms [100]. In patients, the degree of failure in the ability of the SN 

to influence other networks has been shown to predict the severity of psychosis that persists despite the 

use of antipsychotics [98]. This raises the possibility that non-dopaminergic circuits may have a crucial  

role in the phenomena of treatment resistance, persistence and vulnerability to relapse, and the failure  

of coordinated activity among crucial brain networks. This may provide the biological substrate 

underpinning that influences poor outcomes in psychosis. Currently, many PET radiotracers specific to 

the evaluation of the dopamine system, as well as the involvement of other monoamines (glutamate, 

gamma-aminobutyric acid (GABA)) in the human brain are currently available [101–103]. Hybrid 

imaging opens up the possibility of examining both dopaminergic and non-dopaminergic contributions 

to dysfunctional large-scale networks in psychosis. 

4.2. Multimodal Imaging Opportunities in understanding Molecular and Functional Attributes  

of Psychosis 

Schizophrenia is increasingly viewed as a long-term illness that progresses through critical clinical 

stages in most if not all patients [104]. Circumstantial evidence from MR spectroscopy (MRS) studies 

indicates that in early stages of schizophrenia, a glutamatergic excess may be seen, which later evolves 

into a state of glutamatergic deficit [105]. In line with this observation, stage specific changes in 

connectivity are also noted in schizophrenia. In particular, a failure to deactivate the DMN appears to 

develop during early stages of the disease [106], with more widespread and pronounced deficits in 

chronic and established illness [107]. Combined PET/MR spectroscopy imaging across various illness 

stages in schizophrenia can throw more light into the association between changes in glutamatergic 

levels and the patterns of large-scale network level connectivity in the brain. 

The inhibition/excitation balance between GABA and glutamate system has been hypothesized to 

be abnormal in schizophrenia [108]. Numerous postmortem studies point to a widespread deficiency in 

the GABA interneuron distribution [109]. These post-mortem observations, in addition to a growing 

body of GABA imaging studies in psychosis [110,111] firmly point to a perturbation in GABA levels  

in schizophrenia. A missing link in this line of argument is how the distributed abnormalities in  

GABA function relate to the myriad of symptoms seen in psychosis. Computational approaches that 

mathematically model inhibition and excitation in combination with fMRI observations have provided 

some clues as to the relationship between network-level dysconnectivity and synaptic-level transmitter 

abnormalities seen in psychosis [112]. Recent studies using serial PET and fMRI imaging suggest that 

GABA receptor activity is crucial in inducing the negative BOLD response seen in DMN regions in 

the presence of external task-processing demands in healthy subjects [113], but these observations are 

limited by the lack of simultaneous readings from GABA-PET and BOLD signals. Hybrid PET/MR 

imaging offers the potential to further investigate the network-level mechanism through which GABA 

dysfunction influences the symptoms of psychosis. In addition to being an important 

pathophysiological enquiry in psychosis, these studies can also offer surrogate endpoints to study the 

pharmacological efficiency of putative GABA or glutamate modulating agents in psychosis. 
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In recent times, there is a renewed interest in the role of brain inflammation involving microglial 

response in the pathophysiology of schizophrenia [114]. Two important lines of evidence add strength 

to these arguments: 

(1) NMDA (N-Methyl-D-aspartate) encephalitis, an autoimmune inflammatory condition, mimics 

schizophrenia in many subjects and has been identified as an important, albeit small, 

contributor of first episode psychosis in clinical practice [115]. 

(2) Several NSAID’s (nonsteroidal anti-inflammatory drugs) have shown to have a small but 

noticeable effect in reducing symptoms of schizophrenia [116]. 

PET imaging offers the ability to study microglial activation; combined with simultaneous fMRI 

imaging, this can be a powerful tool to narrow the distance between putative inflammatory response in 

the brain and the distinct cognitive disturbances that are typical of neuropsychiatric disorders such as 

schizophrenia. Many opportunities for in vivo molecular imaging of neuroinflammation are currently 

available through the development of PET radiotracers and have recently been reviewed by Ory et al. 

(2014) [117]. 

5. Affective Disorders (Mood and Anxiety Disorders) 

Affective Disorders are a set of psychiatric illnesses that are also referred to as mood disorders.  

