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Abstract: Autism spectrum disorder (ASD) is associated with significant social, communication, and
behavioral challenges. The insufficient number of trained clinicians coupled with limited accessibility
to quick and accurate diagnostic tools resulted in overlooking early symptoms of ASD in children
around the world. Several studies have utilized behavioral data in developing and evaluating
the performance of machine learning (ML) models toward quick and intelligent ASD assessment
systems. However, despite the good evaluation metrics achieved by the ML models, there is not
enough evidence on the readiness of the models for clinical use. Specifically, none of the existing
studies reported the real-life application of the ML-based models. This might be related to numerous
challenges associated with the data-centric techniques utilized and their misalignment with the
conceptual basis upon which professionals diagnose ASD. The present work systematically reviewed
recent articles on the application of ML in the behavioral assessment of ASD, and highlighted
common challenges in the studies, and proposed vital considerations for real-life implementation of
ML-based ASD screening and diagnostic systems. This review will serve as a guide for researchers,
neuropsychiatrists, psychologists, and relevant stakeholders on the advances in ASD screening and
diagnosis using ML.

Keywords: autism spectrum disorder; screening; diagnosis; artificial intelligence; machine learning

1. Introduction

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder associated
with communication impairment, restrictive and compulsive behavior. According to
the fifth edition of the diagnostic and statistical manual of mental disorders (DSM-5),
the primary indicators for diagnosing ASD are deficits in social communication and the
manifestation of repetitive and restricted patterns of activities, behavior, or interests [1].
The rising prevalence of ASD necessitates the need for early and cost-effective diagnosis
to set the path for efficient, and appropriate treatment [2,3]. Moreover, early diagnosis
of ASD leads to improved outcomes in communication and social interaction and guides
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parents to the right interventions in school, home, and clinic [4–6]. However, apart from
the cost-ineffectiveness of the current diagnostic instruments, studies have indicated the
delay of the clinical processes of diagnosing ASD [7–10]. Addressing these challenges
lead to several suggestions, including the so-called quick and accurate Machine Learning
(ML)-enabled ASD assessment systems [11–14]. The promising results realized with ML
algorithms across various research fields motivated these suggestions and made it a vital
step toward quick and cost-effective assessment of ASD symptoms.

The gap in the existing literature is the absence of a definitive explanation on the
sufficiency and readiness of the ML models toward real-life implementation. Recently,
there is an increasing number of studies on the development of ML models for diagnosing
ASD based on either genetic [15,16], brain imaging [17–19], physical biomarkers [20–24], or
behavioral data. However, despite the high evaluation metrics reported in the ML-based
behavioral studies, there is little evidence on the clinical use of the resulting ML models [11].
Generally, apart from improving the accuracy metrics of the ML models, previous studies
focused on improving diagnostic speed by reducing the model parameters using various
dimensionality reduction techniques. Worthy of note, both the ML algorithms and the
dimensionality reduction techniques are data-centric; they are independent of the concep-
tual basis upon which professionals build and utilize ASD assessment instruments [25].
Thus, the clinical validity of the resulting ML models could be explained based on the
alignment of the data-centric techniques with the conceptual basis of diagnosing ASD.
Nonetheless, other factors that might limit the clinical validity and real-life implementation
of the models include the reported discrepancies within the data repositories [26,27].

The present review explores the advances in the application of machine learning in the
behavioral assessment of ASD. Accordingly, recent articles were systematically reviewed
on the application of machine learning models toward quick and accurate assessment
of ASD. Based on the reviewed literature, we sought the answer on whether the recent
findings could sufficiently translate to real-life implementation of ML-based ASD screening
and diagnostic models. Nonetheless, previous literature reviews assessed the performance
of ML models in ASD screening and diagnosis based on the common evaluation metrics of
sensitivity, specificity, and accuracy, among others [25,28]. However, none of the existing
literature reviews systematically analyzed the subject area and provided enough evidence
on the readiness and sufficiency of the models toward real-life implementation of the
ML-based systems. For instance, Song et al. [28] reviewed 13 relevant studies that utilized
varying data types and discussed the possibility of achieving effective classification of
ASD based on the study findings. Similarly, Thabtah [25] identified some limitations
within the commonly employed research methodologies and proposed intuitive stages
toward appending the ML models into ASD screening apps. In this work, key challenges
were highlighted alongside the commonly utilized assessment tools, datasets, and data
intelligence techniques, and solutions were suggested toward valid implementations of
real-life ML-based ASD screening and diagnostic systems.

