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Abstract: Epilepsy is a neurological disorder of the brain that causes frequent occurrence of seizures.
Electroencephalography (EEG) is a tool that assists neurologists in detecting epileptic seizures caused
by an unexpected flow of electrical activities in the brain. Automated detection of an epileptic
seizure is a crucial task in diagnosing epilepsy which overcomes the drawback of a visual diagnosis.
The dataset analyzed in this article, collected from Children’s Hospital Boston (CHB) and the Mas-
sachusetts Institute of Technology (MIT), contains long-term EEG records from 24 pediatric patients.
This review paper focuses on various patient-dependent and patient-independent personalized
medicine approaches involved in the computer-aided diagnosis of epileptic seizures in pediatric
subjects by analyzing EEG signals, thus summarizing the existing body of knowledge and opening up
an enormous research area for biomedical engineers. This review paper focuses on the features of four
domains, such as time, frequency, time-frequency, and nonlinear features, extracted from the EEG
records, which were fed into several classifiers to classify between seizure and non-seizure EEG sig-
nals. Performance metrics such as classification accuracy, sensitivity, and specificity were examined,
and challenges in automatic seizure detection using the CHB-MIT database were addressed.

Keywords: epilepsy; electroencephalogram; EEG; seizure detection; CHB-MIT database; feature
extraction; classification

1. Introduction

According to the World Health Organization (WHO), approximately 50 million people
in the world are affected by epilepsy [1]. In the global population, about 180,000 new cases
of epilepsy are recorded each year [2], while nearly three quarters of epilepsy patients do
not have access to medical treatment. Epilepsy is a neurological disease of the brain [3]
in which seizures frequently occur due to an unpredicted stream of electrical motion,
which causes the abnormal consequences of extreme and hypersynchronous action of
neurons in the brain. Due to the frequent occurrence of seizures, an epileptic patient may
experience unconsciousness and amnesia, mild depression, persistent headache. It causes
body movement disorders and even death [4]. In the population affected by epileptic
seizures, about 70% are adults and 30% are children. Epileptic seizures are caused by low
oxygen levels during birth and head injuries that ensued during pregnancy, brain tumors,
and abnormal levels of sodium or blood sugar. In about 70% of the cases, the cause of
epilepsy in adults and children is not discovered. Seizures are classified into partial (focal)
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and generalized [5], where some part of the cerebral hemisphere is affected in focal seizures,
and the whole brain is affected in generalized epileptic seizures. Some types of generalized
seizures are tonic-clonic or convulsive seizures, absence seizures, atonic seizures, clonic
seizures, tonic seizures, and myoclonic seizures [6]. Based on the progress of the event,
epilepsy is classified into four stages, namely interictal, preictal, ictal, and postictal. The
occurrence of epileptic seizures is referred to as the ictal stage, the timelapse of around
1–15 min before the incidence of a seizure is referred to as the preictal stage, and the stage
after the occurrence of the seizure is referred to as the postictal stage. The time interval
between the two seizures is considered an interictal stage [7].

Electroencephalography (EEG) is a noninvasive tool that is useful for the extraction
of information about the electrical activity of the brain that indicates a very large number
of neuronal membrane potentials that will be measured by placing electrodes on the
scalp, which plays a vital role in diagnoses of epilepsy. Visual diagnosis of epileptic
seizures using an EEG record is a monotonous task and consumes tremendous time
for the neurologist. On the other hand, the EEG signal contains a potent biomarker to
recognize various abnormal brain conditions, including depression [8] and seizures [9].
Therefore, it is necessary to automate the detection of epilepsy by recognizing the abnormal
EEG condition by employing machine learning approaches [10] to achieve the goals of
personalized medicine.

Personalized medicine, also known as precision medicine, is a medical concept in
which people are divided into groups, and medical decisions, procedures, and/or drugs
are personalized to the individual patient based on their expected response or risk of
disease. EEG signals are a useful tool in precision medicine and personalized medicine.
Automated diagnosis of epilepsy is a focus area for researchers that seek to reduce time
consumption and computational cost. It consists primarily of two parts, such as feature
extraction using various digital signal processing (DSP) methods and operators, to compute
relevant features and classification stage to discriminate healthy (normal) and abnormal
EEG signals or EEG signals corresponding to different mental states of the subject [11–13].

In previous work, the authors proposed a machine learning method for the classifi-
cation of seizures using scalp EEG and a support vector machine (SVM) classifier, which
achieved an accuracy of 90% [14]. A wavelet-based feature extraction technique was
performed to extract the statistical feature of the mean absolute deviation (MAD). The
extracted features were fed into the linear discriminant analysis classifier (LDA) to dif-
ferentiate epileptic and non-epileptic events and attained an accuracy of 96.5% [15]. The
continuous wavelet transform (CWT) was developed to extract characteristics, and the
SVM classifier was adapted to perform epilepsy classification, which achieved a sensitiv-
ity of 52.2% in [16]. A data-driven approach was involved, and a fourth-order FIR filter
was used to give 256 features that were nourished into the SVM classifier to discriminate
between normal and abnormal EEG records in [17]. The patient-specific seizure detection
approach was demonstrated by supervised low-power sensor nodes for efficient sensing,
and the spectral features were extracted and fed to SVM, which acquired the sensitivity,
latency, and false alarm of 94.70%, 5.83 s, and 0.199 per hour, respectively, in [18].

A discrete wavelet transform (DWT) was employed to decompose EEG signals in [19].
Energy and a normalized coefficient of variance were measured from each coefficient
and fed into the LDA classifier to identify seizure epochs, which achieved a precision of
91.8%, sensitivity of 83.6%, and specificity of 100%. An energy efficient filter architecture
was developed using distributed quad-LUT, and a linear SVM classifier was used to
classify epileptic and non-epileptic signals, which achieved an accuracy of 82.7% with a
latency of 2 s [20].

Conditional mutual information maximization (CMIM) as a feature selection method
was introduced to select features from the extracted time, frequency, time-frequency, and
nonlinear features. The extracted features were fed into the SVM classifier to discriminate
the EEG signals and obtained 90.62% sensitivity and 99.05% specificity [21]. Binary classi-
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fiers for a patient-specific classification were implemented, resulting in a sensitivity of 89%
and a specificity of 93% [22].

Wavelet-based nonlinear features were extracted, which was used for the classification
process using an Extreme Learning Machine (ELM), which gave the sensitivity of 92.6%
and a false detection rate of 0.078 [23]. Wavelet transform (WT) was applied to decompose
the signals, and wavelet-based features were extracted, which were fed into the linear
classifier, and achieved a sensitivity of 98.5% with a latency of 1.76 s [24].

A patient-specific seizure detector based on unsupervised feature learning, namely
stacked autoencoders, was used to learn features from raw EEG signals in [25]. The
extracted features were fed to the logistic classifier for the discrimination of EEG signals.

