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Abstract: With an increased number of medical data generated every day, there is a strong need
for reliable, automated evaluation tools. With high hopes and expectations, machine learning has
the potential to revolutionize many fields of medicine, helping to make faster and more correct
decisions and improving current standards of treatment. Today, machines can analyze, learn, commu-
nicate, and understand processed data and are used in health care increasingly. This review explains
different models and the general process of machine learning and training the algorithms. Further-
more, it summarizes the most useful machine learning applications and tools in different branches
of medicine and health care (radiology, pathology, pharmacology, infectious diseases, personalized
decision making, and many others). The review also addresses the futuristic prospects and threats of
applying artificial intelligence as an advanced, automated medicine tool.

Keywords: machine learning; artificial intelligence; bioinformatics; medicine; algorithm; decision
making; personalized medicine; data processing; data mining; personalized treatment

1. Introduction

Living in the big data era, with billions of terabytes of data generated every year, it
might be challenging for humans to proceed with all the information. However, Artificial
Intelligence (AI) can lend a helping hand. In the past, machines have gained an advantage
over humans in physical work, where automation contributed to industry and agriculture’s
rapid development. Nowadays, machines are gaining an advantage over humans in typi-
cally human cognitive skills like analyzing and learning. Moreover, their communication
and understanding skills are improving quickly. There are numerous examples where Al
already achieves much better results than humans in analyzing [1-3].

The Al focuses on exploiting calculation techniques with advanced investigative
and prognostic facilities to process all data types, which allows for decision-making and
the mimicking of human intelligence. Such computational systems usually operate on
large amounts of data and often integrate different types of input. Al is a broader field of
science, and one of the most significant branches of Al in medicine is machine learning
(ML). ML means understanding and processing information from a given dataset by the
algorithm, namely machine. The word “learning” stands here as the machine’s ability to
become more effective with training experience. Such a machine can quickly draw novel
conclusions from the data that may be omitted by humans. Machines’ potential increases
year by year, making them more autonomous. However, human interference is necessary
and still has the final word about taking or not particular actions. At least for now. Will
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it change in the future? Will we let the Al perform actions itself, or will it remain only
as a human tool? One thing is unquestionable—we must start accustoming ourselves to
live alongside the machines that begin to equal or even surpass people in the processes of
analyzing and deciding.

2. How Do Machines Learn

The machine learning process is very similar to the learning mechanisms and biochem-
ical principles of the human brain. All the decisions a human makes result from billions
of neurons that analyze images, sounds, smells, structures, and movements, recognize
patterns, and continuously calculate probabilities and options. Machines can also analyze
and calculate similar data, including smell sensing by the electronic nose [4].

2.1. The Main Components of the Machine Learning Process

ML algorithms are methods to perform calculations and predictions [5]. They re-
quire inputs (see Table 1. Glossary)—all data presented to the ML algorithm for analysis,
e.g., patients” genome sequencing data. The ML algorithm’s outcome is called the output;
for instance, prediction of a patients’ susceptibility to cancer. The simple analysis usually
does not require large amounts of data for obtaining a high accuracy prognosis. In the more
advanced analysis, more input is required [6-8]. Although the relationship between inputs
and outputs is more complex than this, generally, setting more inputs should provide more
accurate outcomes.

Table 1. Glossary.

Element of ML

Description

Artificial agent

An independent program that acts regarding received signals from its environment to meet designated goals.
Such an agent is autonomous because it can perform without human or any other system.

Grouping data points with similar features which differ from other data points containing exceedingly

1 i . .
Clustering different properties.
. A task or a problem that needs to be resolved by the agent. The environment interacts with the agent by
Environment . . . . . . p .
executing each received action, sending its current state and reward, linked with agents” undertaken actions.
Feature An individual quantifiable attribute for the presented event, as the input color or size.
Parameters that cannot be estimated from training data and are optimized beyond the model. They can be
Hyperparameters . .
tuned manually in order to get the best possible results.
Input A piece of information or data provided to the machine in pictures, numbers, text, sounds, or other types.
Label A description of the input or output; for example, an x-ray of lungs may have the label “lung”.
The most prominent structure in deep learning. Each layer consists of nodes called neurons, connected,
Layer creating together a neural network. The connections between neurons are weighted, and in consequence,
the processing signal is increased or decreased.
Output Predicted data generated by a machine learning model with an association with the further given input.
Information from the environment (or supervisor) to an agent about the action’s precision. The reward can
Reward be positive or negative, depending on if the action was correct or not. It allows concluding behavior in

a particular state.