2. Methodology
2.1. Search Strategy

The present review involved a systematic search, which is conducted in October
2020. To identify the most relevant studies, the authors ensured careful planning and
allocation of tasks at every stage of the systematic literature review. The search strategy
was tailored to the four most popular scientific databases of the study field, namely, Web of
Science, PubMed, IEEEXplore, and Scopus. Furthermore, the search query utilized includes
the following terms “Autism Spectrum Disorder” OR “Autistic Disorder” OR “Autism”
AND “Screening” OR “Assessment” OR “Identification” OR “Test” OR “Detection” AND
“Machine Learning” OR “Artificial Intelligence”. The search filters covered a period of
ten years from 2011 to 2020 and were limited to journal articles published in the English
language. Beyond the above-mentioned databases, relevant publications were accessed
from other databases on the advances in ASD assessment.
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2.2. Selection Criteria

The article selection process was based on the PRISMA statement [29]. Relevant stud-
ies have utilized PRISMA in providing critical appraisal on the advances in the assessment
of autism and other neuropsychiatric disorders [19,24,28,30–33]. The determining factor
in the inclusion criteria involves any published full-text journal article on the use of ML
in ASD screening or diagnosis. At the initial screening stage, after duplicates removal,
the authors assessed the records against the inclusion criteria to decide on worthy articles
for the systematic literature review. The decisions for inclusion/exclusion on the records
were recorded in a separate column within the combined excel sheet imported from the
databases. Thus, for records whose titles and corresponding abstracts aligned with the
preset inclusion criteria, full-text articles of the studies were retrieved for the subsequent
screening stage. In the next PRISMA screening stage, all the authors reviewed the down-
loaded papers, independently, to ascertain their relevance with the search query used, as
well as the set research question. The authors utilized the WhatsApp discussion group in
resolving disagreements in the selection process.

Specifically, three hundred and sixty-seven records were carefully assessed for eligi-
bility. One hundred and eighty studies out of the 367 records were discarded, due to the
following reasons: Book chapters (n = 17), conference papers (n = 138), editorial materials
(n = 11), literature reviews (n = 15), not written in English (n = 9). The remaining one
hundred and seventy-seven studies were further assessed; one hundred and forty-four
records were eliminated because they are either based on brain imaging data (n = 57),
genetic data (n = 35), or physical/metabolic biomarkers (n = 32), while others are interven-
tion studies (n = 20). Consequently, thirty-three full-text articles were retrieved, read, and
qualitatively assessed. Nonetheless, additional articles were excluded because ML is not
the main method employed (n = 7), and ASD is not the main neuropsychiatric disorder
assessed (n = 4). Finally, 22 studies met the inclusion criteria. The PRISMA flow diagram
(Figure 1) summarized the above-mentioned systematic literature review process, and
Table 1 itemized the key items of the inclusion and exclusion criteria of the study.

Table 1. Inclusion and exclusion criteria of the study.

Inclusion Criteria

Journal articles published in the English language
Documents published within the last ten years from 2011 to date

Full-text papers that are accessible and downloadable
Studies that utilized behavioral data

Studies that employed machine learning as the main technique
Studies that considered autism as the main disorder assessed

Exclusion criteria

Papers that are written in other languages
Duplicated papers

Full-text of the document is not accessible on the internet
The study aim is not clearly defined

Studies that are not relevant to the stated research question
Relevant studies, but machine learning is not the main method
Relevant studies, but autism is not the main disorder assessed
Conferences papers, editorial materials, and literature reviews

Studies that utilized data from either brain imaging, genetic, or physical/metabolic biomarkers.
Intervention studies
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Figure 1. PRISMA flow diagram of the search results.

2.3. Quality Assessment

The authors carefully adhered to the planned, systematic literature review process to
maintain the study’s quality. Particularly, at every phase of the systematic literature review,
the authors ensured careful planning and allocation of tasks. The first author created an
online Mendeley repository and monitored the progress of the review based on preset
milestones to ensure that all tasks complied with the scheduled deadlines. The Mendeley
repository was also used in keeping track of the data extraction stages, noting essential
observations and sharing vital contents related to the study. The authors further upheld
peer-reviewing at each phase of the study to enhance the systematic literature review.
Nevertheless, unbiased and constructive assessments on the systematic approach used in
this study were sought from external professionals on ASD diagnostic procedures with
expertise in systematic literature reviews.
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2.4. Data Extraction

As the final stage of the study’s PRISMA, the data extraction stage, 22 articles were
appraised critically, and the following information was extracted from the studies:

• Author(s) (year),
• Number of citations,
• Source(s) of the research data,
• Data collection/assessment instrument,
• ML model(s)developed,
• Best performing model(s),
• The key finding(s).