Recurrence quantification analysis (RQA) was developed to detect epileptic seizures,
and the signal-to-noise ratio (SNR) was calculated by applying a wavelet and notch filter,
which obtained 97.4% sensitivity and 93.5% specificity [26]. A fuzzy entropy-based ap-
proach with SVM was used to classify EEG signals, which attained precision of 98.31%,
specificity of 98.36%, and sensitivity of 98.27% [27]. An automatic mobile-based approach
for seizure detection was proposed by analyzing EEG signals in the time domain, frequency
domain, and time-frequency domain. From the analyzed signals, several characteristics
were calculated, and the sequential forward feature selection method was used to select
informative characteristics, which were fed into k-means clustering for classification [28].
The feature extraction approach of EEG signals mapped in the two-dimensional space was
proposed, and several classifiers were adopted, which achieved a sensitivity of 70.19% and
a specificity of 97.74% [29].

The multitask learning method was applied to the long data record in which the
challenges related to variation between patients and intrapatients were resolved by training
an SVM classifier to distinguish epileptic and non-epileptic signals [30]. RQA was used to
characterize the EEG signal, and the extracted features were fed into the error-correcting
output code (ECOC) classifier, which acquired a sensitivity of 97.4% and a specificity of
93.5%, respectively [31]. The supervised machine learning method for the classification of
seizures was introduced using scalp EEG and the magnetic resonance imaging approach to
obtain a sensitivity of 93% and a specificity of 94% using the K-Nearest Neighbor classifier
(K-NN) [32]. The Singular Lorenz Measures Method (SLMM) has been proposed for feature
extraction where the decomposition of the EEG record is performed by applying DWT, and
the extracted features based on SLMM were delivered to different classifiers to provide
efficient classification that refined the detection accuracy of 90% [33].

The patient-specific method of the Poincare section, LDA, and Naïve Bayesian (NB)
classifiers was used, which attained a sensitivity of 88.27% [34]. A single-channel automatic
seizure detection algorithm was developed based on a statistical approach performed by
filtering, peak-to-peak rectification, smoothing, semi-logarithmic compression, and time
compression, which achieved 88.50% sensitivity with a false detection rate of 0.18 [35].
Classical characteristics and singular values such as average power, delta band average
power, variance, and mean were extracted by applying the singular value decomposition
(SVD) technique, and the SVM classifier was used for seizure classification, which achieved
an average precision of 94.82% [36]. The frequency division multiplexing filter and dual
detector architecture were implemented to detect 16 channel seizure events, and the SVM
classifier was used to provide a high sensitivity of 95.7% [37].

Multidimensional parallel factor analysis (PARAFAC) was used to extract spatial
spectral characteristics, and the adaptive zero training technique was proposed with the
intention of better classification when the LDA and SVM classifier was adopted [38]. The
context learning model was intended to detect epileptic seizures by extracting the hidden
inherent features with a sparse autoencoder. Hidden and temporal features were given to
the binary classifier, which achieved an error rate of 22.93% [39]. A supervised machine
learning method, namely principal component analysis (PCA) and LDA, was introduced
with a k-NN classifier to classify EEG signals using the characteristics extracted from the
decomposed wavelets, which achieved a sensitivity and specificity of 88% [40].
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The stationary wavelet transform (SWT) was applied for seizure detection based on
a nonspecific patient procedure with the LDA classifier for accurate classification, which
achieved 99.9% specificity and 87.5% sensitivity [41]. Interpolated histogram features (IHF)
were extracted from the EEG signal, and to select informative features, a Bayesian classifier
and a Hunting search algorithm were used in offline seizure detection. A multilayer
perceptron (MLP) classifier was trained with the optimal selected features for online
seizure detection, which achieved an accuracy of 86.56% [42].

A patient-specific seizure detection algorithm was developed using SVM and linear
SVM and achieved high sensitivity and specificity of 95.1% and 96.2%, respectively [43].
EEG classification based on a multichannel machine learning approach in a wearable
environment was implemented by on-chip classification where the features were extracted
and given to the linear SVM classifier. The nonlinear classifier was applied and found
that the sensitivity and specificity of the nonlinear SVM were refined at a rate of 12.4%
and 3.56% compared to those of the Linear SVM [44]. A robust learning framework was
proposed to alleviate the class imbalance in the CHB-MIT dataset for seizure detection. It
adopts RUSBoost, which increases the performance of the classifier [45].

Multilevel wavelet decomposition was adapted to extract features based on magnitude
and spectral energy variation, and fed into SVM and ELM classifiers, thereby achieving
a sensitivity of 99.48% [46]. The MLP-based neural network was used to detect epileptic
seizures by training a classifier based on the backpropagation algorithm [47]. The patient-
independent and patient-dependent classification was developed by investigating wavelet
characteristics with an SVM classifier, achieving an overall precision of 96.87% [48]. Tem-
poral and spectral characteristics were extracted using WT, and these characteristics were
given to ELM for automated epilepsy classification, which achieved 94.85% classification
accuracy [49]. The low-complexity seizure prediction technique was explored for the use
of attractor state analysis where the linear spectral characteristic was evaluated, resulting
in a sensitivity of 86.67% [50]. SVD was applied, and eigenvalues were calculated to detect
seizures [51].

The phase locking value was analyzed for the prediction of seizures using empirical
mode decomposition (EMD), and other types of EMD were proposed. The extracted
features were fed into the SVM classifier to perform the classification [52]. An unsupervised
method of predicting seizures was used to perform a classification with the mallet scattering
transform to analyze an EEG signal, which attained a specificity of 98% and a sensitivity of
78% [53]. A multivariate method of empirical wavelet transform (EWT) was performed
to extract the characteristics, and different classifiers were used for classification, which
achieved a sensitivity of 97.91%, specificity of 99.41%, and precision of 99.41% [54].

Supervised detection of epileptic seizures was proposed using the local Gabor binary
pattern (LGBP) method, and features were extracted using sparse rational decomposition.
These characteristics were nourished in different classifiers and achieved a net sensitivity
of 70.4% [55]. An energy-based seizure detection algorithm was performed, and the genetic
algorithm for optimization was used to refine the accuracy of the detection [56]. The Fast
Wavelet Decomposition (FWD) approach was applied to extract features that were given to
the Relevance Vector Machine (RVM) for the discrimination of epileptic and non-epileptic
signals achieving a sensitivity of 96% [57]. The logarithm of the variance of detail obtained
by single wavelet-based features was proposed to perform the patient-dependent epileptic
seizure classification using 4-fold cross-validation to categorize seizure and non-seizure
activity, which achieved an accuracy, sensitivity, and specificity of 93.24%, 83.34%, and
93.53% [58]. Feature extraction was performed by segmenting the EEG signal based on
coinciding change points to study the quasi-stationary nature of EEG for prediction of
epileptic seizures [59]. The sparse feature selection procedure was used to extract eight
different sub-bands of spectral power features that were selected, and a kernel sparse
representation classifier was used to predict epileptic seizures, which achieves a sensitivity
of 86.11% [60].
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The Field Programmable Gate Array (FPGA) approach was implemented for automatic
seizure detection to examine the amplitude and frequency components. The timing of
seizure detection was 1.56 ns and 7.572 ns, respectively [61]. The slope-based detection
(SBD) accelerator was experimented with to detect real-time seizures and achieved 100%
sensitivity with 0.5 s latency [62]. A PCA introduced using a distance-based change point
detector provided a sensitivity rate of 87% [63]. A fuzzy rule-based and layered directed
acyclic graph SVM (LDAG-SVM) was developed accordingly, reaching an accuracy of
98% and a sensitivity of 99% [64]. The convolutional neural network (CNN) approach
was developed to interpret seizures and non-seizures, which achieved a sensitivity of
81.4% [65]. The WT methods were applied to analyze the EEG signals, and time-frequency-
based features were extracted.