In comparison to ML, Al acts in response to the environment to meet the defined goals.
According to Turing’s test, Al must be contagious, embody its memory, be able to conclude,
and adapt to new circumstances [9]. A good example is SIRI or ALEXA, where the Al
performs different tasks such as voice recognition, number dialing, information searching
to fulfill user’s requests [10,11]. AI gives a machine cognitive ability and therefore is more
complicated than ML [12].
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2.2. Machine Learning Models

There are three principal learning models of the ML: supervised learning, unsuper-
vised learning, and reinforcement learning, which differ depending on the type of data
input. Different learning schemes require specific algorithms (Figure 1, Table 2).
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Computer mimics human intelligence

|
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Machine improves at tasks with experience

|

Reinforcement learning

Supervised learning Unsupervised learning

Algorithm makes decisions that
maximize reward

Algorithm requires
labeled data for learning

Algorithm finds patterns
and correlations between
unlabeled data

———\ —\ - — - — .
(Classification Regression Clustering Association Dimensionality © Markov Decision
: P
© |ogistic regression  linear regression e k-means rules reduction rocess‘
o Naive Bayes e Gaussian process ¢ DB SCAN o single-dimensional | | e linear reduction ¢ Qleaming

* support vector
machine
» decision tree

« random forest

regression
e support vector
regression

© decision tree

« neural network

® nonlinear

* neural network e multi-dimensional

reduction

e random forest

« neural network

« neural network

Figure 1. Machine learning models and algorithms. Machine learning is a subfield of artificial intelligence science that
enables the machine to become more effective with training experience. Three principal learning models are supervised
learning, unsupervised learning, and reinforcement learning. Learning models differ depending on the input data type and
require various algorithms.

Table 2. Examples of specific algorithms suited for different learning models.

Algorithm Prediction References

Algorithms Applied in Supervised Learning

Probability distributions are applied to represent all
uncertain, unnoticed quantities (including structural,
parametric, and noise-related aspects) and their relation to
current data.

Probabilistic model (classification)

Predicts probability comparing to a logit function or
decision trees, where the algorithm divides data according
to the essential assets making these groups
extremely distinct.

Logistic regression (classification)

Assumes that a feature presence in a class is unrelated to

Naive Bayes classifier (classification) any other element’s presence

The algorithm finds the hyperplane with the immense

Support vector machine (classification)

distance of points from both classes.

Simple linear regression (value prediction)

Estimates the relationship of one independent to one
dependent variable using a straight line.

Multiple linear regression (value prediction)

Estimates the relationship of at least two independents to
one dependent variable using a hyperplane.
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Table 2. Cont.

Algorithm

Prediction References

Kind of linear regression in which the relationship between

Polynomial regression (value prediction) the independent and dependent variables is projected as [19]

an n-degree polynomial.

Decision-tree (classification or value prediction)

A non-parametric algorithm constructs classification or
regression in the form of a tree structure. It splits a data set
into further small subsets while gradually expanding the
associated decision tree.

Set consisting of a few decision trees, out of which a class

Random forest (classification or value prediction) = dominant (classification) or expected average (regression) of [20]

individual trees is determined.

Algorithms Applied in Supervised Learning

Clusters are formed by the proximity of data points to

K-means (clustering) the middle of cluster—the most minimal distance of data [21]

points in the center.

Consists of clustering points within nearby neighbors

DBSCAN (clustering) (high-density region), outlying those being comparatively [21]

far away (low-density region).

Algorithms Applied in Reinforcement Learning

A mathematical approach where sets of states and rewards
are finite. The probability of movement into a new state is

Markov Decision Process influenced by the previous one and the selected action. [21]

"o

The likelihood of the transition from state “a” to state “b” is
defined with a reward from taking particular action.

Q-learning

Discovers an optimum policy and maximizes reward for
the whole following steps launched from the present state.
Hither, the agent acts randomly, exploring and discovering [20]
new states or exploiting provided information on
the possibility of initiating action in the current state.

The supervised model requires the described data for learning. Hence an input with
extracted features is linked to its output label (Figure 2) [22]. Therefore, after training,
the algorithm can make predictions on non-labeled data. The output is generated by data
classification or value prediction (Figure 1, Table 2). The classification bases on assigning
elements into groups, having previously defined features, whereas the value is predicted
based on training data calculations [15].

Contrarily, in unsupervised learning, the machine tries to find patterns and correla-
tions between presented in randomized order examples that are not labeled, categorized,
or classified. (Figure 3) [23]. The main unsupervised data mining methods are clustering,
association rules, and dimensionality reduction (DR) [24-26]. The difference between
clustering and classification is that grouping does not base on predefined features. Con-
sequently, an algorithm must assemble data by characteristics, which differentiates them
from other groups of objects. Besides data clustering, unsupervised learning allows detect-
ing anomalies, meaning identify thighs that outline the other data points and differ from
them [27].

The association rules mining is aimed to find common features and dependencies
in a large dataset [26]. For example, Scicluna et al. classified the patients” sepsis basing
on the association of its endotypes to leukocyte counts and differentials [28]. This study
allowed to predict a patient’s prognosis and mortality by characterizing blood leucocyte
genome-wide expression profiles. Such classification would allow the identification of
patient endotypes in clinical practice.
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Figure 2. Supervised learning model. In the supervised method, learning begins on a labeled dataset, where input
data is linked to its output label. The algorithm is then validated on a different, non-labeled dataset, not presented to

the machine previously.