The main types of affective disorders are anxiety disorders, unipolar depression, and bipolar disorder. 

Symptoms vary by individual, but they typically affect mood. The symptom-based diagnostic approach 

used for affective disorders is an obstacle in diagnosis, as anxiety disorders have tremendous overlap 

and are commonly comorbid with depression [118,119]. Further, a single manic episode changes  

the diagnosis from unipolar depression to bipolar disorder, which is thought to have a specific 

pathophysiological underpinning. 

From a molecular neurobiology approach, affective disorders seem to pose a unique challenge. 

Serotonin is the neurotransmitter that is best studied and is responsible for regulating mood, anger, 

reward, aggression and appetite [120]. Serotonergic neurotransmission is altered in neuropsychiatric 

disorders such as depression, anxiety, bipolar disorders, autism, schizophrenia and AD [121]. 

However, the cause of depression and other affective disorders is far from being a simple deficiency in 

central monoamines. For example, the immediate increase in monoamine transmission from selective 

serotonin reuptake inhibitors (SSRIs) or monoamine oxidase inhibitors (MAOIs) does cause a mood 

enhancing property (over time), but it is clear from additional studies on healthy controls that a direct 

reduction in monoamines does not directly alter mood [122]. Therefore, there are currently many 

hypotheses regarding the pathophysiology of affective disorders at the molecular level and further 

research is needed in this area to develop a mechanistic framework in which therapeutic targets and 

early diagnostics can be enriched. Advances in research applications of neuroimaging technology may 

have a future in clinical applications of imaging biomarkers for establishing diagnosis and predicting 

illness course or treatment outcomes for affective disorders [14]. 
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5.1. Anxiety Disorders 

There are six major types of anxiety disorders: generalized anxiety disorder (GAD),  

obsessive-compulsive disorder (OCD), panic disorder (anxiety attacks) (PD), specific phobia (SP), 

post-traumatic stress disorder (PTSD), and social anxiety disorder (SAD). Similar to other 

neuropsychiatric disorders, anxiety disorders develop from a complex set of risk factors, including 

genetics, brain chemistry, personality, and life events. Anxiety disorders are also one of the most 

prevalent categories of psychopathology [123] and share symptoms of irrational fear, abnormal 

behavior, hyperarousal, excessive anxiety and avoidance to triggers. These disorders are plagued by 

comorbidities that impede treatment attempts [124] and cause problems in correct diagnosis. Recent 

advancements in neuroimaging may help distinguish certain anxiety disorders and serve as a potential 

diagnostic and therapeutic biomarker for this group of disorders. PTSD and OCD are no longer 

included in the anxiety disorder category in the new DSM-5 system [125], but because of the shared 

features (excessive fear, avoidance and hyperarousal) and comorbid nature with other anxiety disorders, 

they will be included here as a category of anxiety disorder. 

5.2. Anxiety Disorders and Network Abnormalities 

Functional connectivity research into anxiety disorders is very sparse. However, a recent review on 

anxiety disorders by Peterson et al. (2014) attempts to conceptualize whether resting-state connectivity 

could provide diagnostic specificity, and reveal neurobiological distinctions between the anxiety  

disorders [126]. Similar to schizophrenia and AD research, there are recent studies that suggest that 

anxiety disorders can be characterized by functional network connectivity abnormalities that exist 

within and between the large-scale brain networks (DMN, SN and CEN). In PTSD, for example, 

abnormalities within and between the DMN, and the SN appear to be predominant. In particular, PTSD 

has been shown to be associated with reduced functional connectivity within the DMN (reviewed by 

Peterson et al. (2014)) [126] and increased connectivity within the SN (between insula and other SN 

regions including the amygdala) [127]. PTSD participants also demonstrated increased inter-network 

connectivity, or abnormally reduced segregation between the DMN and SN [128]. These functional 

connectivity studies explain the disrupted attention and increased threat sensitivity in PTSD 

individuals. The increased coupling within the SN, at rest, reduced coupling within the DMN and the 

increased cross-network connectivity between the large networks suggests that salience detection 

versus internally focused thoughts are not at equilibrium in PTSD clients and may explain the 

hyperarousal symptoms evident in PTSD sufferers during task-free conditions. 