3. Results
3.1. Descriptive Analysis on Trends and Status of the Study on ML in ASD Assessment

Based on the exported data, the trend of studies on the use of ML in the behavioral
assessment of ASD showed the most cited references, the most cited journals, as well as
citation and publication frequencies across the years.

With the increasing application of ML in healthcare studies, as shown in Figure 2,
there are more publications on ML and ASD assessment. From 2012 to 2018, not so many
studies cared about the application of ML in ASD assessment. However, with the recently
increased patronage of ML techniques across various fields, there is an increasing demand
for intelligent tools for accurate assessment of ASD. From Figure 3, most of the articles
contributing to the area were published in Translational Psychiatry (n = 5), followed by the
Health Informatics Journal (n = 3). The remaining fifteen journals depicted published one
article, each.

Figure 2. Article distribution over the years.

Figure 3. The number of articles published by journals.
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Based on the citation data exported, as shown in Table 2, we can see that the most cited
references are Wall et al. [34] (n = 160), Wall et al. [35] (n = 106), Duda et al. [36] (n = 89),
Kosmicki et al. [37] (n = 84), and Bone et al. [38] (n = 77). Most of the significant references;
with the highest number of citations, were published in Translational Psychiatry [34,36,37]
(Figure 4, n = 408) in the years 2012 (Figure 5, n = 266), 2015 (Figure 5, n = 84), and 2016
(Figure 5, n = 166). Figure 4 highlighted the citation data of the eight most cited journals
involved in the study; Translational Psychiatry (n = 408), PLoS One (n = 106), Journal of
Children Psychological Psychiatry (n = 77), and so on.

Figure 4. Sum of citations per journal.

Figure 5. Number of citations across years.

3.2. Dimensionality Reduction Techniques

Most of the studies primarily aimed at streamlining the data collection instruments,
followed by evaluating the performance of various ML algorithms on the streamlined
datasets [35,37,39–41]. While various feature selection methods were applied in streamlin-
ing the most influential features of the data collection instruments from the datasets, other
studies utilized various feature transformation techniques in reducing the input parameters.
For instance, in the work of Puerto et al. [42], the inputs were fuzzified into membership
values before applying the classification algorithms. Similarly, before implementing the
classification models, Baadel et al. [43] and Akter et al. [44] transformed the inputs using
clustering and feature transformation functions, respectively. Nonetheless, other studies
employed a trial-error approach in selecting the most influential features. The trial-error
approach involves repetitive evaluation of the ML models using a varying combination of
the features; the most influential combination achieves superior results with fewer input
parameters. Specifically, the studies utilized various feature selection techniques, including
trial-error [13,34,35,39,45], Variable Analysis (Va) [46,47], information gain (IG) and chi-
square testing (CHI) [48], sequential feature selection (SFS) [49], correlation-based feature
selection (CFS) and minimum redundancy maximum relevance (mRMR) [12]. Additionally,
ML-based feature selection techniques employed include recursive feature selection [40],
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sparsity/parsimony enforcing regularization techniques [50], stepwise backward feature
selection [37], and forward feature selection [36].

3.3. Models Implementation

As shown in Table 2, the commonly implemented ML algorithms are Random Forest
(RF) [12,43,47,51], Support Vector Machines (SVM) [37,38,40,49,50], Alternative Decision
Tree (ADTree) [34,35,39,45], and Logistic Regression (LR) [13,37,48]. To achieve comparative
results, most of the studies employed several algorithms, such as Adaboost, Artificial
Neural Network (ANN), Linear Discriminant Analysis (LDA), Naïve Bayes, and K-Nearest
Neighbor (KNN).

3.4. Data Collection/Assessment Instruments

The most utilized data collection instruments are AQ-10 [11,13,43,44,46–49,51,52], Q-
CHAT-10 [11,44,46,52], ADOS [34,37,39,40,42,50], ADI-R [35,38,42], and Social Responsive-
ness Scale (SRS) [36,38,53]. Others include Autism Behavior Checklist, Aberrant Behavior
Checklist, Clinical Global Impression [45], and MCHAT-based Pictorial Autism Assessment
Schedule (PASS) [12]. Thus, the need for improving the reliability of these assessment
instruments and ascertaining their relevance in ML modelling remains.