All of the data types ranging from MRI scans to digital photographs or speech sig-
nals usually are characterized by high dimensionality [29]. The data dimensions denote
the number of features measured for every single observation. DR decreases the number
of data features by selecting important attributes or combining traits. Concerning unsu-
pervised learning, DR is used to improve algorithm performance, mainly by employing
bias/variance tradeoff and thus alleviating overfitting [30]. Post-genomic data can serve as
a good model of DR. Those data are often high-dimensional, contain more variables than
samples, have a high degree of noise, and may include many missing values. The use of
unsupervised learning would reduce the number of dimensions (e.g., variables), limiting
the data set to only those variables with, e.g., the highest variance [31].
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Figure 3. Unsupervised learning model. The algorithm extract features itself from the unknown input
data without training. Hence the algorithm can cluster data with a similar component, which differ-
entiates data from other objects or groups.

DR is performed through two categories of methods: feature selection and feature
extraction. Feature selection takes a subset of features from original data that are the most
relevant for a specific issue [32]. Feature extraction removes redundant and irrelevant fea-
tures from the original data set, resulting in more relevant data for analysis [33]. The major
difference between these two methods is that feature selection chooses a subset of original
traits, and feature extraction produces new features distinct from the original ones. A wide
range of linear and nonlinear DR methods is used to displace excessive features [34].

One of the most broadly used unsupervised learning methods for DR of large-scale
unlabeled data is principal component analysis (PCA) [35]. The PCA method’s main aim
is to determine all uncorrelated features called principal components (PC). PCA can be
used in various applications such as image and speech processing, robotic sensor data,
visualization, exploratory data analysis, and a data preprocessing step before building
models [33,35].

Besides supervised and unsupervised models, some models cannot be classified
strictly into these categories. In the first one, semi-supervised learning labeled training
set is supported by an immense amount of unlabeled data during the training process.
The main goal of including the unlabeled data into the model is improving the classifier [36].
What is more, it has been shown that using semi-supervised models can improve the gen-
eralizability of risk prediction when compared to supervised ones [37]. Another approach,
named self-supervised learning, generates supervisory signals automatically from the data
itself [38]. It is achieved by presenting an unlabeled data set, hiding part of input signals
from the model, and asking the algorithm to fill in the missing information [39]. Presented
methods eliminate the often-occurring problem, which is the lack of an adequate amount
of labeled data. They are especially useful when working with deep learning algorithms
and are gaining more and more popularity.

In the reinforcement learning method, the algorithm learns by trial-and-error process,
continually receiving feedback [40]. The artificial agent reacts to its environment signals
representing the environment’s state (Figure 4). The actions performed by the agent
influences the state of the environment. The foremost goal is to make decisions that
guarantee the maximum reward. When the machine makes a correct decision, the supervisor
gives a reward for the last taken action in the form of an assessment, for example, 1 for
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proper action and 0 for incorrect. However, when the machine chooses the next step
erroneously, it is penalized [41]. The functional expression of reinforcement learning is
a chess game, where an agent has to react to an opponent’s moves to get a maximal reward
for its movement and win [42].

Environment

N/
/

.

Decision ( Observer )

i

I

Agent

Figure 4. Reinforcement learning model. An agent in its current state performs an action, which influ-

ences the state of the environment. The environment gives back the information about its changed state
to the agent. The supervisor interprets and rates the action, providing a reward for a correct decision.

2.3. Deep Learning

Artificial neural networks (ANNs) are a subset of ML, where the model consists of
numerous layers—functions connected just like neurons and acting parallel. ANNSs that
contain more than one hidden layer are thus referred to as “deep” [43]. Deep learning (DL)
is built on interlinked multi-level algorithms, creating neural-like networks [6]. In other
words, DL is a collection of complex functions that automatically discover relationships
in raw data. Such a set is created by extracting higher abstraction from the data [44].
DL can also be categorized into supervised, semi-supervised, unsupervised, as well as
reinforcement learning [45].

The main advantage of this method is that DL is capable of feature extraction with
no human intervention. DL exploits a structure imitating a human’s neuronal structure
of the brain (Figure 5). The structure consists of one input layer, some hidden layers, and
one output layer wherein neurons (also nodes) are connected with other layers” neurons.
These connections are assigned a weight, which is calculated during the training process.
The algorithm has to determine the best approximate output at each layer to get the desired
final result [40,44,46].

The most straightforward neural network is called feedforward. The statement feed-
forward means that the information flows from input neurons through some estimation
functions to generate the output. This DL operation provides no feedback between layers.
Despite that, the backpropagation algorithm is often used with feedforward neural net-
works. It is a precise adjustment of neural network scales based on the error rate obtained
in the previous training session. It allows for the calculation of the loss function gradient,
including all the weights in the network. Proper weight tuning reduces the error level and
increases the model’s reliability by increasing its generalization [47].

One of the most common deep neural networks is the convolutional neural network
(CNN). It consists of the convolution, the activation layer, the pooling layer, and the fully-
connected (classification) layer. The convolution layer comprises filters that extract and
expand the number of features (parameters), represented as maps that characterize the
input. The activation layer (which is mostly nonlinear) is composed of an activation
function, and takes a generated map of features, and creates an activation map as its output.
Then, the pooling layer is applied to reduce the spatial dimensions, hence achieving
computational performance and lowering the likelihood of overfitting. Having processed
the input by several such sets of layers, the classification occurs. The final output of CNN
in the form of a vector serves as the input for the classification layer, where the algorithm
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produces the classifier, e.g., tumor or normal [40,45,47]. CNNs are used to analyze images,
and in medicine, they are most helpful, for example, in radiology [40]. There are other
various applications [48-51] described in Section 3, Application of Machine Learning
in Medicine.

