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Abstract: This retrospective study evaluates the link between an adverse drug reaction (ADR) or
a non-response to treatment and cytochromes P450 (CYP), P-glycoprotein (P-gp) or catechol-O-
methyltransferase (COMT) activity in patients taking analgesic drugs for chronic pain. Patients
referred to a pain center for an ADR or a non-response to an analgesic drug between January 2005 and
November 2014 were included. The genotype and/or phenotype was obtained for assessment of the
CYPs, P-gp or COMT activities. The relation between the event and the result of the genotype and/or
phenotype was evaluated using a semi-quantitative scale. Our analysis included 243 individual
genotypic and/or phenotypic explorations. Genotypes/phenotypes were mainly assessed because
of an ADR (n = 145, 59.7%), and the majority of clinical situations were observed with prodrug
opioids (n = 148, 60.9%). The probability of a link between an ADR or a non-response and the
genotypic/phenotypic status of the patient was evaluated as intermediate to high in 40% and 28.2% of
all cases, respectively. The drugs in which the probability of an association was the strongest were the
prodrug opioids, with an intermediate to high link in 45.6% of the cases for occurrence of ADRs and
36.0% of the cases for non-response. This study shows that the genotypic and phenotypic approach is
useful to understand ADRs or therapeutic resistance to a usual therapeutic dosage, and can be part of
the evaluation of chronic pain patients.

Keywords: personalised medicine; cytochrome P450; P-glycoprotein; COMT; analgesic drugs; adverse
drug reaction

1. Introduction

The aim of any analgesic treatment is to improve the quality of life by decreasing pain while
minimizing the potential toxicity of the treatment. Increasing knowledge on the pathophysiology of
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pain and the mechanisms of action of drugs have allowed strengthened guidelines based on the type
of pain [1–3]. Despite well-accepted and largely used guidelines, a percentage of patients with pain are
still under-treated or experience overwhelming adverse drug reactions (ADRs) at a usual therapeutic
dosage, and this could be partly related to their genetic make-up.

Research suggests that exploring patients, mainly via a genotyping approach, for several metabolic
pathways or drug targets may allow healthcare professionals to better explain patient response to
analgesic treatment [4–6]. Despite this growing evidence, data are missing to justify the usefulness of a
systematic assessment of the variability in drug metabolism in pain settings. The dosage and the choice
of analgesics is usually based on the patient’s response and ADRs to a given treatment. Delaying the
overall benefit of the therapeutic regimen may have negative effects on the quality of life and on the
relationship between the patient and the healthcare professional. This also results in pain management
becoming very time consuming. The economic burden of chronic pain is greater than most other health
conditions due to its effects on the rates of absenteeism, reduced levels of productivity and increased
risk of leaving the labor market [7–9].

At the Geneva University Hospitals, clinical pharmacologists actively contribute to the
multidisciplinary pain center and answer physicians’ daily questions concerning ADRs, drug–drug
interactions, non-response to treatment or therapeutic management (choice of the drug, dose and route
of administration), among other situations. Patients are referred to the pain center for chronic refractory
pain, resistance to opioid analgesics or unexpected ADRs in spite of usual therapeutic dosage. In order
to clarify pharmacological abnormalities, genetic or phenotypic investigations may be proposed based
on the clinical context, the nature of the ADR or the non-response and the concomitant medications.

In a previous retrospective study performed in a psychiatric setting, we demonstrated that
variability in response to psychotropic drugs is related to a variation of the metabolic status, with an
intermediate to high probability in one third of patients [10].

The present retrospective study aims to assess the extent that an ADR or a non-response to
an analgesic treatment is related to a variation of cytochromes P450 (CYP), P-glycoprotein (P-gp)
or catechol-O-methyltransferase (COMT) activity.

2. Materials and Methods

2.1. Patients and Setting

This study was a retrospective analysis of data collected during consultations with pain patients
referred to our centre, using the same methodology as a previous analysis on patients in a psychiatry
setting [10].

At the Geneva University Hospitals, the division of clinical pharmacology is the referral centre
that coordinates the management of chronic refractory pain for all medical specialties. Questions on
the therapeutic management of chronic pain come from hospital physicians and from private practices.
In most cases, patients are seen during a consultation that allows understanding of the specific signs and
symptoms of the disease, as well as the medication history. Individualised propositions are outlined in
a report, and genetic and/or phenotypic investigations are considered when deemed appropriate by a
senior clinical pharmacologist. Therefore, the potential genetic interactions for the drug reactions are
decided ahead of time for each subject. If the tests are done, their results are then analysed according
to the clinical context and summarised in a second report.