The extracted features were fed into a fuzzy classifier for discrimination of epileptic
and non-epileptic EEG signals, which attained an accuracy of 96.48% [66]. The high-
dimensional phase space through the Poincare section and two classifiers, such as the
SVM classifier and the NB classifier, was analyzed to attain an accuracy of 96.77% [67].
EMD, DWT, and wavelet packet decomposition (WPD) methods were applied to charac-
terize the EEG signals. Statistical characteristics were extracted for automatic detection
of seizures, which achieved an overall accuracy of 100% [68]. Long short-term memory
(LSTM) networks were adopted for the prediction of epileptic seizures by enlarging deep
learning algorithms with a CNN [69]. The unsupervised method based on a four-segment
selection-based method for the detection of seizures was used and achieved a sensitivity
of 89% [70]. Prediction accuracy of 90.5% was achieved by employing a deep CNN [71].
Adopting a lightweight VGGNet approach for seizure detection reached better accuracy,
sensitivity, and specificity of 98.13%, 98.85%, and 97.47%, respectively [72].

The unsupervised seizure detection approach was implemented to examine the spec-
tral information of each EEG channel individually in the alpha, theta, and delta bands, and
acquired a sensitivity of 95.1% [73]. A smart headband was implemented to automatically
detect seizures. The circuitry consisted of a flexible print circuit and fabric electrodes,
which were integrated with a cloud computing platform. The 16 entropy features were
extracted and given to the linear classifier, which effectively discriminated ictal and non-
ictal activity [74]. A multivariate method was applied to extract spectral graph-theoretic
features to compute temporal synchronization patterns, which gave 98% sensitivity and a
low latency of 6 s [75].

The enhanced transductive transfer learning Takagi–Sugeno–Kang fuzzy system was
implemented and adopted WPD for feature extraction. Six features were extracted and
given to the ANFIS classifier [76]. E-glass, a wearable device, was developed to give an
early warning before seizure occurrence by using four scalp EEG electrodes. DWT was
applied to extract nonlinear and power features that were provided to a random forest (RF)
classifier to discriminate non-seizure and seizure EEG signals, which achieved a sensitivity
of 93.80% and a specificity of 93.37% [77]. A shallow-dense neural network was intended
to describe epilepsy by enabling global synchronization using the maximal information
coefficient (MIC), which achieved accuracy, sensitivity, and specificity of 97.292%, 98.696%,
and 96.116%, respectively, by adopting the shallow-dense net classifier [78]. DWT was
applied to extract features, and four classifiers, such as K-NN, SVM, LDA, and artificial
neural network (ANN), were adopted and provided an accuracy of 94.6% [79].

Welch’s method was used to calculate the power spectral density (PSD) from which
12 features were extracted that were nourished into two classifiers, such as the SVM and the
RF classifier, to refine the precision of 94% [80]. In [81], epileptic seizures were predicted
by employing deep learning approaches combined with SVM classification. In [82], the
recurrent CNN was applied to long-term scalp EEG signals to detect the epileptogenic
region. In [83], the baseline correction based on the median feature method was used to
train and test EEG data for automatic detection of seizures.

The discussed approaches can be summarized using the automatic seizure detection
flow diagram shown in Figure 1, which includes the typical stages of EEG data preprocess-
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ing, feature extraction, feature selection, and classification. These stages are discussed in
more detail in the following sections of this paper.
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Figure 1. The flow chart for automatic epileptic seizure detection in artificial intelligence-based
personalized medicine.

2. Dataset Used

The database used in this study was CHB-MIT, which is collected from the Children’s
Hospital Boston. The database consists of EEG recordings with an intractable seizure of
24 pediatric patients. This database consists of 916 h of EEG records and 23 cases of EEG
recordings of 22 patients whose ages ranged from 1.5 to 22 years. Continuous EEG signals
were recorded after the withdrawal of antiseizure medication. The CHB-MIT database
records were separated into seizure and non-seizure records and contain a total of 664 EEG
files, where 198 seizures of all patients are included. These data records are one hour or
four hours of data records, and 129 files contain one or more seizures, and all EEG signals
were sampled at a rate of 256 samples per second with 16-bit resolution. Most EEG records
contain 23 channels, and few records contain 24–26, as shown in Figure 2. The scalp EEG
recording was done using the International 10–20 system. This database is available on the
Physionet website. The EEG signals were segmented by the timing window since the data
are long hour data.
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3. Methods

The EEG analysis was performed with many approaches suggested in the literature.
These approaches were broadly classified into four types: (1) time domain, (2) frequency
domain, (3) time-frequency domain, and (4) nonlinear methods, shown in Figure 3.
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3.1. Time Domain

The key techniques for the analysis of the time domain were performed using com-
ponent analysis and other methods to provide the discrimination between epileptic and
normal patients. EEG waveforms in the time domain are associated with an epileptic and
non-epileptic patient in the ictal and interictal states.

Component analysis is an unsupervised approach to extract time domain features that
include PCA, independent component analysis (ICA), and LDA. The authors extracted
seven features of peak frequency, median frequency, variance, root mean square (RMS),
sample entropy, skewness, and kurtosis from every 115 columns, so in total, 805 features
and 20 uncorrelated features were extracted by incorporating PCA and LDA [40].
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PCA and common spatial patterns were defined to extract discriminative features, for
example, statistical features related to a minimum, maximum, mean, variance, standard
deviation, range, kurtosis, skewness, RMS, and morphological features such as curve
length, zero cross, number of peaks, average nonlinear energy, and band power to provide
the classification of the EEG signal [63]. Variance feature, RMS, skewness, kurtosis, peak
frequency, median frequency, sample entropy, and about 20 uncorrelated features were
extracted by several analyses using PCA, LDA independent search, LDA forward search,
LDA backward search, and Gram–Schmidt analysis [32].

The CMIM feature selection method was used to extract features [21]. The features
of skewness, kurtosis, number of maxima and minima, mean, variance, standard devia-
tion, COV, RMS, Shannon entropy, approximate entropy, energy, standard variation, and
autocovariance were extracted [22]. The time domain features of mean, standard deviation,
median, skewness, kurtosis, a positive and negative value, and the first derivative of mean
and max, RMS, line length were extracted [28]. Histogram-based statistical features were
extracted, and by analyzing MSE, the interpolated histogram feature was extracted with
ten optimal features that were collected by the COV feature, Bowley’s measure of skewness,
moment measure of skewness feature, kurtosis feature, Pearson’s measure of skewness,
the approximation of negative entropy feature and coefficient of IHF [42].