In social anxiety disorders (SAD), the most consistent research findings to date suggest that the  

CEN functional connectivity is decreased within this network [129]. There is also preliminary 

evidence that SAD is associated with decreased connectivity between the CEN and the DMN [129]. 

Additional resting-state functional connectivity studies are necessary for further understanding the large 

inter-network connectivity that are associated with SAD and provide an explanation as to why others 

have reported mixed findings regarding the large network connection patterns [126]. This will be 

especially important for understanding the resting-state intra- and inter-connectivity of the amygdala  
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(a subcortical structure of the SN), as it has been strongly associated with an individual’s response to 

fear [130,131]. 

In OCD, the DMN has been found to have decreased intra-connectivity [132,133] suggesting that 

OCD patients have dysfunctions of self-referential mental activities [134,135]. Thus, disrupted DMN 

intra-connectivity is likely to be involved in the psychopathological symptoms of OCD. There is also 

evidence that OCD is associated with an increased intra-connectivity within the SN [136]. These 

findings are similar to that found with PTSD. This is consistent with the conclusion drawn from 

Peterson et al. (2014): that there appears to be a certain degree of overlap within the neural networks 

underlying different anxiety disorders [126]. Future studies into functional brain connectivity should 

involve comparisons between different anxiety disorders, such that specificity between the disorders 

can be established. 

The richest information in decoding the molecular and functional specificity in anxiety disorders 

could come from PET/MR hybrid imaging studies of the DMN. Considering that the default mode 

network is thought to engage in introspection, which involves moving away from externally focused 

thoughts while initiating internal, self-focused thoughts; the diverging DMN connectivity profiles of 

affective disorders will uncover differences in introspective processes. DMN hyperconnectivity in 

affective disorders is thought to relate to excessive introspection and thus internal focus in the form of 

rumination [137], whereas externally focused thoughts related to OCD or PTSD requires greater 

attention to potentially threatening externally focused thoughts [138]. To further investigate these 

aspects, DMN connectivity profiles, coupled with specific PET radiotracers (i.e., dopamine, glutamate, 

noradrenaline, and GABA) should be directly compared between affective disorders in future studies. 

These investigations may explain treatment resistance prevalence of affective disorders [139,140]  

and comorbidity correlates that are prevalent in these illnesses [141,142]. 

5.3. Depression 

Depression is a complex neuropsychiatric disorder with diverse aetiologies and generally the onset 

is idiopathic. It is also multifactorial (heterogeneous, genetic associations, environmentally influenced, 

and affects multiple regions of the brain) with no definitive neurobiological correlates. The core symptoms 

of depression include depressed mood, diminished interests, appetite changes, low concentration, sleep 

dysregulation, psychomotor changes, loss of energy, feeling of worthlessness and excessive guilt, 

diminished concentration, and recurrent thoughts of suicide [3]. Currently, depression is diagnosed 

exclusively from behavioral observations where 5 of the 9 symptoms must be present. Therefore, 

clinical judgment is crucial in diagnosing depression, such that substance abuse and physiological 

effects of medical conditions are considered. However, the symptom-based diagnostic approach is an 

obstacle in diagnosis, as anxiety overlaps as a common comorbidity with depression [118,119] and a 

single manic episode changes the depression diagnosis to bipolar disorder, which is thought to have a 

specific pathophysiological underpinning. 

5.4. Predictive Biomarkers for Depression 

Despite almost sixty years of neurobiological research into depression, there remains to be no 

definitive blood/CSF or neuroimaging finding that can serve as a reliable biomarker. Genetic 
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associations have not uncovered strong and consistent “depression genes”, likely because of its 

heterogeneity. However, many candidate genetic predispositions are known, though their overlap with 

other disorders and influence from the environment to initiate depression makes them unlikely 

candidates for clinical diagnosis [143,144]. The array of risk factors for depression has forced 

researchers to adopt a heterogeneous disease concept for depression pathophysiology. The 

polysyndromic nature of depression and heterogeneous nature of this condition demands the need for 

multiple-technical approaches to explore the neurobiological bases for depression. Combining imaging 

techniques, such as hybrid imaging, will be able to capture the “big picture” of the disease rather than 

offering only a single pixel at a time; a common result from single modality techniques. Nonetheless, 

the abundance of research that involves single neuroimaging techniques, capturing one molecule at a 

time or by recording increases and decreases of regional brain activity is noteworthy for depression. 