As described previously [10], we retrospectively collected results of the genetic and/or phenotypic
investigations performed between January 2005 and November 2014, and selected all data related to
analgesic drugs. Data were excluded if investigations did not assess one major metabolic pathway of
the involved drug, according to the table of cytochrome substrates and as previously done for a study
on psychotropic drugs only [10,11].

In several selected situations (n = 33), variants for the COMT, linked to central sensitization,
were also explored.
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The study was approved by the local ethics committee (Reference: 15-080) and was performed
according to the Declaration of Helsinki and its later amendments or comparable ethical standards.

2.2. Evaluation Criteria

All clinical pharmacology reports were carefully reviewed and classified into different
categories according to clinical events, namely ADR and non-response to the prescribed analgesics.
Two experienced clinical pharmacologists, also pain specialists, independently assessed the possible
association between these clinical events and the genetic and phenotypic results according to a
semi-quantitative scale and to their clinical judgment, as previously described (Appendix A) [10].
The semi-quantitative scale was mainly built on scientific databases (e.g., Interactions médicamenteuses,
cytochromes P450 et P-glycoprotéine (Pgp) [11]; DrugBank [12]; the Pharmacogene Variation (PharmVar)
Consortium database [13]). For a given drug, each relevant major or minor metabolic pathway was
considered, and a global rating was made according to a three-point scale: 0 = no or low probability of
genetic and phenotypic results being linked with a clinical or biological problem; 1 = intermediate
probability; 2 = high probability [10], meaning that a single score was given for each occurrence of a
drug, an event (ADR or inefficacy), and all metabolic pathways of the specific drug. For drugs with
active metabolites, the use of the table was completed by the available literature on the respective
clinical relevance of the metabolite and parent compound. In case of disagreement, the opinion of
a third expert in clinical pharmacology was sought and retained as the final score. The patient’s
treatment at the time of the genetic and/or phenotypic investigation was recorded and taken into
account when rating the association between the metabolic status and event.

2.3. Explored Pathways and Metabolic Status

Different enzymes and proteins were investigated: the phase I enzymes CYPs, the phase II enzyme
COMT and the transmembrane transporter P-gp (encoded by the ABCB1 gene).

Specific implication of the different CYPs and P-gp for the analgesics can be found in Table 1.
Regarding COMT, studies have shown that polymorphisms have an impact on opioid dose, with the
need for higher opioid equivalent dose in the mutated genotypes compared to the wild-type [14].

Table 1. Analgesics and their metabolic pathways [15–68].

1A2 2C8 2C9 2C19 2D6 3A4/5 P-gp
amitriptyline ! !

buprenorphine
celecoxib

clomipramine ! !
codeine !

dextromethorphan !
diclofenac
duloxetine

fentanyl
ibuprofen

imipramine
indomethacin

ketoprofen
mefenamic acid

methadone
morphine

nortriptyline
oxycodone !
tramadol !

trimipramine
venlafaxine !

Major pathway
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   Minor pathway   

Active metabolite !  
     

Activities of CYP2D6, 2C9 and 2C19 were assessed by phenotyping and genotyping. Activities 
of CYP1A2 and 3A4 were only determined by phenotyping, and ABCB1 (encoding P-gp) and COMT 
polymorphisms were only assessed by genotyping. 

2.3.1. Genotyping 

Until 2007, CYP2D6 genotyping was performed by real-time polymerase chain reaction (PCR) 
to detect the following defective mutations of CYP2D6: *3, *4, *5, *6, *35, *41 and duplications. From 
2007, the microarray technology was introduced, and genotyping was performed on the AmpliChip 
CYP450 test from Roche, allowing the simultaneous analysis of 33 CYP2D6 alleles. For the CYP2C9 
and CYP2C19 genes, the following variants were genotyped: CYP2C9 *2 and *3, CYP2C19 *2 and *17 
(since 2009) as previously described [69]. ABCB1 c.3435C > T (rs1045642) and c.2677G > T (rs2032582) 
polymorphisms were determined in a single multiplex PCR, with fluorescent probe melting 
temperature analysis on a LightCycler (Roche, Rotkreuz, Switzerland) as previously described [70]. 
The COMT genotype was assessed by focusing on single-nucleotide polymorphisms (rs4680) using a 
commercially available TaqMan single-nucleotide polymorphism genotyping assay (Applied 
Biosystems, Warrington, United Kingdom), as previously described [71]. 

The predicted phenotypes of the genotypes were based on enzyme activities of these alleles, as 
listed in the Pharmacogene Variation (PharmVar) Consortium database [13], the PharmGKB database 
[72] or on the instructions of the AmpliChip CYP450 2D6 test. Patients were classified as a poor 
metaboliser (PM), intermediate metaboliser (IM), normal metaboliser (NM) and ultra-rapid 
metaboliser (UM) for CYP2D6 and CYP2C19, and as having an increased, normal or reduced activity 
for CYP2C9. 