The statistical moments, standard deviation, zero crossing, and peak-to-peak voltage
from the EEG signals were extracted to classify preictal and interictal states. Amplitude,
skewness, kurtosis, and entropy features were extracted, and from the four features, ampli-
tude and kurtosis of time domain features were selected to provide discrimination [79], as
listed in Table 1.

3.2. Frequency Domain

Spectral and energy features were extracted from a periodogram, which was estimated
by applying the Welch algorithm with 50% overlap [14]. Let pth windowed input signal x
be represented as [12]

xp(n) ∼= w(n)x(n + pR), n = 0, 1, . . . , M− 1, p = 0, 1, . . . ., k (1)

where R is the window hop size, and k is the number of the available frame. The pth block
periodogram is given as:

Pxp , M(wk) =
1
M
∣∣FFTN,k

(
xp
)∣∣2 ∼= 1

M

∣∣∣∣∣N−1

∑
n=0

xp(n)e−
j2πnk

n

∣∣∣∣∣
2

(2)

The Welch method of PSD is denoted by

PSD̂(wk) =
1
k

∣∣∣∣∣k−1

∑
p=0

Pxp,M (wk)

∣∣∣∣∣ (3)

The features, such as maximum PSD, frequency of maximum PSD, mean PSD in theta,
alpha, beta, gamma, and delta frequency band, and variation of PSD, were extracted from
PSD evaluated by Welch’s method with a 90% overlap [79]. Spectral features were calcu-
lated with the help of PSD evaluated using the Burg method of order 16; therefore, eight
spectral features were obtained [41]. The Fourier coefficient of each frequency band, which
is theta, alpha, low beta, mid-beta, high beta, and gamma, was extracted by calculating
PSD from an attractor in EEG [50]. Seven FIR bandpass filters were designed to extract
features on 18 channels, each consisting of seven features on three-time windows so that,
finally, 378 dimensions of a feature vector were formed [17].



J. Pers. Med. 2021, 11, 1028 9 of 24

Table 1. Summary of epileptic seizure detection approaches in the time domain.

Feature Extraction
Method Subjects Window

Size Features Classifier Performance (%)

1 s non-overlapping
window [21]

4 patient,
21 h recording 1 s

Time: skewness, kurtosis, No. of maxima and minima, mean, variation,
standard deviation, and Shannon, entropy, ApEn, energy, standard
variation, variance, and energy of auto-covariance and COV, RMS.

SVM Sen: 90.62
Spe: 99.32

1 s non-overlapping
frames [23]

21 patients
(excluding

patients 6, 12, 16)
1 s

Time: No. of maxima and minima, skewness, kurtosis, standard deviation,
COV, RMS, Shannon entropy, ApEn, energy, standard variation, mean,

variation variance, the energy of auto-covariance.
Frequency: mean of the power spectrum, spectral entropy, median

frequency. maximum, minimum, and
Time-frequency: relative scale energy, COV, frequency regularity index,

maximum, minimum, Shannon entropy, variance, mean, std-deviation, No.
of extrema, and energy

Nonlinear: Lyapunov exponent

SVM,
multi-dimensional PSO

Sen: 89
Spe: 93

Time domain approach
[28] 23 patient

Mean, std-deviation, median, skewness, kurtosis, PA value, NA_value,
mean of 1st and 2nd derivative and a maximum of 1st and 2nd derivative,

RMS amplitude, line length, COV
K-means clustering

PCA [34] 23 patients
excluding 15 1 s Range, quantile, IQR, Shannon entropy, RMS amplitude, COV, and energy LDA,

NB
Sen: 88.26
Spe: 93.21

SVD [36] 1 s Classical features such as mean, variance, kurtosis, skewness, power SVM Acc: 94.82

PARAFAC
decomposition [38] 1 patient Spatio-spectral features

LDA,
SVM,

K-means

PCA and LDA [40] 171 seizures
171 non-seizures 60 s Peak frequency, median frequency, variance, RMS, sample entropy,

skewness, and kurtosis k-NN classifier
Sen: 88
Spe: 88
Acc: 93

2 s non-overlapping
window [43]

24 patient
198 seizures 600 s Spectral energy features Linear SVM, D2 A

Sen: 95.1
Spe: 96.2

SVD [51] 23 patient 4 s 2D eigenvalues, cross bi-spectrum in the spatial and spectral direction

PCA [62] 23 patient 1 s Quantile, Inter quantile, range, Shannon entropy, RMS, COV, and energy SVM
NB

Sen: 95.01
Selectivity: 97.97

Acc: 96.77



J. Pers. Med. 2021, 11, 1028 10 of 24

CMIM has extracted the features of maximum, minimum, and mean power spectrum,
spectral entropy, and median frequency [21]. The frequencies domain features of the
maximum, minimum and mean power spectrum, spectral entropy, and median frequency
were extracted [22]. Adaptive segmentation was performed, and it used the nonlinear
energy operator, which segments the EEG, which was fed to the iterated filter banks to
extract spectral energy features and temporal features for refined classification [30].

Feature extraction (FE) was performed by applying a two-second non-overlapped
window. The feature extraction engine comprises two sets of the bandpass filter (BPF). For
each channel, the frequency bands were subdivided into delta, theta, alpha, and beta, whose
ranges were 0–3, 4–7, 8–15, and 16–30 Hz, respectively [43]. The FE engine consisting of
seven BPF and a spectral energy calculator was used to extract features [44]. Higher-order
spectral analysis was performed to extract spectral and temporal patterns [51]. The FE
method was implemented in FPGA. Amplitude and frequency were extracted for seizure
detection [61] as tabulated in Table 2.

3.3. Time-Frequency Domain
3.3.1. Wavelet Transform (WT)

WT has originated as a dynamic approach in analyzing non-stationary signals. In WT,
energy associated with the EEG was used to obtain wavelet coefficients [84], and it can be
inferred as the filter bank [85]. It is broadly classified into CWT, DWT, and WPD. WT was
utilized to extract statistical features, energy and COV features, IQR, and MAD [15]. The WT
was intended to extract features from 23 channels of EEG. These features were partitioned
into normal, pre-seizure, and seizure events [66]. The approximation coefficients and
logarithm of variance detail coefficients were estimated to extract single wavelet-based
features, which increased the precision of seizure classification [47]. The fuzzy rule-based
feature extraction method was analyzed, and WT was applied to decomposition entropy of
the EEG signal into sub-bands, which extract nonlinear features of the Lyapunov exponent,
correlation dimension, and approximation features [64].

3.3.2. Continuous Wavelet Transform (CWT)

Bivariate features were extracted by adopting CWT [16]. CWT for a signal u(t) was
given as follows:

C(a, b) =
+∞∫
−∞

u(t)Ψ∗a,b(t)dt (4)

where a stands for the scaling, and b stands for the translation factor along the x-axis:

Ψa,b(t) =
1√
a

Ψ
(

t− b
a

)
, a > 0, b ∈ R (5)

where Ψ (t) signifies the wavelet.
WT was carried out to extract temporal measures in which spectral and temporal

measures where the temporal features like mean, normalized coefficient of variation
(NCOV), STD, skewness, kurtosis, spectral characteristics, mean PSD, and peak PSD were
extracted [49].
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Table 2. Summary of epileptic seizure detection approaches in the frequency domain.