The individual pieces of information revealed through previous imaging techniques could offer a 

conceptual framework for neurobiological correlates to be uncovered, especially if these findings 

parallel the current understanding of depression as a network-based disorder [145]. 

The neurobiological cause(s) for depression are currently not definitively known and has resulted in 

a lack of reliable diagnostic, or therapeutic biomarkers [146]. However, research suggests certain 

molecules such as monoamine serotonin, norepinephrine, dopamine, glutamate and GABA maybe the 

most promising. Neuropeptides such as neuropeptide Y, neurokinin/substrate P and galanin have also 

been associated with the pathology of the more severe and debilitating form of depression called major 

depressive disorder (MDD) [147]. 

5.5. Network Abnormalities in Depression 

Altered activity in several distributed brain networks may help explain hypervigilance, ineffective 

emotional regulation, maladaptive rumination and poor executive control associated with MDD [148]. 

Researchers have therefore become interested in the role large-scale functional network 

communication plays in the pathophysiology of MDD [149,150]. The functional networks have 

correlated brain activity at rest and during tasks. Cognitive and emotional processes most affected in 

depression are correlated with the frontoparietal network (FPN), the DMN, and the SN [22]. 

Dysfunction in the DMN can cause disruption to internal attention and the SN can cause emotional 

processing and the monitoring of salience events to be dysregulated, which may correlate best with the 

cognitive and affective functioning deficits seen in depression. 

A recent meta-analysis reinforces the hypothesis that depression is a network-based disorder [151]. 

The study provides the first cohesive evidence that MDD is associated with abnormal connectivity 

within and between brain networks that are associated with internal/external attention, and emotional 

(salience) functioning. The analysis consistently found: (1) Increased connectivity within the anterior 

DMN; (2) Increased connectivity between the SN and the anterior DMN; (3) Changed connectivity 

between the anterior and posterior DMN; and (4) Decreased connectivity between the posterior DMN 

and the CEN. The model proposed fits well with network deficits being linked to regulating attention 

and mood for MDD sufferers [152]. Imbalanced network functioning may be connected to diminished 

cognitive control, deficits in goal-directed behavior and a preference toward internal thoughts rather 

than the external world [151]. 



Diagnostics 2015, 5 595 

 

 

The network model of depression is an active field of research with multiple advancements being 

consistently uncovered. For example, potential diagnostic and treatment biomarkers are emerging from 

functional connectivity studies. Chen et al. (2015), recently found a direct association between the 

initial onset of depression and the internal functional connectivity of the DMN [153]. This suggests 

that specific region-to-region connectivities may serve as a diagnostic biomarker for the initial onset of 

MDD. Another promising biomarker could be associated with the functional connectivity between the 

precuneus (a central node of the DMN) and other distant regions of the brain. For example, Peng et al. 

(2015) discovered that depression severity could be associated with functional correlations measured 

by fMRI when focusing on the central node of the DMN [154]. Lastly, a functional network analysis of 

specific regions in the DMN has shown a high level of reproducibility in predicting early therapeutic 

improvement of MDD patients. This may serve as a potential biomarker for guiding personalized 

therapeutic regimens in MDD [155]. Taken together, these recent advancements suggest depression is 

a network-based disorder. Future studies into the DMN of depressed subjects should incorporate 

hybrid imaging (PET/MR) techniques, such that underlying aberrant molecular aspects of the disorder 

are coupled to the functional properties of the large networks. With objective treatment-specific 

biomarkers on the horizon for the treatment response in depression [156], information gained by 

combining imaging modalities may lead to definitive biomarker development that can eventually lead to 

clinical applications. 