For ABCB1 and COMT, the variants that were genotyped coded for a reduced activity. 

2.3.2. Phenotyping 

As in our previous study [10], phenotyping consisted in the administration of probe substrates 
metabolised by specific CYPs, and the determination of plasma, blood or urine metabolic ratios. 
Probe substrates used in our study were those of the Geneva cocktail, with caffeine for CYP1A2, 
flurbiprofen for CYP2C9, omeprazole for CYP2C19, dextromethorphan for CYP2D6 and midazolam 
for CYP3A [73]. At the beginning of our phenotypic investigations, CYP2D6 phenotyping was 
performed by assessing the metabolic ratio between dextromethorphan (DEM) and its metabolite 
dextrorphan (DOR) in the urine collected eight hours after ingestion of a single 25 mg oral dose of 
DEM [74,75]. The development of dried blood spot dosages has led to this method being seldomly 
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Activities of CYP2D6, 2C9 and 2C19 were assessed by phenotyping and genotyping. Activities of
CYP1A2 and 3A4 were only determined by phenotyping, and ABCB1 (encoding P-gp) and COMT
polymorphisms were only assessed by genotyping.

2.3.1. Genotyping

Until 2007, CYP2D6 genotyping was performed by real-time polymerase chain reaction (PCR) to
detect the following defective mutations of CYP2D6: *3, *4, *5, *6, *35, *41 and duplications. From 2007,
the microarray technology was introduced, and genotyping was performed on the AmpliChip CYP450
test from Roche, allowing the simultaneous analysis of 33 CYP2D6 alleles. For the CYP2C9 and
CYP2C19 genes, the following variants were genotyped: CYP2C9 *2 and *3, CYP2C19 *2 and *17
(since 2009) as previously described [69]. ABCB1 c.3435C > T (rs1045642) and c.2677G > T (rs2032582)
polymorphisms were determined in a single multiplex PCR, with fluorescent probe melting temperature
analysis on a LightCycler (Roche, Rotkreuz, Switzerland) as previously described [70]. The COMT
genotype was assessed by focusing on single-nucleotide polymorphisms (rs4680) using a commercially
available TaqMan single-nucleotide polymorphism genotyping assay (Applied Biosystems, Warrington,
United Kingdom), as previously described [71].

The predicted phenotypes of the genotypes were based on enzyme activities of these alleles,
as listed in the Pharmacogene Variation (PharmVar) Consortium database [13], the PharmGKB
database [72] or on the instructions of the AmpliChip CYP450 2D6 test. Patients were classified as
a poor metaboliser (PM), intermediate metaboliser (IM), normal metaboliser (NM) and ultra-rapid
metaboliser (UM) for CYP2D6 and CYP2C19, and as having an increased, normal or reduced activity
for CYP2C9.

For ABCB1 and COMT, the variants that were genotyped coded for a reduced activity.

2.3.2. Phenotyping

As in our previous study [10], phenotyping consisted in the administration of probe substrates
metabolised by specific CYPs, and the determination of plasma, blood or urine metabolic ratios.
Probe substrates used in our study were those of the Geneva cocktail, with caffeine for CYP1A2,
flurbiprofen for CYP2C9, omeprazole for CYP2C19, dextromethorphan for CYP2D6 and midazolam for
CYP3A [73]. At the beginning of our phenotypic investigations, CYP2D6 phenotyping was performed
by assessing the metabolic ratio between dextromethorphan (DEM) and its metabolite dextrorphan
(DOR) in the urine collected eight hours after ingestion of a single 25 mg oral dose of DEM [74,75].
The development of dried blood spot dosages has led to this method being seldomly carried out.
Simultaneous phenotyping corresponded to the concomitant administration of multiple specific probes,
with caffeine 50 mg, flurbiprofen 10 mg, omeprazole 10 mg, dextromethorphan 10 mg and midazolam
1 mg. Capillary blood samples two hours following drug administration allowed for measuring the
activity of multiple CYP enzymes simultaneously, as previously reported [73,76].

Phenotypic classification was based on plasma or urine metabolic ratios (different for each method)
according to a validated method developed in the laboratory of clinical pharmacology and toxicology of
the Geneva University Hospitals [73,77,78]. CYP1A2, 2C9 and 3A4 enzyme activities were categorised
as increased, normal or reduced. Results for CYP2C19 and 2D6 allowed for classifying patients as
a poor metaboliser (PM), intermediate metaboliser (IM), normal metaboliser (NM) or ultra-rapid
metaboliser (UM).