Feature Extraction
Method Subjects Window

Size Features Classifier Performance (%)

Welch algorithm with
50% overlap [14]

22 patients
133 seizures 5 s Spatial and spectral SVM Acc: 90

Frequency band [21] 4 patients,
21 h recording 1 s Maximum, minimum, and mean of the power spectrum, spectral entropy,

median frequency. SVM Sen: 90.62
Spe: 99.32

Discrete Fourier
Transform [28] 23 patients Frequency: FFT_AP and RP of the delta, theta, alpha, gamma bands K-means clustering

Filter bank [30] 23 patients 20 s Temporal variability information SVM Sen:100

PSD [32] 24 patients 60 s Peak frequency, max frequency, median frequency, RMS, sample entropy,
correlation dimension, skewness, kurtosis, K-NN Sen: 93

Spe: 94

IHF based [42]
23 patients,
163 seizures 30 s

Arithmetic mean, geometric mean, variance, COV, mode, median, Pearson
and Bowley’s, and moment measure of skewness, kurtosis,

and negative entropy

MLP,
Bayesian classifier

Sen: 97.27
Acc: 86.56

Precision rate: 86.53
Attractor state analysis

[47]
13 patients

143 seizures 20 s Fourier coefficients of six EEG frequency bands Sen: 86.67

Sparse Bayesian
multinomial logistic

regression [60]

17 patients
78 seizures 4 s Spectral power and spectral power ratios such as absolute spectral power,

relative spectral power, the spectral power ratio
Kernel sparse

representation classifier Sen: 86.11

STFT [70] 24 patients
198 seizures 1 s Spectral analysis, variation in EEG energy distribution over the delta, theta,

and alpha rhythms SSM Sen: 88

STFT [73] 24 patient
185 seizures 1 s The energy of delta, theta, and alpha frequency bands SSM Sen: 95.1

Welch method with 90%
overlap [80] 24 patients 20 s Amplitude, skewness, kurtosis, entropy, maxPSD, maxF, mean Gamma,

mean Beta, mean Theta, mean Delta, varPSD SVM, RF Acc: 94
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3.3.3. Discrete Wavelet Transform (DWT)

DWT is used for the characterization of a signal as an infinite set of wavelets on
an orthonormal basis [86]. DWT can decompose nonlinear structures of the signal into
the approximate and the detail coefficient on the commonly used Daubechies 4 (Db4)
wavelet [87]. In DWT, the translation and dilation parameters are discretized as follows:{

a = aj
0

b = kb0aj
0

a0 < 1, b0 6= 0, j ∈ Z, k ∈ Z (6)

The wavelet with the parameters was assumed as

Ψj,k(t) =

 1√
aj

0

∗Ψ

(
t− kaj

0b0

aj
0

) (7)

Therefore, DWT was given as

D(j, k) =
∫ +∞

−∞
u(t)Ψj,k(t) dt (8)

The signal u(t) can be reproduced using the inverse DWT as follows:

u(t) =
1
a

J

∑
j=−∞

∞

∑
k=−∞

wt(j, k) Ψj,k(t), a ∈ R+ (9)

DWT was performed for five levels of wavelet decomposition to extract character-
istics such as energy, NCOV, and relative coefficient of variation (RCOV) [19]. Energy,
entropy, standard deviation, mean, maximum, and minimum of wavelet-based features
with wavelet decomposition and statistical IQR and MAD features without wavelet de-
composition were extracted to provide automatic classification of seizures [25]. DWT was
applied to extract the mean, standard deviation, minimum, maximum value, median value,
skewness, kurtosis, relative energy, total energy, Shannon entropy, spectral entropy, and
first and second derivative of maximum and minimum values [28]. Engaging SWT to
perform feature extraction where 176 frequency and 88 energy features were extracted that
were mean frequency, peak frequency, relative bands energy, left anterior, right anterior,
left posterior, and right posterior [41]. Multilevel wavelet decomposition was employed to
extract magnitude, spectral energy variation, and relevance frequency and spectral features
of maximum, minimum, and mean to provide an effective classification [46]. Wavelet-based
features were extracted by engaging wavelet features from two to seven, in which the
performance of each feature was obtained, and line length, nonlinear energy, variance, and
maximum features were extracted for patient-dependent classification [48]. Approximation
coefficients and a logarithm of variance detail coefficients were estimated to extract single
wavelet-based features, enlarging the accuracy of seizure classification [58]. The entropy
features were extracted from the decomposed coefficients [77]. Energy components were
extracted over the delta, theta, alpha, beta, gamma1, and gamma2 frequency bands via
calculating PSD by incorporating Fast Fourier Transform (FFT), and additionally, DWT was
applied to extract seven-level decomposition coefficients [69]. The scattering transform
and DWT were adapted to perform feature extraction and extracted 45 features related to
spectra, entropies, Hurst exponent, line length, power spectra, and fractal dimensions [53].

3.3.4. Wavelet Packet Decomposition (WPD)

WPD is an extension of DWT [2]. DWT decomposes the approximate coefficient,
whereas WPD yields both approximate and detail coefficients [88]. In WPD, the original
signal was reconstructed by combining various levels of decomposition [89]. Spectral
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features, fractal features, temporal features, and spatial features were extracted by perform-
ing the FWD method, also called harmonic wavelet packet transform (HWPT) [57]. Six
statistical features in each sub-band were extracted by EMD, discrete wavelet transform,
and wavelet packet decomposition [68]. CMIM was applied to extract the time-frequency
domain features such as energy of four frequency bands, relative entropy, Shannon entropy,
COV, mean, standard deviation, and frequency regularity index [21]. Short-Time Fourier
Transform (STFT) was used to extract features such as relative scale energy, Shannon en-
tropy, COV, frequency regularity index, maximum, minimum, variance, mean, standard
deviation, and energy in frequency band [22]. Singular Lorenz measures approach was pro-
posed to extract features by using SVD to estimate the singular values. Lorenz inconsistent
features and Lorenz consistent were extracted, and optimal features such as Kuznets ratio,
Gini coefficient, and Theil’s first ratio were also extracted. These features were obtained by
IQR interpretation for the EEG signal [33].

The PARAFAC method was introduced to extract spatio-spectral features [38]. The
features of correlation dimension, largest Lyapunov exponent, maximum linear cross-
correlation, and nonlinear interdependence were extracted by the three steps where decom-
position of EEG data was done with EMD, Multivariate EMD (MEMD), and Noise-assisted
MEMD (NA-MEMD), which were given to the Hilbert transform, thereby acquiring a
phase lock value for classification [52]. EWT was applied and extracted the three features
where the gray-level co-occurrence matrix was used to extract multivariate textual features,
and the joint features were extracted by computing the Hadamard product. The extracted
features were plotted in the receiver operating characteristic (ROC) curves [54]. LGBP
features were extracted by the suggested sparse rational decomposition and calculated the
eight rational done with the help of rational discrete STFT. The LGBP width features and
1D LGBP features were extracted to provide discrimination of seizures and non-seizure
events [55]. STFT was applied over the EEG signal, and CNN was employed to extract
features for epilepsy detection [65]. STFT was applied to extract energy components in
three frequency bands, namely delta, theta, and alpha, ranging 0–4, 4–7, and 8–13 Hz,
respectively [70]. The summary of the time-frequency techniques is listed in Table 3.