5.6. Bipolar Disorder (BD) 

Bipolar Disorder is a chronic disabling neuropsychiatric disorder that effects millions of individuals 

worldwide across their lifespan [1] and a significant cause of increased mortality and morbidity, 

making it one of the leading causes of disability worldwide [157]. The disorder is complicated by 

tremendous heterogeneity, and influenced by genetic and environmental factors [158]. BD can be 

characterized by recurrent cycles of mania and depression episodes separated by normal mood and 

classified into four subtypes (bipolar I disorder; bipolar II disorder; cyclothymic; and not otherwise 

specified) [159]. The symptomology of BD overlaps anxiety disorders, affective disturbances, cognitive 

deficits, and high incidence of somatic and psychiatric comorbidity [160]. Diagnosing bipolar disorder 

can therefore be a difficult task, even for physicians with many years of expertise [161]. The disorder 

often exhibits symptomology (affective instability, neurovegetative abnormalities, cognitive 

impairments, psychosis, and impulsivity) found in other psychiatric disorders, which often leads to 

misdiagnosis or late diagnosis of the disorder. As many as 80% of patients are misdiagnosed within the 

first year of treatment [162], which can be devastating to patients who often experience suicidal 

tendencies. In one community sample of diagnosed bipolar disorder patients, one third of the 

participants went 10 years or more without a correct diagnosis. In addition, these patients had on 

average 3.5 other diagnoses and saw on average four physicians before receiving the correct  

diagnosis [5]. Taken together, it is clear that undiagnosed BD results in significant patient suffering 

and a substantial economic burden. 

The complexity, heterogeneity, cofounding illnesses and absence of clinical diagnostic markers for 

BD is a major dilemma for psychiatrists trying to provide effective treatment, in early diagnosis and in 

initiating early treatment. Strategic experiments that can reveal specific biomarkers associated with BD 
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are much needed. Recent “omics” studies have revealed candidate biological markers for diagnosing 

BD. However, most studies conducted have compared BD subjects with only healthy controls, 

additional studies comparing potential BD biomarkers against other neuropsychiatric disorders that have 

overlapping symptomology (e.g., MDD) are much needed in determining specific biomarkers for  

BD [163]. 

5.7. Network Abnormalities in Bipolar Disorder 

Very few studies have used resting-state fMRI techniques to look at network abnormalities in BD. 

The few reports that have come forth suggest that BD is associated with reduced connectivity within 

the DMN network [164]. Even less is known regarding the inter-network connectivities, though 

Magioncalda et al. (2015) has published findings that suggest that information transfer between the  

large networks of the brain are abnormal in bipolar disorder [165]. Two deficits were revealed between 

network connectivity of the DMN and the SN and explain abnormal shifting either towards internal 

thoughts or towards external stimuli. These connectivity abnormalities between the DMN and the SN 

may serve as predictive biomarkers for the manic and depressive phases of BD. 

Bipolar disorder and schizophrenia share many genetic contributions [166] and overlapping clinical 

characteristics, including psychosis, depression and mania. This overlap can result in schizophrenia 

initially being misdiagnosed as an affective disorder [167]. Schizophrenia and mania have a number of 

symptoms and epidemiological characteristics in common, and both respond to dopamine blockade. 

Therefore, comparative studies between network connectivity in BD and schizophrenia have also been 

undertaken [168–171]. Onger et al. (2010) found that the medial prefrontal cortex, an area within the 

DMN, is abnormal in both schizophrenia and bipolar and suggest that the spontaneous oscillations 

observed in large-scale neuronal networks are abnormal in these psychiatric conditions, possibly 

underlying aspects of psychopathology [169]. Meda et al. (2012) reported both shared resting-state 

network connectivity in schizophrenia and psychotic bipolar disorder, as well as unique patterns of 

connectivity in each disorder [170]. A more generalized, whole brain connectivity analysis by 

Argyelan et al. (2014) has revealed novel evidence that schizophrenia and BD are whole brain 

connectivity disorders [172]. Specifically, when comparing global connectivity among those with 

schizophrenia, BD and health controls, this group found patients with schizophrenia had significantly 

lower global connectivity compared with healthy controls, whereas patients with bipolar disorder had 

intermediate global connectivity that was significantly different from those with schizophrenia and 

healthy controls [172]. These findings support the hypothesis that schizophrenia and bipolar disorder 

represent a continuum of global dysconnectivity in the brain. Hybrid imaging that incorporates 

neuronal activity (PET) and functional connectivity (fMRI) may facilitate diagnostic biomarker 

development and increase confidence in distinguishing schizophrenia from BD. 