2.3.3. Statistical Analysis

Categorical and continuous variables were described using frequency tables (n, %) and median
(range), respectively. Comparisons of proportions were performed using Fisher’s exact tests. Inter-rater
reliability of the scoring system was assessed with the kappa coefficient. Statistics were computed
using SPSS version 22 (IBM Corporation, Armonk, NY, USA). All tests were two-tailed, with the
significance level at 0.05.
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3. Results

3.1. Patients, ADR or Non-Response, and Involved Analgesic Drugs

Between January 2005 and November 2014, 243 distinct evaluations involved ADRs or
non-response to an analgesic drug, as presented in Table 2. These assessments were performed
in 155 patients (104 women and 51 men), with a mean age of 55 years old (range: 1–99), because of one
(n = 93), two (n = 46) or more (n = 16) ADRs or non-response to analgesic or co-analgesic treatment.

Table 2. Characteristics of patients (n = 155) and demands (n = 243).

Frequency %

Sex, female/male 104/51 67.1/32.9
Number of demands

1 93 60.0
2 46 29.7

3 to 6 16 10.3
Genotype assessment a 122 78.7
Phenotype assessment b 78 50.3

Analgesic drug categories (n = 243)
opioids c 57 23.5

Prodrug opioids d 148 60.9
Nonsteroidal anti-inflammatory drugs e 15 6.2

antidepressants f 22 9.1
paracetamol 1 0.4

Reasons for demands (n = 243)
Adverse events 145 59.7
Non-response 92 37.9

Both 6 2.5
a At least one among cytochrome P450 (CYP) 2D6, CYP2C9, CYP2C19, P-glycoprotein (P-gp) or catechol-O-
methyltransferase (COMT). b At least one among CYP1A2, CYP2D6, CYP2C9, CYP2C19 or CYP3A. c Includes
morphine, buprenorphine, fentanyl and methadone. d Includes tramadol, codeine, oxycodone and dextromethorphan.
e Includes ibuprofen, mefenamic acid, diclofenac, indomethacin, ketoprofen and celecoxib. f Includes amitriptyline,
clomipramine, trimipramine, imipramine, nortriptyline, duloxetine and venlafaxine.

The majority of clinical situations were observed with prodrug opioids, namely tramadol, codeine,
oxycodone and dextromethorphan (n = 148, 60.9%), followed by opioids (n = 57, 23.5%), antidepressants
(n = 22, 9.1%), nonsteroidal anti-inflammatory drugs (NSAIDs) (n = 15, 6.2%) and paracetamol (n = 1,
0.4%). Genotypic or phenotypic explorations were mainly performed because of an ADR (n = 145,
59.73%) followed by a non-response (n = 92, 37.9%) at a usual therapeutic dosage of the analgesic.
In six cases, the genotype and/or phenotype evaluation was done for both an ADR and a non-response
to treatment (Table 2).

3.2. Metabolic Status

Patients’ CYP activity, assessed by genotyping and/or phenotyping, is presented in Table 3.
Regarding the genotypic approach, the most frequently investigated enzyme was CYP2D6 (n = 105
patients), followed by the ABCB1 C3435T allele (n = 56), the ABCB1 G2677T allele (n = 54), CYP2C19
(n = 37), COMT (n = 33) and CYP2C9 (n = 23). For the phenotypic approach, the most frequently
investigated enzyme was also CYP2D6 (n = 73 patients), followed by CYP3A (n = 32), CYP2C9 and
CYP2C19 (n = 27 for both) and CYP1A2 (n = 21).
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Table 3. Genotype, phenotype predicted from genotype and measured phenotype (n = 155 patients).

Genotype
Predicted Phenotype Measured Phenotype

Frequency % Frequency %

CYP2D6 n = 105 n = 73
UM *1/*2xN 3 2.9 15 20.6

NM
*1/*1, *1/*2, *1/*3, *1/*4, *1/*5, *1/*6, *1/*10, *1/*35, *1/*41,

*1XN/*4, *2/*2, *2/*4, *2/*5, *2/*6, *2/*10, *2xN/*4, *4/*35, *10/*35,
*35/*35, *35/*41

84 80.0 27 37.0

IM *4/*9, *4/*41, *4/*10XN, *4XN/*41, *5/*41, *9/*41, *10/*41, *17/*41 11 10.5 19 26.0
PM *4/*4, *4/*5 7 6.7 12 16.4

CYP2C9 n = 23 n = 27
increased 0 0.0 5 18.5
normal *1/*1 15 65.2 18 66.7
reduced *1/*2, *1/*3 8 34.8 4 14.8