L1 L2 L3

Input layer Hidden layer Hidden layer Output layer

Figure 5. Layers of deep feedforward or feedforward neural network. The statement feedforward
means that the information flows from input through some estimation functions to generate the out-
put. Elsewhere exists a feedback neural network, where the information about the output is fed
back to the model. Each layer represents a different function—the input layer (L1) with the first
function, the hidden layers (L2, L3, ... , LX) with the next functions. The depth of the model reflects
the connection chain length. In the last output layer, the output value should match the input value
approximated by earlier functions.

Although the simple CNN architecture may look like described, there are many
variations and improvements. One of them is the fully convolutional network (FCN),
which has convolutional layers instead of fully-connected layers. In opposite to CNN, FCN
naturally handles inputs of any size and allows for pixel-wise prediction. In order to do
this, FCN yields output with the input-like spatial dimensions. Such upsampling can be
achieved by using deconvolution layers [52]. Therefore, the FCN is a well-suited option for
semantic segmentation, especially in medical imaging. Ronneberger et al. created a U-Net
that goes over 2D pictures [53]. The u-shape is created because of the upsampling part,
where there are many feature channels, which allow the network to propagate context
information to higher resolution layers. The U-net comprises of the contracting and
expanding path. The convolution and the pooling layers in the contracting path extract
advanced features and downsize the feature maps. Later the expansion path, consisted of
the different convolution (“up-convolution”) and upsampling layers, restores the original
map size. In addition to this, after each upsampling, the feature map from the same level
of the contracting path is concatenated to give the feature localization’s information. At the
final layer a 1 on 1 convolution is used to map each component feature vector to the desired
number of classes. Similar but yet different is the V-net, presented by Milletari et al. [54].
In comparison to U-net, V-net learns a residual function at each stage and examines 3D
pictures, using volumetric filters. Both networks performed outstandingly, being named
a state-of-the-art in the medical image segmentation [55].
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A noteworthy CNN variation is region-based CNN (R-CNN). R-CNN can find and
classify any objects in an image by combining proposals of rectangular regions with CNN.
R-CNN is an algorithm, which consists of two detection stages. The first stage identifies
a subset of regions in the image that may contain an object, explicitly regions proposal.
In the second stage, these regions are adequately classified by the CNN layers outputting
classifier region of interest (ROI) and background [56]. This solution is successfully applied
regarding tumor diagnosis from contours [57]. However, there are also more complex
R-CNN subtypes. The fast R-CNN is more efficient owing to sharing the computations
for overlapping regions. The fast R-CNN differs from R-CNN because, as input, it takes
the entire image and a set of object proposals. Then, several convolutional and pooling
layers produce the feature map. Given each ROI proposal, the pooling layer extracts
a fixed-length feature vector from the feature map. All feature vectors are provided to
a combination of fully connected layers and finally split into two output layers [58].

Additionally, there are implemented more advanced R-CNN. Instead of using an ad-
ditional algorithm to generate proposal regions, the faster R-CNN uses proposal networks
region. It is made up of convolutional layers and efficiently predicts region proposals,
so the calculation is even faster [59]. Moreover, there is another R-CNN variant, namely
Mask R-CNN. This complex method extends the faster R-CNN by adding a branch to
predict segmentation masks for every ROI, together with the available branch of classi-
fication and regression of the bounding box regression. The mask’s branch is a minor
FCN employed to individual RO, forecasting the segmentation mask in a pixel-to-pixel
manner [60].

Other interesting examples of DL methods are the recurrent neural network (RNN)
and its variant long short-term memory network (LSTM). As distinct from the previously
described neural network, RNN forms cycles in its structure. Such a network design
enables recycling of its limited computational resources, thus performing more complex
computations [61]. What is more, by using recurrent connections, a kind of memory is cre-
ated so that RNN can learn from the information processed so far [62]. However, RNN may
face the vanishing gradient problem encountered, e.g., during backpropagation [63]. Thus,
variations of RNN were created, like LSTM. In LSTM, the recurrent hidden layer of RNN is
replaced by a memory cell. It enables better reproduction of long-time dependencies [62].

2.4. Machine Learning Process

The very first step of the learning process is data preparation (Figure 6). When working
on big datasets, data will likely be unclean, i.e., incomplete, inconsistent, or corrupt.
A better algorithm-based analysis requires a high-quality dataset without any anomalies or
duplicates [64]. A good practice is to randomize inputs in order to exclude the influence of
order on learning.

What is more, it is best to split data into three sets: training data, validation data,
and test data [65]. This technique is termed the “lock box approach” and is a very effective
practice in the learning process, commonly used in neuroscience [66]. Different datasets
allow tuning some hyperparameters on validation data before testing the algorithm on the
other datasets [67].