6. Discussion 

Neuropsychiatric disorders represent a complex class of disorders that are dependent on many 

variables, including biological and social factors (Figure 1). They create a unique challenge for 

psychiatrists because they are commonly comorbid with each other and have overlapping 

symptomology. Clinicians must rely on their expertise and clinical judgment in order to reach a 
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diagnosis. With large initiatives such as the ADNI we have learned that specific biomarkers for 

diagnosis are possible for complex disorders that encompass neuropsychiatric symptomology. Clinical 

profiles for MCI and AD are now possible by standardizing protocols that involve subject data 

collection from multiple modalities [57]. For other neuropsychiatric disorders such as depression and 

schizophrenia, a multimodality approach also needs to be developed. This may involve collecting 

clinical symptomology, obtaining blood/CSF samples, performing genomics tests and utilizing novel 

hybrid imaging techniques that provide details on brain structure, function and molecular processes. 

6.1. Hybrid PET/MR Opportunities 

Imaging has had a small role in diagnostic evaluation of neuropsychiatric diseases in the past. 

Specifically, it has been used to rule-out structural brain abnormalities, such as atrophy, neoplasm, 

hematoma and other surgically treatable conditions that can cause psychiatric symptomatology. 

However, it is now clear that hybrid imaging may provide a substantial amount of information to the 

molecular, structural and functional aspects of the brain. In a recent study with subjects that had 

neurodegenerative disease, Schwenzer et al. (2012) was able to simultaneously perform PET/MR 

imaging [173]. The results of this study showed that the MR image quality was diagnostic in all cases 

for neurodegenerative diseases. The researchers also state with confidence that the simultaneous  

imaging technique is possible with generally good imaging quality and that the imaging method  

allows for molecular, anatomical and functional data collection with uncompromised MR image 

quality and a high accordance of PET results between PET/MR and PET/CT. In moving forward, the 

major advancement that could come from neuroimaging would be in the identification of specific 

biomarkers for each particular neuropsychiatric disorder, which also serves in differential diagnosis. This 

advancement is on the horizon with novel hybrid imaging modalities, but neuroimaging is currently not 

standard clinical practice for psychiatric disorders [14]. 

Advances in science have been driven by both ideas and new instrumentation [174]. When PET and 

MR were brought together a lot was known about each modality and many results could be anticipated 

(driven by ideas). What is needed when considering neuropsychiatric disorders is an approach that as a 

first principle builds into the design that PET/MR investigations are simultaneous not sequentially 

acquired and that MR, as the multi-spectral component, will be used for imaging that was in the past 

solely a PET domain. This includes the obvious such as tissue perfusion (blood flow) with MR 

imaging (e.g., arterial spin labelling (ASL) [175]) rather than radiolabelled water (15O-H2O), but also 

for other quantities, which are found at concentrations greater than 10−3 M. Consider for example the 

benefit of measuring glucose by MR (glucose chemical exchange saturation transfer) and hence 

allowing PET instead to image a molecular marker of psychiatric disease such as serotonin. With such 

new approaches we will discover the relationship between different brain circuits and systems. Within 

the next decade hybrid PET/MR will help us address current unknowns such as in schizophrenia, the 

interaction of the dopaminergic system (by PET) with the glutamatergic system (by MR); in major 

depression the relationship between brain blood flow (by MR) and the serotonin system (by PET); in 

the differentiation of unipolar and bipolar disease; the extent of disruption of the DMN and/or the 

emotional encoding network (by MR) as compared to the affinity of the reward network (by dopamine 

receptor PET). 
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In the past decade there has been an explosion in the use and validation of PET tracers in  

dementia [176] with significant abilities to separate the different stages of dementia and understand  

the cause of disease. The next decade will see very significant advances to the psychiatric diseases  

with respect to the development of new PET tracers and understanding neuro-networks by both PET 

and MR imaging. However, the development of these new PET probes needs to be undertaken with the 

knowledge that they will be used in the context of MR. For example if it is assumed that MR 

quantitates brain blood flow and the brain networks, then unique information needs to come from PET. 