CYP2C19 n = 37 n = 27
UM *17/*17 1 2.7 2 7.4
NM *1/*1 25 67.6 21 77.8
IM *1/*2, *2/*17 10 27.0 2 7.4
PM *2/*2 1 2.7 2 7.4

CYP1A2 n = 21
increased 10 47.6
normal 11 52.4
reduced 0 0.0
CYP3A n = 32

increased 4 12.5
normal 24 75.0
reduced 4 12.5

ABCB1 C3435T
(rs1045642) n = 56

normal CC 13 23.2
reduced CT 30 53.6
reduced TT 13 23.2

ABCB1 G2677T
(rs2032582) n = 54

normal GG 18 33.3
reduced GT/GA 28 51.9
reduced TT 8 14.8

COMT rs4680 n = 33
normal GG 4 12.1
reduced GA 21 63.6
reduced AA 8 24.2

UM: ultra-rapid metaboliser, NM: normal metaboliser, IM: intermediate metaboliser, PM: poor metaboliser, CYP:
cytochrome P450 COMT: catechol-O-methyltransferase.

3.3. Concordance Between Predicted and Measured CYP Activity

Among the 73 patients who underwent a CYP2D6 phenotypic evaluation, 40 were also investigated
by a genetic approach. In 52.5% of the cases (21/40), concordance was observed between the phenotype
predicted from the genotype and the measured phenotype. Discordant results were observed in
19 patients. None of the nine patients with a CYP2D6 UM profile according to phenotype were detected
by the result of the genotype (four *1/*1 patients, two *1/*2, two *2/*2 and one *1/*6). This cannot
be explained by a co-medication, since no known inducer of CYP2D6 has ever been documented.
Eight patients with an NM genotype (three*1/*1 patients, two *1/*4, one *2/*5, one *4/*35 and one
*1XN/*4) showed an IM or PM phenotype. Four were co-medicated with CYP2D6 inhibitors, and one
patient took numerous CYP2D6 substrates and phytotherapy. One patient with a UM genotype
(*1/*2XN) showed an IM phenotype that could be explained by his co-medications. Finally, one patient
with a PM genotype (*4/*4) was phenotypically an NM, and again, this case cannot be explained by
co-medications, because there is no known inducer of CYP2D6. Overall, discordant results could be
explained in five of the 19 cases.

Eight patients underwent CYP2C9 assessment by phenotypic and genotypic approaches, with a
50.0% concordance. For the four discordant results, no co-medication in the patients’ treatment could
explain the genotypic/phenotypic discrepancy.

For CYP2C19, five patients were investigated by the two approaches. The genotype/phenotype
concordance was observed in 100.0% of the cases.
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The details of the discordances for CYP2C19 and CYP2D6, together with the CYP inhibitors
possibly explaining the discordances, are presented in Table 4.

Table 4. Concordance between phenotype predicted from genotype and measured phenotype.

Predicted Phenotype n % Concordance a
Measured Phenotype Co-medication Possibly Relevant to

Discordant Cases
(Predicted >Measured Phenotype)

UM
Frequency

NM
Frequency

IM
Frequency

PM
Frequency

CYP2D6 40 52.5
UM 0 0 1 0 citalopram (UM > IM)

NM 9 14 7 1

fluoxetine (NM > IM); citalopram
(NM > IM); duloxetine (NM > IM);

multiple CYP2D6 substrates and
phytotherapy (NM > IM)

IM 0 0 6 0
PM 0 1 0 1

CYP2C9 8 50.0
NM 2 3 0 0
IM 0 2 1 0

CYP2C19 5 100.0
NM 0 5 0 0

a Percent concordance of measured phenotype with phenotype predicted from genotype. CYP: cytochrome P450,
UM: ultra-rapid metaboliser, NM: normal metaboliser, IM: intermediate metaboliser, PM: poor metaboliser.

3.4. Link Between Metabolic Status and ADR or Non-Response

Inter-rater reliability of the scoring system was excellent (kappa = 0.95), with discrepant results
between the two experts in only 5 of the 243 cases. Four cases were related to an ADR with morphine
(two patients), buprenorphine and oxycodone. The last case was a non-response case with oxycodone.

As illustrated in Figure 1 and Table 5, the probability of a link between an ADR or a non-response
and the metabolic status was rated globally as intermediate to high in 35.4% of all cases (n = 243). For an
ADR and a non-response separately, proportions were 40.0% and 28.2%, respectively. The same results
for specific analgesic classes showed that a link between an ADR or a non-response and the metabolic
status for opioids was globally rated as intermediate to high in 29.6% of patients. For occurrence of an
ADR, the link was evaluated as being 37.3%.
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Table 5. Linkage between the type of demand and patient genotype or phenotype by analgesic group.