After having the data processed, the next step is selecting the algorithm and the learn-
ing model. The most common learning model is the supervised one [64,68]. Sometimes,
the choice of an appropriate algorithm and a learning scheme depends on the type of data,
e.g., categorical or numerical, and what task it needs to be automated. The supervised
learning requires labeled data. In the case of an insufficient quantity of labeled data, unsu-
pervised learning, semi-supervised, or self-supervised learning may be used [36-39,69].
The accuracy, size of the training data set, training time, and the number of parameters and
features need consideration when selecting the algorithm.

During a training phase, the algorithm proceeds the training data. The outcome has
to match the previously marked output. When the mistake occurs, the model is corrected,
and another iteration is tested [70].
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Figure 6. Machine learning process. The machine learning process starts with model build-up.
Data need to be preprocessed and split into training, validation, and test sets in this step. The next
stage is the training phase, during which parameters are adjusted on the training dataset. Then,
during the optimization phase, hyperparameters are tuned on the validation dataset. After the last
model adjustments, the trained algorithm processes the final test dataset, and the model performance
results are examined.

The validation dataset is to determine the best tuning of hyperparameters during
the optimization phase [6,65]. If the validation error is high, the supervisor presents more
data to the algorithm and regulates parameters. Sometimes, building a whole new model
might be required. If the validation and training sets with the same normal distribution
perform well, then it is likely for our machine learning model to perform effectively also
on the test set [71].

The final phase is applying a test set to the trained model and checking the perfor-
mance results. A test set must contain data instances not presented to the algorithm in
the training and optimization phase [65,66]. Testing the model on the previously applied
data can result in obtaining inflated performance scores [67].
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2.5. Examples of Machine Learning in Everyday Life

ML is a universal tool, applied in many various fields, and often we are not even
aware we use it daily. In the cyber-security sector, ML is used to protect the user, whereas
it becomes more resilient with every known threat. A Ravelin company can detect fraud
using the ML algorithm, which continually analyzes normal customer behavior [72]. When
it spots suspicious signals, like copying and pasting information by resizing the window,
the algorithm can block the transaction or flag it to review [73].

The Al, such as IBM Watson, is trained on billions of data artifacts from different
sources like blogs. Afterward, Al concludes the relationship between threats such as
malicious files or mistrustful IP, limiting time for analysis, and improving reaction to threat
up to 60 times faster [3].

Considering the daily use, Netflix is an excellent example of a successful ML appli-
cation. Behind their achievement stands personalization, where the platform, based on
the user’s activity, recommends titles and visuals suited for them. Additionally, it helps
the company to predict what content is worth investing [74].

A terrific example of the Al in ordinary routine is Waymo’s self-driven car, trained
in 3D maps that point out information like road profiles, crosswalks, traffic lights, or stop
signs [3,74,75]. The sensors and software scan around its neighborhood, and thus it can
distinguish and predict traffic users’ movement based on their speed and trajectory [76].

3. Application of Machine Learning in Medicine

Techniques based on ML started to step into medicine in the 1970s, but over time,
the possibilities for their use began to multiply [77,78]. The first-ever ML-based diagnostic
system was already approved by the U.S. Food and Drug Administration (FDA) in 2018 [79].
The system implements “in silico clinical trials”, which helps develop more efficient clinical
trial strategies. It allows investigators to detect safety and effectiveness signals earlier in
the new drug development process and contributes to costs reduction [80].

With many hopes and expectations, ML has the capacity to revolutionize many fields
of medicine, helping to make faster and more correct decisions and improving current stan-
dards of treatment. The potential applications of ML in general medicine are summarised
in Table 3.
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Table 3. Potential applications of machine learning in medicine.

Branch of Medicine Application Description ML Method References

Image reconstruction High resolution and quality images Deep neural network [81]

Radiology . . Convolutional neural network and
Image analysis Faster and more accurate analysis . [82]

transfer learning
Pathology in silico labeling No need for cell/tissue stam.mg; faster and Deep neural network [83]
cheaper analysis
.. .. Detection of kidney injury up to 48 h in advance,
Nephrology Prediction of organ injury which enable early treatment Deep neural network [84]
Image analysis and diagnosis Polycystic kidneys segmentation Convolutional neural network [48]
Early detection of abdominal aortic aneurysm Agnostic learning [85]
Improvement of ML techniques to cardiovascular Principal t analvsi d random forest 86
Cardiology Personalized decision making disease risk prediction ficipal component analysis and random fores [86]
Mortality risk prediction model in patients with Decision tree [87]
a heart attack
Nutrition Personalized decision making More accurate, personahzeq ppstmeal glucose Boosted decision tree [88]
: response prediction
Diabetology
Transplantology Computer-Aided Diagnosis Estimation Of. global glomerulos.cleroms before Convolutional Neural Network [49]
kidney transplantation
Studying drug mechanisms of action New mechanisms of antibiotic action White-box machine learning [89]
Predicting compounds reactivity Automated tool for reactivity screening Supported vector machine [90]
Pharmacology Ligands screening Faster screening of compounds that bind to the target Supported vector machine [91]
Compounds screening Discovery of new antibacterial molecules Deep neural network [92]
. Generation of libraries of a novel, potentially .