3.4. Nonlinear Domain
3.4.1. Recurrence Quantification Analysis (RQA)

RQA is well suited for nonlinear data analysis [90], which can capture transient
states in various scenarios using EEG signals [91]. RQA was carried out to extract the
RQA parameter, which is determinism, average diagonal line length, entropy, linearity,
and trapping time, which was acquired from the recurrence plot [26,31]. The recurrence
network was adapted to extract the RQA features, and the graph-theoretic features results
were inferred from the recurrence plot [75]. The four categories of the feature extraction
method of approximate entropy, sample entropy, RQA, and a wavelet-based energy-based
approach [23] were adopted.
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Table 3. Summary of epileptic seizure detection approaches in the time-frequency domain.

Feature Extraction
Method Subjects Window

Size Features Classifier Performance (%)

Wavelet decomposition
[15]

24 patients
156 seizures 1 s IQR, MAD LDA

CWT [16] 7 patients 5 s Bivariate features SVM Sen: 52.2
Daubechies 4 wavelet

transform [17] Spectral energy SVM

Wavelet decomposition
[19] 5 patients 1 s COV, RCOV, NCOV, LDA Sen: 83.6 Spe: 100

Acc: 91.8
Wavelet decomposition

[20] 23 patient 20 s Temporal variation Linear SVM Acc: 82.7

DWT [21] 4 patients,
21 h recording 1 s

Time-frequency: relative scale energy, Shannon entropy, COV, frequency
regularity index, maximum, minimum, variance, mean, std-deviation, No.

of extrema and energy
SVM Sen: 90.62

Spe: 99.32

Wavelet decomposition
[23]

12 patients
(patients 1–12) 25 s Sample entropy, ROA features ELM, SVM Sen: 92.6

WT [24] 24 patients 1 s Energy, entropy, std-deviation, maximum, minimum, mean, wavelet-based
features, IQR, MAD Linear Classifier Sen: 98.5

Acc: 84.2

DWT [28] 23 patients Mean, std-deviation, min, max, median, skewness, kurtosis, energy, entropy,
mean and maximum of 1st and 2nd derivative, zero crossing, COV K-means clustering

2D mapping [29] 24 patients
Uniformity, dissimilarity, contrast, correlation, autocorrelation, sum average,

variance, sum variance, entropy, sum entropy, diff entropy, diff variance,
homogeneity, cluster shade, cluster prominence, max probability

SVM Sen: 70.19
Spe: 97.74

Frequency-time
division multiplexing

architecture [37]
23 patients Spectral energy Linear SVM Sen: 95.7

Spe: 98

SWT [41] 18 patients 2 s
Spectral and energy features

176 frequency features
88 energy features

LDA
PRNN

Sen: 87.5
Spe: 99.5

Multilevel wavelet
decomposition [46]

22 patients
192 seizures

10, 20, 30
min Magnitude, spectral energy variation, and relevance frequency SVM

ELM

SVM: -
Sen: 97.98
Spe: 89.90

ELM: -
Sen: 99.48
Spe: 81.39
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Table 3. Cont.

Feature Extraction
Method Subjects Window

Size Features Classifier Performance (%)

DWT [48] 24 patients 2 s Mean, std-deviation, and all wavelet-based features SVM
Sen: 72.99
Spe: 98.13
Acc: 96.87

Wavelet transform [49] 3 patients 2 s Mean, normalized COV, standard deviation, skewness, kurtosis, mean DSP,
Peak_PSD ELM Acc: 94.85

EMD, MEMD, and NA-
MEMD [52]

21 patients
65 seizures

1, 5, 10, 15
s Phase locking value SVM

Mallat’s scattering
transform [53] 24 patients 1 s

Modulation spectra, Shannon entropy, Renyi entropy, permutation entropy,
spectral entropy, Hurst exponent, line length, power spectra,

fractal dimension
Spe: 86

EMD [54] 24 patients 1 s Mean of joint instantaneous amplitude, mean monotonic absolute AM
change, a variance of monotonic AM change

RF,FT,
K-NN,
C4.5,

Bayes naïve,
Bayes net

Sen: 97.91
Spe: 99.57
Acc: 99.41

FWT [57] 22 patients 2 s Fractal dimension, correlation, wavelet coefficients, energy, and
HWPT features RVM Sen: 96

Acc: 99.8

DWT [58] 12 patients 2 s Wavelet-based spectral features
Sen: 83.34
Spe: 93.53
Acc: 93.24

EMD [68] 21 patients 8 s Mean of coefficients, the average power of coefficient in every sub-band,
std-deviation of coefficients, skewness, kurtosis

SVM,
RF,MLP,
K-NN

Sen: 99.65
Spe: 99.8
Acc: 99.7

DWT [69] 24 patients
185 seizures 5 s

Statistical moments, standard deviation, zero crossings, peak-to-peak
voltage, total signal area, energy percentage at delta, theta, alpha, beta,

gamma bands, cross-correlation and autocorrelation, local and
global measures

LSTM

Segment based:
Sen: 99.84
Spe: 99.86

Event-based:
Sen: 100

WPD [76] 24 patients 10 s Wavelet coefficients, energy features ANFIS classifier
Sen:9 1.91
Spe: 93.16
Acc: 94.04

DWT [77] 10 patients
55 seizures 4 s Sample, permutation, Renyi, Shannon and Tsallis entropies, and

power features RF Sen: 93.60
Spe: 93.37

DWT [79] 10 patients 23.6 s Std-deviation, Band power, Shannon entropy, largest Lyapunov exponent K-NN
SVM, LDA, ANN Acc: 94.6
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3.4.2. Entropy

Entropy is a quantity of the degree of information that can be used to separate useful
information from the noisy environment [92]. The uncertainty or the consistency of an
EEG signal in various extents and instability variation in the signal were measured using
Approximate Entropy (AE) [93–95]. The logarithmic probability that the signal with N
sample points repeats itself within the tolerance of r for m points and for next m + 1 points
was expressed in approximate entropy. For a given time series y(i) of length N, N −m + 1
vectors Y(1), Y(2), . . . , Y(N −m + 1) were constructed. AE was given as follows [93]:

ApEn(m, r, N) = φm(r)− φm+1(r) (10)

where
φm(r) =

1
(N −m + 1) ∑

i
ln
(

Cd
i (r)

)
(11)

where Cd
i is a correlation integral indicating the probability of a vector Y(i), which remains

similar to Y(j) within tolerance limit r.
The sample entropy was a modified version of AE. Poincare mapping was used to

calculate the intersection point, which constructs a 1D sequence that extracts the seven
features such as quantile, IQR, Shannon entropy, RMS, COV, energy to differentiate seizures
from non-seizure records [67] listed in Table 4.