Type of Demand
Linkage with Genotype or Phenotype Examples

Estimated
Probability a Frequency %

Adverse events
All drugs (n = 145) intermediate 30 20.7 -

high 28 19.3 -

Opioids (n = 43) intermediate 14 32.6
Marked drowsiness for 24 h with buprenorphine; homozygous
mutation for ABCB1 C3435T: TT and heterozygous mutation for

G2677T/A: GT

high 2 4.7 Prolonged altered consciousness state with fentanyl;
CY3A4 PM phenotype

Prodrug opioids (n = 81) intermediate 13 16.0 Malaise with dextromethorphan; CYP2D6 IM genotype
and phenotype

high 24 29.6 Severe vomiting with codeine; CYP2D6 UM phenotype

NSAIDs (n = 5) intermediate 2 40.0 Numerous adverse reactions with diclofenac;
CYP2C9 IM genotype

high 0 0.0 -

Antidepressants (n = 16) intermediate 1 6.3 Numerous adverse reactions with imipramine; CYP2D6 IM
genotype and phenotype

high 2 12.5 Drowsiness and confusion with trimipramine;
CYP2D6 PM phenotype

Non-response
All drugs (n = 92) intermediate 12 13.0 -

high 14 15.2 -
Opioids (n = 11) intermediate 0 0.0 -

high 0 0.0 -
Prodrug opioids (n = 64) intermediate 12 18.8 Non-response to oxycodone

high 11 17.2 Non-response to codeine; CYP2D6 PM phenotype
NSAIDs (n = 10) intermediate 0 0.0 -

high 1 10.0 Non-response to ibuprofen; CYP2C9 UM phenotype
Antidepressants (n = 6) intermediate 0 0.0 -

high 1 16.7 Non-response to amitriptyline; CYP2D6 PM phenotype
a Consensus among two to three raters with experience in clinical pharmacology. UM: ultra-rapid metaboliser,
IM: intermediate metaboliser, PM: poor metaboliser, CYP: cytochrome P450.

For prodrug analgesics, the link between an ADR or a non-response and the metabolic status
was rated globally as intermediate to high in 41.4% of all cases. This link was evaluated as being
intermediate to high in 45.7% of cases for occurrence of an ADR and in 35.9% for non-response.

Regarding specific analgesics (Table 6), the global probability of a link between an ADR or a
non-response and the metabolic status was rated as intermediate to high in 39% of patients taking
tramadol, 33% of patients taking morphine, 56.5% of patients taking codeine and 29.1% of patients
taking oxycodone. More specifically, the probability of a link between an ADR and the metabolic status
was rated globally as intermediate to high in 38.8% of patients taking tramadol, 37.5% of patients
taking morphine, 68.5% of patients taking codeine and 28.6% of patients taking oxycodone. For a
non-response, the link with the metabolic status was 39.4% for tramadol, 38.5% for codeine and 29.4%
for oxycodone (Table 6).

Tables 5 and 6 further document the link between metabolic status and an ADR or a non-response,
with results for other drug classes (Table 5) and specific analgesics (Table 6), and with examples of
each situation.

When taking into account only the cases with a measured CYP2D6 phenotype, the probability of
a link between an ADR or a non-response and the metabolic status was rated globally as intermediate
to high in 35.9% of patients taking tramadol, 45.5% of patients taking codeine and 41.7% of patients
taking oxycodone. The proportions of patients in each CYP2D6 phenotype group did not significantly
differ according to type of demand (ADR vs. non-response) for tramadol, codeine or oxycodone
(Fisher’s exact test, p = 0.50, 0.071 and 0.78 respectively) (Table 7).
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Table 6. Link between the type of demand and patient genotype or phenotype by specific drug.

Type of Demand
Linkage with Genotype or Phenotype

ExamplesEstimated
Probability a Frequency %

Adverse events
All drugs (n = 145) intermediate 30 20.7 -

high 28 19.3 -
Tramadol (n = 49) intermediate 7 14.3 Sedation, dizziness; CYP2D6 IM genotype and phenotype

high 12 24.5 Sedation and hallucinations; CYP2D6 UM genotype
Morphine (n = 32) intermediate 12 37.5 Comateous state; homozygous mutation for COMT rs 4680 A/A

high 0 0.0 -
Codeine (n = 19) intermediate 4 21.1 Hallucination; CYP2D6 IM genotype

high 9 47.4 Important drowsiness; CYP2D6 UM phenotype
Oxycodone (n = 7) intermediate 1 14.3 Drowsiness; CYP2D6 IM genotype

high 1 14.3 Disorientation and sedation; CYP2D6 UM phenotype
Non-response

All drugs (n = 92) intermediate 12 13.0 -
high 14 15.2 -

Tramadol (n = 33) intermediate 7 21.2 Non-response; CYP2D6 IM phenotype
high 6 18.2 Non-response; CYP2D6 PM phenotype