More than likely, PET imaging utility will be revealed through its higher sensitivity to molecules  

10−9 to 10−12 M versus MR imaging (10−4 M) [177]. This will prove very instrumental to molecular 

abnormalities in neuropsychiatric disorders that mostly occur at lower concentrations (10−8 M).  

In fact, the high sensitivity of PET is currently the only in vivo technique available or method  

capable of quantifying cerebral pathophysiological subtle changes that precede neuro-structural  

abnormalities [178]. Therefore, the development of novel PET radiotracers will play a large role in the 

success of hybrid imaging. 

6.2. Multifactorial Illnesses Require Multiple Modalities to Uncover Useful Biomarkers 

In complex psychiatric disorders that have heterogeneous endophenotypes, genetic variance,  

and multiple brain structural/functional abnormalities, it is fair to conclude that single modality 

research approaches are unlikely to be able to uncover useful diagnostic, therapeutic or prognostic 

biomarkers for these conditions. A single genetic test works effortlessly for predicting Huntington’s 

disease, as it is caused by an inherited defect in a single gene [8]. However, despite tremendous efforts, 

uncovering specific genetic variance for neuropsychiatric disorders has not been successful. For 

example, despite all efforts, thus far, no single genetic variation has been identified to increase the risk 

of depression substantially. Genetic variants are expected to have only small effects on overall disease 

risk, and multiple genetic factors in conjunction with environmental factors seem to be necessary for 

the development of neuropsychiatric disorders such as MDD [143,144,179]. Hence, all the cofounding 

variables that contribute to neuropsychiatric disorders, makes the diseases multifactorial. This calls for 

a multimodal method of study. Hybrid imaging is a promising multimodal approach to uncovering 

neuropsychiatric disorder biomarkers. In 2011, Zhang et al. heeded this call by combining three 

modalities (MR/PET-18F-FDG and CSF) in creating a powerful biomarker for discriminating between 

AD and MCI [180]. By successfully utilizing multiple modalities, diagnostic biomarkers for AD and 

MCI exhibited remarkable sensitivity and specificity in comparison to individual modality biomarkers. 

Similarly, as each neuropsychiatric disorder is likely to have multiple molecular targets, radiotracer 

development and studies involving multiple PET targets will facilitate biomarker development in 

complex neuropsychiatric disorders. Progression in understanding AD, for example, was only 

significantly advanced when the ability to detect both beta-amyloid and various forms of the tau 

protein became available [181,182]. 

6.3. Therapeutic Biomarker Discovery with Hybrid Imaging 

Pharmacological fMRI studies have clarified the mechanisms through which psychotropic agents 

such as antipsychotics and antidepressants could bring about cognitive and behavioral changes in 
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healthy individuals and patients [183]. A major shortcoming with this approach is the lack of means to 

quantify the neurochemical effect caused by the pharmacological agent while measuring the changes in 

network connectivity or regional changes in BOLD signals. In the presence of appropriate ligands for 

PET, hybrid imaging can offer a powerful means to reduce the noise in pharmaco-fMRI studies and 

potentially uncover personalized responses to treatment. This may provide advancements in 

uncovering therapy monitoring biomarkers for specific psychotropic medications and shed light on 

their detailed mechanistic properties. For example, the question of neurodegeneration being associated 

with schizophrenia has been revived by some recent compelling evidence showing a progressive 

reduction in cortical gray matter in patients treated with continuous prescriptions of antipsychotic 

medications [184]. The utility of hybrid molecular imaging can be extended to biomarker discovery for 

therapeutic monitoring to assess an individual’s response to treatment. Specifically, molecular imaging 

is the only method for determining receptor occupancy [185] and drug concentrations in plasma can 

differ 10-fold in patients with identical administered doses. Imaging can therefore facilitate therapeutic 

drug monitoring, which moves towards personalized medicine and individualized dosing, reducing 

non-responders, and negative side-effects [186]. 