Table 4. Summary of epileptic seizure detection approaches in a nonlinear domain.

Feature Extraction
Method Subjects Window

Size Features Classifier Performance (%)

Nonlinear based [21] 4 patients,
21 h recording 1 s Lyapunov exponent SVM Sen: 90.62

Spe: 99.32

RQA [26] 10 seizure file Determinism, Avg-diagonal line length,
entropy, laminarity, trapping time

Sen: 97.4
Spe: 93.5

Entropy [28] 23 patients Entropy-based: spectral, Shannon entropies K-means
clustering

RQA [31] 10 seizure files Determinism, Avg-diagonal line length,
entropy, laminarity, trapping time ECOC Sen: 97.4

Spe: 93.5

RQA [75] 23 patients
182 seizures 1 s Spatial and temporal synchronization

patterns and theoretic feature Sen: 98.48

3.4.3. Hjorth’s Parameters

The Hjorth’s parameters define the EEG signal in terms of its time domain features
such as amplitude (activity), slope (mobility), and slope spread (complexity), thus the name
“normalized slope descriptors” (NSDs) [96]. The descriptors may describe any signal in the
time and frequency domains and gather its important characteristic such as energy content,
frequency, and waveform complexity [97]. They have been used, among other features, to
discriminate the preictal and interictal EEG in [98].

The first Hjorth’s parameter, activity, is the variance σ2
X of the EEG signal X.

The second Hjorth’s parameter, mobility, is expressed as:

mobility =
σX′

σX
(12)

The third Hjorth’s parameter, complexity, is defined as:

complexity =
σX′′ /σX′

σX′/σX
. (13)

where X′ is the first derivative of X obtained by differencing, while X′′ is the first derivative
of X′ obtained by differencing.
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3.5. Other Feature Extraction Methods

The nonlinear feature of the Lyapunov exponent feature was extracted [21,22]. A
multivariate feature extraction approach was adopted to extract textual features, univari-
ate, bivariate, and multivariate features extracted using channel selection; these features
were mapped to the 2D image, and the GLCM matrix was applied to extract homogeneity
features [29]. Mallet’s scattering transform was applied to extract Shannon entropy, Renyi
entropy, permutation, and spectral entropies [53]. Eight absolute spectral power features
and relative spectral power features, spectral power ratio features of 44 features were
extracted by employing the sparse feature selection method, in particular, sparse Bayesian
multinomial logistic regression (SBMLR), which increases classification accuracy [60]. A
frequency-time division multiplexing (FTDM) filter was implemented to extract spatial,
temporal, and spectral features for patient-specific seizure detection [37]. Linear and
nonlinear filtering operations were applied to extract spectral-energy features from com-
pressively sensed EEG [18]. An eight-channel feature extraction engine was developed,
and the spectral, spatial, and temporal features were extracted with the help of the machine
learning algorithm [20].

The stacking auto-encoders were adapted to extract discriminating features from the
raw EEG [25]. Singular values, total average power, delta band average power, variance,
and mean were extracted where singular and classical features were utilized for the de-
tection of epileptic seizures, and SVD was adopted to select the singular features. The
author adopted a sparse encoder to extract hidden inherent features and analyze context
information to extract temporal features [39]. The machine learning algorithm was applied
to extract spatial, spectral, and temporal features for EEG classification [45]. The feature
used for seizure detection was the coinciding change points, which are calculated from the
adaptive segmentation method [59].

The slope-based detection algorithm was developed to extract features and was also
implemented in FPGA to detect seizures [62]. Spatiotemporal features were extracted
to predict seizures and non-seizures by adopting 1D and 2D convolutional layers [71].
Global synchronization features were extracted by calculating the maximum informa-
tion coefficient (MIC) based on a correlation matrix where seizure characteristics and
non-seizure characteristics were differentiated [72]. Transductive transfer learning fuzzy
systems (TTL-FS) were utilized to perform feature extraction [76]. The feature extraction
method comprises three steps, namely segmentation, synchronization, and a correlation
matrix based on the maximal information coefficient (CMMIC) [78].

The reconstructed phase space technique was used to create the phase space of a
dynamical system represented by the EEG signal [99]. Thus, the feature vector representing
the state change over time in phase space captures the system’s dynamics. The geometry
of the trajectories, which can be created using a short integer or fractional time delay
embedding [100], can reveal information on the EEG signal’s periodic/chaotic nature,
which can be exploited for epilepsy recognition.

3.6. Statistical Analysis Tests

The features were analyzed using a statistical test, which was involved in the classifi-
cation. The analysis of variance (ANOVA) statistical test was performed in [46,52,58,60,66],
and the Mann–Whitney statistical test was carried out in [51]. The ROC curve was used
to rank the features in [40,48,54,58,65,72]. The probability value (p-value) determined by
the statistical test was used for the selection of features [51]. The p- and q-values were
determined in [40], and Gram–Schmidt analysis [32] was performed.

4. Classification

Classification is an essential step in the diagnosis of epileptic seizures. The stages of
epilepsy in the CHB-MIT database (see Figure 4) were classified by employing various
machine learning classifiers.
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4.1. Two Class Classification (Seizure and Non-Seizure)

The authors have applied classifiers in their study to provide a better classification of
epileptic seizures. Statistical features were extracted and nourished in the LDA classifier
to discriminate between seizure and non-seizure classes [15]. Epileptic seizures were
classified by extracting spectral energy features and employed an SVM classifier [17].
Compressed domain spectral features were extracted and given to the SVM classifier
for seizure classification [18]. Energy relative values and extracted features based on
NCOV were used to classify seizure and non-seizure events using the LDA classifier [19].
Spectral and spatial component features using linear SVM were involved in providing
a seizure detection rate of 82.7% [20]. Time, frequency, time-frequency, and nonlinear
domain features were extracted by employing seven different feature selection methods,
which were classified by SVM [21]. The discrimination of seizure and non-seizure was
provided by a collective network of binary classifiers using multidimensional particle
swarm optimization (PSO), and the SVM classifier provides general classification where
time, frequency, time-frequency, and nonlinear domain features were extracted [22]. Three
nonlinear-based feature extractions were performed, and SVM and ELM were used for
epileptic seizure classification [23]. Wavelet-based features and statistical features were
extracted, and a linear classifier was adopted, which provided a classification accuracy of
84.2% [24]. Feature extraction was performed using the stacking autoencoder and logistic
classifiers for seizure detection [25].