Morphine (n = 4) intermediate 0 0.0 -
high 0 0.0 -

Codeine (n = 13) intermediate 4 30.8 Non-response; CYP2D6 IM phenotype
high 1 7.7 Non-response; CYP2D6 PM phenotype

Oxycodone (n = 17) intermediate 1 5.9 Non-response; CYP2D6 IM phenotype
high 4 23.5 Non-response; CYP2D6 PM phenotype

a Consensus among two to three raters with experience in clinical pharmacology. UM: ultra-rapid metaboliser,
IM: intermediate metaboliser, PM: poor metaboliser, CYP: cytochrome P450, COMT: catechol-O-methyltransferase.

Table 7. Association between the type of demand and measured phenotype.

Drug Type of Demand n
Measured CYP2D6 Phenotype

p-Value a
UM

Frequency (%)
NM

Frequency (%)
IM

Frequency (%)
PM

Frequency (%)

Tramadol 0.50
Adverse events 24 6 (25.0) 9 (37.5) 6 (25.0) 3 (12.5)
Non-response 15 1 (6.7) 6 (40.0) 6 (40.0) 2 (13.3)

Codeine 0.071
Adverse events 13 5 (38.5) 6 (46.2) 1 (7.7) 1 (7.7)
Non-response 9 0 (0.0) 4 (44.4) 4 (44.4) 1 (11.1)

Oxycodone 0.78
Adverse events 3 1 (33.3) 2 (66.7) 0 (0.0) 0 (0.0)
Non-response 9 3 (33.3) 2 (22.2) 1 (11.1) 3 (33.3)

a Fisher’s exact test for equal proportions of CYP2D6 phenotypes according to type of demand. CYP: cytochrome
P450, UM: ultra-rapid metaboliser, NM: normal metaboliser, IM: intermediate metaboliser, PM: poor metaboliser.

4. Discussion

This retrospective analysis shows that ADRs or non-response to treatment could be explained by
a variation in the metabolic status of the patient in 35.4% of the cases, with an intermediate to high
probability according to our semi-quantitative scale.

The overall rate for CYP2D6 and CYP2C9 concordance between the phenotype predicted by
the genotype and the measured phenotype was close to 50%. Several reasons can be put forward to
explain this. First, the genetic approach with the AmpliChip CYP450 test has a low sensitivity for UM
prediction of CYP2D6, in line with a previous study [74]. Indeed, in nine cases (22.5%), UM phenotypes
were deemed as NMs when the genotype was assessed. The other reason for discordance is related to
the patient’s co-medications. For CYP2D6, among the ten discordant cases, half of the patients received
a drug known to inhibit CYP2D6 at the time of the phenotyping procedure. For CYP2C9, the four
discordant cases could not be explained by co-medications. An obvious reason for these discordances
could be the set of genes and SNPs explored in this retrospective study. Indeed, rare genetic variants
were not included, and these could explain some of the discordances observed between the genotype
and the phenotype, as highlighted in recent publications and guidelines [79–81]. The genetic tests used
for the analysis of our patients’ genotypes would assign the patient a wild-type status while carrying a
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rare IM/PM/UM variant. Other environmental factors, such as diet, smoking or alcohol consumption,
as well as diseases, may also have an impact on the activity of CYPs.

Modification of CYP activity was more often detected when the cause for exploration was an ADR
(Figure 1, Tables 5 and 6). This seems quite understandable, because an ADR is probably easier to detect
than a non-response to treatment, especially for analgesic drugs for which the cornerstone of adequate
treatment is gradually titrating the dose until reaching the desired analgesia, not systematically
taking into account an eventual lack of efficacy. Moreover, numerous studies have shown the link
between reduced or increased activity of CYPs in patients experiencing ADRs with analgesics and
prodrug opioids in particular [82–84]. For prodrug opioids, studies demonstrate that the PK of these
analgesics is modified in UMs for codeine, tramadol, hydrocodone and oxycodone. Regarding the PD
modifications, data for codeine and tramadol also show a marked decrease in analgesia and ADRs.
A guideline is even available for codeine with suggestions on how to adapt the treatment in the case
of a modified phenotype [81]. There is no specific guideline for tramadol, but as tramadol is also a
prodrug metabolized through CYP2D6, it seems reasonable to apply the same recommendations as
those suggested for codeine, even though tramadol has a more complex mechanism of action [85].
For hydrocodone and oxycodone, further clinical research is still needed to be able to create specific
guidelines [81,84,86].