De novo drug design therapeutical compounds with desired propertics Reinforcement neural network [93]
Psychiatry Image analysis and diagnosis MRI image analysis and fast diagnoses Supported vector machine [94]

of schizophrenia
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Table 3. Cont.

Branch of Medicine Application Description ML Method References
A naive Bayes, supported vector machine,
. . . MRI image analysis and diagnoses of autism random forest, extremely randomized trees,
Image analysis and diagnosis . . ) . . ) e [95]
spectrum disorder adaptive boosting, gradient boosting with decision
tree base, logistic regression, neural network
Neurology Prognosis the course of the disease Prediction of progression of filsablhty of multiple Decision tree, logistic regression, [96]
sclerosis patients supported vector machine
Diagnosis support Mild and moderate Parkms.on s Disease detection Artificial Neural Network [97]
and rating
Diagnosis support Blepharospasm detection and rating Artificial Neural Network [98]
N . k-nearest neighbors, a naive Bayes, decision tree,
. . . . Determination of optimal bone age for .
Dentistry Personalized decision making neural network, supported vector machine, [99]
orthodontal treatment L .
random forest, logistic regression
Supported vector machine, gradient- boosting
Emergency medicine Personalized decision making Triage and prediction of septic shock in the machlr.le, ranc:lom forest, multlvarlate adaptive [100]
emergency department regression splines, least absolute shrinkage and
selection operator, ridge regression
Surgery Personalized decision making Prediction of the amount of lost blood during surgery Random forest [101]
Estimation of epidemic trend Prediction of n.umber‘ of conflrmgd cases, deaths, and Neural network [102]
recoveries during coronavirus outbreak
Infectious diseases The evolutionary history of viruses Classification of nove.I Pathogens .and determination of Supervised le.armng with digital [103]
the origin of the viruses processing (MLDSP)
Diagnoses of infectious diseases Early diagnoses of COVID-19 Convolutional neural network, support vector [104]

machine, random forest, and multilayer perception
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Table 3. Cont.

Branch of Medicine Application Description ML Method References
. . Indicating i d risk of colorectal , earl ..
Patients screening ndicating ncreased risk o CO.OreC al cancet, early Decision tree [105,106]
cancer detection
Cancer research New cancer driver genes and mutations discovery Random forest [107,108]
Cancer subtypes classification three-level classification model of gliomas Support vector machine, decision tree [109]
Image analysis and cancer diagnosis Prediction of gene expression Deep learning [50]
. . Tumor microenvironment components classification in 1-nearest neighbor, support vector machine,
Improvement of image analysis . .. . [110]
colorectal cancer histological images decision tree
. Gut microbiota analysis in search of biomarkers Convolutional neural network, support vector
Cancer development preventing . . . [111]
Oncology of neoplasms machine, random forest, and multilayer perception
A naive Bayes, supported vector machine,
Tolerability of cancer therapies Identification qf mic%*obial signatgr?s affecting rar}dom for.est, extrgmely ran@omiz?d trees, [111,112]
gastrointestinal drug toxicity adaptive boosting, gradient boosting with decision
tree base, logistic regression, neural network
Image analysis and p.rognosis the course  Predicting hepatocel'lular carcinom'fa patiegts’ sgrvival Deep learning 51]
of the disease after tumor resection based on histological slides
- Predicti f th t in EGFR .
Treatment response prediction | -reciction of faerapy Oucomes in G . Deep learning [113]
variant-positive non-small cell lung cancer patients
Image analysis Tumor microenvironments components identification Support vector machine [114]
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3.1. Imaging in Medicine

With an increased number of images taken every day, e.g., magnetic resonance imag-
ing (MRI), computer tomography (CT), or X-rays, there is a strong need for a reliable,
automated image evaluation tool. An interesting example is a tool created by Kermany
et al., which, when adequately trained, has the potential of numerous applications in medi-
cal imaging [82]. It uses a neural network to analyze optical coherence tomography (OCT)
images of the retina, allowing to diagnose macular degeneration or diabetic retinopathy
with high accuracy and sensitivity. Moreover, this model could also indicate the cause of
bacterial or viral pediatric pneumonia, making it a universal radiological tool. ML also al-
lows creating images with better quality. In reconstructing the noisy image, the automated
transform by manifold approximation (AUTOMAP) framework is used to obtain better
resolution and quality [81]. As more details can be recognized, the diagnosis can be faster
and more accurate.

The accuracy of imaging and its assessment is essential, especially in (the case of)
detecting and diagnosing abnormalities in the development of the fetus. Parental diagnosis
of fetal abnormalities has markedly benefited from the advances in ML. ML algorithms
have been widely used to predict the risk of chromosomal abnormalities (i.e., euploidy,
trisomy 21) or preterm births. The latest technological advances in ML also improve the
diagnosis of fetal acidemia or hypoxia based on CTG analysis [115].

ML also progresses in imaging methods. In silico staining technique provides an excel-
lent solution to microscopy problems, such as the need for additional staining to visualize
some cells or tissue structures [83]. Based on patterns invisible to the human eye, the algo-
rithm can accurately predict the cell nuclei’s location and size, cell viability, or recognize
neurons among mixed cell populations.