Entropy-based features were extracted, and these features were fed into SVM for the
classification of seizures and non-seizures [27]. The time domain and frequency domain
and entropy-based and discrete wavelet-based features were extracted and given into the
unsupervised classification approach of k-means clustering for seizure detection [28]. The
binary SVM classifier was introduced to discriminate seizure and non-seizure events [29].
The RQA features were extracted and nourished into the ECOC classifier to distinguish
seizures from non-seizures [30]. Frequency domain features were extracted and given for
classification of seizures and non-seizures by employing several classifiers such as LDC,
Quadratic Discriminant Classifier (QDC), Uncorrelated normal density-based classifier
(UDC), Polynomial classifier (POLYC), Logistic classifier (LOGLO), K-NN classifier, Deci-
sion Tree, Parzen classifier, and SVM [27]. A consistent and inconsistent measure of the
extracted features was nourished into the K-NN classifier, and the final classification was
provided by the MLP neural network [32]. Seven DWT nonlinear-based features were
extracted and given to the two-layer classifier: the NB classifier followed by LDA. Compar-
ative results were obtained using several classifiers, LDA, QDA, Mahalanobis discriminant
analysis (MDA), NB, and SVM [34]. The SVM classifier was used for seizure detection,
where classical and singular values were extracted [36]. Linear SVM was introduced to
provide an epileptic seizure classification [37]. The classification between seizure and
non-seizure was done by employing LDA and SVM. A comparative result was achieved
by K-means clustering [38]. Hidden features and temporal features were extracted and
given to SVM and a neural network (NN) for seizure classification [39]. The 805 features
were extracted for the discrimination of seizures and non-seizures by adopting the K-NN
classifier [40].

Spectral features were extracted and the fed into the LDA and a pattern neural net-
work (PRNN) for the detection of seizures [41]. Histogram-based statistical features were
extracted, and optimal features were selected. The MLP and Bayesian classifiers were
utilized to provide better classification [42]. Frequency domain features were extracted,
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and linear SVM was employed to provide seizure detection [43]. Comparative classification
between linear SVM and nonlinear SVM was performed where sensitivity and specificity
were improved by a nonlinear SVM classifier [44]. Spectral, spatial, temporal-based fea-
tures were extracted and used for classification. The best performance was achieved by
RUSBoost, which was compared with RBF kernel SVM, and the proposed classifier pro-
vided performance comparable to that of the SVM [45]. Using spectral features, SVM and
ELM were employed to perform classification between seizure and non-seizure events [46].

A neural network-based classifier was involved in this study based on the backpropa-
gation algorithm for classification between seizures and non-seizures [47]. Epileptic seizure
detection was performed with wavelet-based feature and time domain features employing
the SVM classifier [48]. Time-frequency domain feature extraction was done, and an ELM
classifier was utilized to distinguish seizures from non-seizures [49]. Three features were
extracted, and classification was provided by six well-known classifiers, namely RF classi-
fier, Functional tree (FT) classifier, K-NN, C4.5 classifier, NB, and Bayes Net [50]. LGBP
features were extracted and nourished into different classifiers such as Logistic regression,
random forest, and linear kernel SVM for seizure detection [55]. A genetic algorithm was
utilized to provide seizure detection [56]. Energy and temporal features were extracted,
and RVM was used to discriminate between seizure and non-seizure events [57]. Epileptic
seizure classification was done using a slope-based detector [62]. Discrimination of seizure
and non-seizure events was done by the approach of adaptive distance-based change point
detector [63].

The features of the time domain and the time-frequency domain were extracted, and a
fuzzy classifier was adapted to detect seizures and pre-seizure events [66]. Seven features
were extracted, and two layers of classifiers involving SVM and NB classifiers for seizure
and non-seizure classification were used [67]. Seizure selection methods (SSM) I, II, III, IV
were introduced to classify the ictal, preictal, and interictal states [70]. Spatio-temporal
features were extracted and nourished into CNN to provide a classification of seizures [71].
The VGGnet classifier was intended to provide epileptic seizure classification [72]. Spectral
features were extracted, and SSM was adapted to detect seizures [73]. Epileptic seizure
detection was performed with the help of the LDA classifier [74]. Time-frequency domain
features were extracted, and an ANFIS classifier was employed to differentiate seizure
and non-seizure events [76]. RF was used to classify seizures and non-seizure in which
nonlinear features were extracted [77]. A shallow-dense net was proposed for epileptic
seizure classification [78]. Statistical features were extracted, and classification was done
by adopting four different classifiers ANN, K-NN, SVM, and LDA. Among these, K-NN
gives better accuracy [79]. Two-class classification between seizure and normal events was
performed by SVM and RF classifiers [80].

4.2. Classification between Ictal, Preictal, Interictal, Postictal

The SVM classifier was adopted for classification between ictal and postictal stages [14].
Bivariate features were extracted, and the SVM classifier was adapted to provide classifica-
tion between the four classes, namely preictal, ictal, and interictal [16]. Statistical features
were extracted, and these features were fed into the five different classifiers, namely linear
SVM, logistic regression (Log-reg), K-NN, NB, and RF for preictal detection [29]. Spectral
components were decomposed and fed into the SVM classifier to provide classification
between interictal and preictal [52]. Spectral features were extracted and given to the
kernel sparse representation classifier to classify seizures, preictal, and interictal stages [60].
Fuzzy-based features were extracted and provided in LDAG-SVM for better classifica-
tion [61]. The frequency domain feature extraction was performed, and CNN was used to
classify preictal and interictal EEG records [65]. The characteristics of the time-frequency
domain were extracted, and discrimination of ictal and interictal and of interictal and
preictal stages was provided by four different classifiers, such as SVM, RF, MLP, and K-
NN [68]. Time-frequency domain features were extracted, and LSTM was used to achieve
classification between the preictal and interictal states [69].
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4.3. Classification Performance

The performance of automated classification of the EEG signal is evaluated through
different performance matrices which are sensitivity, specificity, accuracy, false positive
value, and positive predictive value. These matrices are mathematically given as:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (14)

Sensitivity =
TP

TP + FN
× 100 (15)

Speci f icity =
TN

TN + FP
× 100 (16)

False Positive Value =
TP

TP + FP
× 100 (17)

Positive Predictive Value =
TP

TP + FP
× 100 (18)

where P represents the number of samples during a seizure event, and N represents the
number of samples during a non-seizure event. FP (False positive) was indicated as the
number of samples for a non-seizure event but erroneous for a seizure. FN (False negative)
was indicated as the number of samples for a seizure event but erroneous for a non-seizure,
and TP and TN are classified correctly.

Sensitivity measures the capability of the system to detect seizure events, and speci-
ficity measures the capability of the system to detect the non-seizure event. Latency is
also an important metric in automated epilepsy diagnoses. Latency corresponds to the
detection delay, which is the time taken by the system to detect seizures.

5. Conclusions

Epilepsy is a neurological disorder caused by the frequent occurrence of seizures
and can be examined by EEG signals that can be useful to explore the mental states
of the brain. Visual inspection and diagnosis are tedious tasks in EEG signal analysis.
In this paper, various techniques that are adapted for automatic epileptic detection in
the CHB-MIT dataset were presented and discussed. The feature extraction techniques
in the time domain, frequency domain, time-frequency domain, and nonlinear domain
were investigated. Different machine learning-based classifiers that were adapted for the
classification of seizure, non-seizure, preictal, ictal, interictal, and postictal states were also
discussed. The performance of each method was given in terms of sensitivity, specificity,
precision, and latency, ensuring that the automatic diagnosis of epileptic seizures and their
stages is highly efficient and can be implemented practically to improve the diagnosis of
seizure disorders.

The summary of previous works for automated detection of epilepsy offers a per-
spective on the current research directions in personalized medicine towards automated
seizure detection.
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