Regarding non-efficacy, our study shows that for prodrug opioids, genotype and phenotype
investigations help to give a better understanding of the reason for analgesic failure in 36% of
cases. This link for analgesic failure was particularly high for tramadol and codeine, being 39.4%
and 38.5%, respectively. Indeed, studies have clearly shown the association between the CYP2D6
phenotype of the patient and the PK and PD of the prodrug opioids, with a decreased analgesia and
a decreased occurrence of ADRs in PMs. This has been clearly illustrated for codeine and tramadol.
For hydrocodone and oxycodone, studies show a link with the PK profile of these two drugs, but clinical
studies are contradictory and still fail to demonstrate a clear lack of analgesia in PM patients [81,84–86].

This study has several limitations. First, its retrospective approach put in evidence a lack of
systematic collection of the information given by the patients. Whereas the co-medications taken by
the patients were thoroughly collected, other anamnestic information was sometimes lacking, such as
knowing if the patient was a smoker or not. Moreover, the patients in our consultation often come
to us after several attempts of different analgesic treatments, and medical history is done on their
retrospective reminiscence of ADRs. Moreover, for the non-response to treatment, lack of compliance
was only anamnestic in most cases. In addition, the semi-quantitative scale applied to the cases was
not a validated scale, and may not be sensitive enough to properly rate the complexity of drugs that
have several metabolic pathways and/or active metabolites. Finally, the sample size and thus statistical
power were limited when analysing the association of CYP2D6 phenotype and type of demand for
specific drugs. Due to the genotyping and phenotyping methods available at the beginning of the study,
not all pathways of the analgesics were explored for every case. One example is for ABCB1, for which
only genotyping of two alleles was available at the beginning of the study, whereas we now have a
full phenotyping cocktail that allows us to also evaluate the real activity of P-gp. This would have
been especially useful for the opioids. Another example is that CYP2C8 was not tested by phenotype
or genotype, but has implications in the metabolism of several NSAIDs, in particular diclofenac and
ibuprofen [35,36,41,42].

5. Conclusions

This study highlighted the usefulness of genotyping and/or phenotyping patients when they
experience either an ADR or a non-response when treated with an analgesic drug in a real-life setting.
A link between the occurrence of an ADR and a modified activity of CYPs or transporters was found
in 40% of cases, this link being nearly 30% for non-response. This study showed an even higher link
for both situations when the drug was a prodrug opioid. This is in line with the existing evidence
that shows a strong link with CYP2D6-dependant metabolism and clinical outcomes [81,87]. As put
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forward in several guidelines, this genetic and phenotypic information can help choose the right drug
at the right dosage for a specific patient [87].

Both the genotypic and phenotypic approach, with the methods available today, are fast and
effective. Our experience showed that they are complementary approaches because, whereas the
genotype shows the inherited polymorphisms of the genetic make-up of the patient, the phenotype
takes into account the environmental modifications in the metabolic capacity of the patient, as well
as the impact of diseases (e.g., inflammation) and especially the co-medications in these real-life
situations. Therefore, a multidisciplinary approach in which both genotype and phenotype are
assessed and clinical pharmacologists and pain specialists work hand in hand will result in improved
pain management of these patients. However, these genotypic and phenotypic evaluations rely
on characterizing a specific gene for a specific drug or drug class. The future seems to be in new
technologies, for example those that look at the whole genome or computational physiologically-based
pharmacokinetic/pharmacodynamic approaches (PBPK/PD) [88,89].

This study should open the door to further similar prospective investigations with validated
questionnaires and structured data collection. This would surely help to define the most relevant
clinical situations in which these approaches would be helpful.
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Appendix A

Table A1. Rating scale for the link between the type of demand and predicted phenotype based on
diplotype and/or actual phenotype.

Type of Demand Probability of Link According to Phenotype for Major (Minor) Metabolic Pathway

UM NM IM PM

Non-response to parent compound 2 (1) 0 0 0
Non-response to active metabolite 0 0 1 (0) 2 (1)

Adverse reaction to parent compound 0 0 1 (0) 2 (1)
Adverse reaction to active metabolite 2 (1) 0 0 0

For a given drug, consider each relevant metabolic pathway, whether major or minor. Rate each pathway according
to the table above, with 0 = no or low probability of a link with the clinical problem; 1 = intermediate probability;
and 2 = high probability. The total score is obtained by adding the scores for all relevant pathways (if sum > 2,
consider a total score of 2). In the case of drugs with active metabolites, use of the table was completed by
the available literature on respective clinical relevance of the metabolite and parent compound. UM: ultra-rapid
metaboliser, NM: normal metaboliser, IM: intermediate metaboliser, PM: poor metaboliser.
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