Recent advances and using DL-based techniques enabled to read more information
from various images. It is now possible to improve the transplantation process by using
CNN [49]. The approach created by Altini et al. analyzes kidney histological slides and
determines the global glomerulosclerosis (ratio between sclerotic glomeruli and an overall
number of glomeruli), which is one of the necessary steps in the pre-transplantation process.
By using DL, it can be assessed faster and with high accuracy, and therefore has the potential
to quicken the whole transplantation process. Using automatic semantic segmentation of
patients with autosomal dominant polycystic kidney disease enables noninvasive disease
monitoring [48]. The introduction of the latest ML techniques also enables predicting less
obvious information from microscopic section images. Two interesting examples determine
RNA expression [50] and predict patient survival after tumor resection [51]. Schmauch et al.
created the HE2RNA model, which correctly predicted transcriptome of different cancer
types, detected molecular and cellular modifications within cancer cells, and was able to
spatialize differentially expressed genes specifically by T cells or B cells [50]. A different
study developed two CNN models that could predict survival from histological slides after
the surgical resection of hepatocellular carcinoma. Both models outperformed a composite
score incorporating all baseline variables associated with survival [51].

3.2. Personalized Decision Making

Fast and personalized decisions are crucial in almost every field of medical sciences.
Moreover, detecting and predicting life-threatening conditions before their full clinical
manifestation is a highly significant issue. Cardiology’s main goals focus on developing
tools predicting cardiovascular disease risk [86] and the mortality rate in heart failure
patients [87]. Al can also be applied for prognosis in acute kidney injury [84]. Physicians
can be informed about the injury before changes, detectable with current methods, occur.
Al uses a recurrent neural network trained with big datasets of over 700,000 adult patients.
It can predict kidney function deterioration up to 48 h in advance, giving some extra time
to improve patients’ condition.

The auspicious direction of Al is an individualized prediction of genetic disease
occurrence based on the patient’s genome screening. Integrating genomic data with
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parameters such as lifestyle or previous conditions established the tool, which may be used
in the early screening of abdominal aortic aneurysm [85].

Another useful tool, created for personalized nutrition, processes data (e.g., blood
tests, gut microbiome profile, physical activity, or dietary habits) and predicts postprandial
blood glucose level [88]. The evaluation indicated a high correlation between predicted
and measured glycemic response, indicating high fidelity of ML application. Such an ap-
proach may be the beginning of the personalized nutrition era to program diet in other
metabolic disorders.

As data suggest, the microbiome is strictly related to cancer, affecting tumorigenesis’s
natural course. Specific microbial signatures promote cancer development and affect
many aspects of cancer therapies, such as the treatment’s efficacy or safety. Hence, ML-
driven gut microbiota analysis seems to be extremely useful in oncology to prevent cancer
development, make an appropriate diagnosis, and finally treat cancer [111].

Early diagnosis is a crucial but often also challenging task. Here once again, ML proves
useful. It is now possible to detect abnormalities in patients” handwriting. Using ANN, the
algorithm can determine whether a person may be affected by Parkinson’s Disease or how
much the disease has already developed [97]. Often the symptoms of a particular condition
are subtle and therefore difficult to observe. That is what happens with blepharospasm,
which is caused by orbicularis oculi muscle contractions and, in most problematic cases,
may result in complete closure of the eyelids and blindness. Based on ANN, Al software
was created to deal with diagnosis making [98]. It analyzes recorded videos, recognizes
facial landmarks, and can detect even subtle blinks and around the eye area movement,
which are necessary for diagnosing this dystonia.

3.3. Drug Design

The traditional approach of new drug design is based on numerous wet-lab exper-
iments and is costly and time-consuming. Solutions to these problems are combining
traditional synthesis methods with ML techniques [90]. Granda et al. applied the algorithm
to analyze obtained data and classify reagents as reactive or non-reactive, faster, and with
high precision. The used approach is the beginning of creating an automated tool for
chemicals discovery, contributing to new therapeutic compounds development. Screening
big datasets of compounds to find ligands with target proteins is a very long part of the
drug design process, even with utilizing ML. The fast-screening compounds tool, which
uses traditional support vector ML and a graphics processing unit (GPU), was created
to face this challenge. A GPU divides all the data into small parts and analyzes them
simultaneously in smaller subsets, shortened screening time. The multi-GPU computers
might reduce this time even more [91]. Applying a deep neural network enabled to screen
of over 107 million molecules and identified a new antibiotic [92]. This compound, named
halicin, differs in structure from previously known antibiotics and exhibits broad-spectrum
activity in a mouse model, including pan-resistant bacteria.

Another big problem in the field of pharmacology is to identify the compounds’
mechanism of action. Yang et al. proposed a “white-box” ML approach that could identify
new drugs and antibiotics mechanisms of action, contribute to overcoming antibiotic
resistance, and design new therapeutics [89].

3.4. Infectious Diseases

Almost all global media in the first part of 2020 were dominated by information
about the SARS-CoV2 outbreak. With a promptly increasing number of cases and COVID-
19-related deaths, there is a strong need for tools to fast diagnoses, estimate epidemic
trends, and determine viruses’ evolutionary history. Taking all of these needs into account,
ML comes in handy. Combined ML techniques, such as neural network, support vector
machine, random forest, and multilayer perception, were used to create a tool for rapid,
early detection of SARS-CoV2 patients. This algorithm analyzes computed tomography
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(CT) chest scans and clinical information such as leucocyte count, symptomatology, age,
sex and travel, and exposure history [104].