6.4. Uncovering Molecular Mechanisms with Hybrid Imaging 

There are many unanswered questions when it comes to the underlying molecular aspects of 

neuropsychiatric disorders and the therapeutic mechanisms in which they are treated. At present it is 

unclear whether the reduction in cortical gray matter is an appropriate response that aids in symptom 

relief or an adverse consequence of the use of dopaminergic agents [187]. Several confounding factors 

such as the severity of illness, persistence of symptoms (despite treatment) and variations in the age of 

onset of the illness could mediate the observed relationship. PET/MR imaging can be used to tackle 

several research questions in this context. Firstly, the presence of neuronal hypometabolism (identified 

using PET), in regions showing greatest gray matter reduction, will support the notion that 

predominant loss of neuronal cells, rather than glia, accompanies the gray matter changes. Second, the 

role of microglial activation in this tissue loss can be studied using microglial PET markers in 

combination with high resolution structural MR imaging. Third, clarifying the relationship between 

dopamine receptor occupancy in an individual and the degree of gray matter loss can provide more 

direct evidence of the role of dopamine blockade in this tissue loss. 

6.5. Hybrid Imaging as a Potential Biomarker for Neuropsychiatric Disorders 

The search of biomarkers for the diagnosis and treatment of neuropsychiatric disorders has been a 

tedious task with low-yield of results. Genetic markers, for example, may be thought of as the best 

measure, as they are not altered by the disease state or treatment. In addition they are relatively easy to 

measure by obtaining blood sample or swabs. Nevertheless, in diseases such schizophrenia, genetic 

markers (especially, single nucleotide polymorphisms) have largely been disappointing, mostly due to 

the heterogeneity in the genetic etiological factors [188]. As a result, individual markers are of very 

low effect size, and not very useful in clinical practice. Some promising genetic markers (e.g., copy 

number variations), have larger effect sizes in case-control studies [189], but suffer from low 

frequency of occurrence, which renders them inadequate for diagnostics or theranostics. Markers that 
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rely upon more proximal pathways of symptom production (e.g., large-scale brain changes studied 

using neuroimaging) do not suffer from the diffusion of effect size that results from etiological 

heterogeneity. In addition, the use of powerful multivariate statistical approaches such as pattern 

classification methods has increased the potential translational value of neuroimaging biomarkers.  

A meta-analysis of several early stage “development” studies that aim to identify the most promising 

predictors of diagnosis of schizophrenia, report that individual neuroimaging modalities such as fMRI 

or structural MR imaging have a moderate level of diagnostic performance (approximately 80% 

sensitivity and specificity) [190]. Importantly, the various brain changes picked-up by divergent 

neuroimaging tools are not mutually exclusive variables. This lack of independence means that a 

simple combination of the various observations may result in over-fitting and poor reproducibility of 

diagnostic or prognostic markers. The unknown degree of dependence among individually 

discriminative predictor variables makes calibration of brain-based biomarker models a challenging 

task. This problem calls for calibrating neuroimaging tools to enable simultaneous estimates of brain 

function, structure, chemical composition and metabolic activity in order to build and test valid indices 

that predict disease status in a given individual. Hybrid imaging provides an opportunity and optimism 

towards this goal. 

7. Conclusions 

Each psychiatric disorder described here should be viewed as a complex puzzle with multiple 

pieces; where individual pieces to the puzzle are uncovered through different techniques or modalities. 

Novel hybrid imaging modalities can uncover molecular, functional and anatomical aspects of each 

disorder and therefore have the potential to uncover multiple aspects of each neuropsychiatric disorder.  

We respectfully acknowledge that imaging technologies may not provide all of the necessary 

diagnostic, therapeutic or disease progression biomarkers needed for treating all brain disorders, 

though its potential to uncover specificity between disorders is warranted. 

We conclude by suggesting that multimodality approaches are the best way to study multivariant 

neuropsychiatric disorders. Hybrid imaging will serve as one of these instrumental tools. One method 

of uncovering uniqueness in each disorder may be by focusing on the three main large-scale brain 

networks (DMN, CEN and SN), as they explain the multiple symptoms of these disorders and have 

shown specificity for each disorder. For these illnesses that have many cofounding influences and 

often comorbidities with other neuropsychiatric disorders, it is safe to assume that hybrid imaging will 

not give us all the answers. However, in combination with other techniques like CSF collection, 

genetic predispositions, convergent functional genomics, clinical attributes etc. we are likely to 

discover useful biomarkers with high specificity and sensitivity for each disorder, similar to the recent 

developments made for Alzheimer’s disease. 
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