ML techniques are also beneficial for virologists and epidemiologists. Supervised
learning with digital processing was used for the rapid classification of novel pathogens [103].
The authors created an alignment-free tool, which analyzes viral genomic sequences and
enables tracking the evolutionary history of viruses and detecting their origin. Modeling
epidemic trends is significant from the public health and health care system’s point of
view. A combination of ML algorithms and mathematical models can reliably predict
the number of confirmed cases, deaths, and recoveries in the peak of an epidemic several
months earlier. What is more, it can estimate the number of additional hospitalizations,
which gives the hospitals and health care facilities time to prepare [102].

4. Challenges and Prospects

It may seem that the revolution in biotechnology and information technology enables
us to apply these fields in a very advanced way in everyday life. In a sense, this is true,
but we must be aware that this revolution is just beginning and will move faster and faster.

We must not forget that machines have a significant advantage over humans in
addition to being on par with human cognitive skills: they can be networked. How is
this beneficial? Take an “Al doctor” as an example. Networked Al doctors could easily
and rapidly exchange information, be actualized, and learn from each other. In contrast,
it is impossible to actualize the knowledge of every single human doctor in the world.
Furthermore, sometimes this knowledge might be life-saving information, for example,
newly discovered symptoms and treatment of rapidly spreading disease, like COVID-19.
Therefore, networked Al doctors” abilities can be as valuable as numerous experienced
human doctors of different specializations.

Some people fear that one mistake of the networked Al doctor could result in fatal
consequences for thousands of patients worldwide within a few minutes. However, con-
nected Al doctors could make their own independent decisions, considering the other Al
doctors’ opinions. For example, a single patient living in a small village in Siberia or Tibet
could benefit from comparing diagnosis coming from a thousand Al doctors [116-118].
Al could provide more accurate, faster, and cheaper health care for everyone. This vision is
very futuristic but possible.

For now, ML enables human doctors to save their time, hospitals to save money,
and patients to receive highly personalized and more accurate treatment. However, the pro-
gressing implementation of ML in medicine has many technical and ethical limitations.
The main technical issue that ML needs to overcome is the number of potential manip-
ulations of input data that can influence the system’s decisions. For example, a simple
action as adding a few extra pixels or rotating the image can lead to misdiagnosing and
cancer misclassification as malignant or benign [79]. Researchers worldwide are trying
to find a way to trick trained ML models in various ways and improve them [119]. ML
models” good performance is strongly connected with the amount of data used in the
training process—the larger the dataset, the better the model is trained. This creates a need
to have a significant amount of good-quality data, which is not always easily accessible.
On the other hand, knowing the weaknesses of Al creates a field for hackers to control it
and influence its outcomes. Fortunately, machines do not yet make essential decisions that
may affect human health or even life without human supervision.

ML’s introduction to health care requires many ethical and legal issues to be solved [120].
There are reasoned concerns that AI may mimic human biases and have a propensity
for any kind of discrimination. However, machines would mimic human prejudice and
favoritism only if the creator incorporates them into the algorithm. Another significant
threat is the uncontrolled creation of algorithms to perform in an unethical way. Private IT
companies, which want to produce medicine systems, will have to balance their profits
and patients’ well-being. Given the above risks, it will be necessary for governmental
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authorities to create a legal practice of ML-based systems approval and precautions to
identify potential mistakes, biases, and abuse.

Nowadays, when Al is all around, and humans interact with it on a regular basis,
we may perceive the mind in the machines. Recent results suggest that most people
report various emotions when interfacing with a system using ML [121]. The majority of
people feel surprised or amazed by Al’s extraordinary outputs and its anthropomorphic
qualities. However, Al-based systems also can arouse negative emotions such as discomfort,
disappointment, confusion, or even fear. One thing is sure, ML models used in health care
will need to earn patients” and doctors’ trust.

Some may argue that we will never let machines make their own decisions, but
we already did in many fields. What is more alarming, many of us do not even know
about it. Popular music applications decide what songs or artists they should recommend
to us to match our taste or how often we need a random surprise to make us satisfied
with the application. Everything we liked, watched, how many times went back to see
the same picture, and how much time we spent on particular pictures is analyzed by social
media algorithms. Based on all the gathered information, the algorithms recommend
movies, posts, friends, advertisements. Moreover, the algorithms analyze us in terms of
the likelihood of joining a particular group or organization. This sounds scary, but actions
performed by machines are already influencing our decisions and lives daily.

There is no doubt that, if ethically and adequately trained, ML improves medicine and
health care. Nevertheless, it also leaves many unanswered questions. Should physicians
have better knowledge about the construction and limitations of these tools? Are we able
to trust the machines with our health and life? Will we allow the machines to think entirely
by themselves? Will algorithms still require medical or bioinformatical supervision? Who
will bear the blame for ML mistakes? For now, we are sure that artificial intelligence is not
only the future but also the present.
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