3.5. Sources of Data

The most prominent sources of data utilized in the studies include Boston Autism
Consortium (AC), Autism Genetic Resource Exchange (AGRE), Simons Simplex Collection
(SSC) [34–37,39,50,53], National Database for Autism Research (NDAR) [37,39], and Simons
Variation In Individuals Project (SVIP) [37,39,50]. Other studies utilized data sets from
ASDTest: Kaggle and UCI ML repository [11,13,43,44,46–49,51,52], Association of Parents
and Friends for the Support and Defense of the rights of people with Autism (APADA) [42],
PASS app [12], Ondokuz Mayis University Samsun [45], and ASD outpatient clinics in Ger-
many [40]. To achieve standardized comparative results, there is a need for standardized
ASD data repositories for machine learning studies [25].

3.6. Research Procedures

Apart from the common aim of streamlining the various data collection instruments
followed by model evaluation, other studies focused on either optimizing the machine-
learning algorithms [49,51], proposing input optimization techniques [43,44,46,47], or
implementing ML-based screening apps [11,12]. For instance, Goel et al. [51] proposed
Modified Grasshopper Optimization Algorithm (MGOA) for improved performance over
common ML algorithms. The proposed MGOA (GOA with Random Forest classifier)
outperformed other basic models and predicted ASD with approximate accuracy, specificity,
and sensitivity of 100%. Similarly, Suresh et al. [49] proposed Differential Evaluation (DE)
Algorithm to find the optimal solution of SVM parameters. The proposed DE tuned SVM
achieved better performance over SVM, ANN and DE optimized ANN in classifying
ASD. As stated earlier, apart from trial-error, studies employed either feature selection or
transformation techniques for dimensionality reduction. For instance, Thabtah et al. [46]
demonstrated the superiority of Va over IG, Correlation, CFS, and CHI in reducing AQ-
10 items. Va derived fewer features, while maintaining competitive predictive accuracy,
sensitivity, and specificity rates. A replicated study by Pratama et al. [47] produced a higher
sensitivity of 87.89% in Adults AQ with RF and an increased specificity level of 86.33%
in Adolescents AQ with SVM. Despite the good performance of the above-mentioned
techniques in automating feature selection processes across various applications [54,55],
none of the previous studies justified the conformity of the feature selection methods
with the conceptual basis upon which professionals built and utilize ASD diagnostic
instruments. Furthermore, unlike other medical diagnoses, the absence of definitive
measures and medical tests for diagnosing ASD makes it difficult to numerical quantify
the disorder based on few parameters. Notably, accurate assessment of ASD relied on the
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precise application of the commonly used behavioral scales built based on the knowledge
and expertise of the professionals. Thus, applying human knowledge is imperative to
reliable ASD diagnosis. Based on that, there is a need for quantifying the trade-offs
of dimensionality reduction (ensuring fewer items for quick assessment) and validity
(preservation of the human knowledge for correct diagnosis). Specifically, a machine-
learning model built based on fewer behavioral features that do not sufficiently capture the
human knowledge of the assessment instrument, will not be valid for clinical use. Thus,
there is a need for applying dimensionality reduction techniques that professionals could
track their ability to preserve the validity of the assessment instruments.

Nonetheless, various feature transformation techniques were equally utilized in the
dimensionality reduction processes. For instance, Akter et al. [44] utilized three feature
transformation techniques; Log, Z-score, and Sine functions, and evaluated the perfor-
mance of nine different ML models on the transformed datasets. Log, Z-score, and Sine
functions normalize data by converting excessively skewed entities into a normal distribu-
tion, converting features into −1 to 1 value range, and transforming instances to the Sine
0–2π value intervals, respectively. Akter et al. [44] recorded varying superior performances
of the ML models, and the feature transformation approaches across the datasets. The fea-
ture transformations resulting in the best classifications were Z-score and Sine function on
children, adolescents, and toddlers’ datasets, respectively. However, despite the reported
improved performances of the ML models on the transformed datasets and the theoretical
understanding of the capabilities of the transformation functions, studies have demon-
strated how these transformations compromise the relevance of the original data to the
transformed data [56–59]. Researchers ought to be mindful of the limitations in using these
transformations in terms of the relevance of the original to the transformed data during
results interpretation. For instance, Feng [59] demonstrated such irrelevancies between
the statistical findings of standard tests performed on original and log-transformed data.
Similarly, several studies have highlighted some of the pitfalls and inconsistencies in the
application of Z-scores and its concepts that overlooked the meaning of the original data,
its standard deviations, and confusing applications [56–58].

Recent studies further demonstrated how ML-enable ASD screening and diagnostic
models could be developed, evaluated, and implemented. Recently, Baadel et al. [43] pro-
posed Clustering-based Autistic Trait Classification (CATC), which identifies ASD-based
traits’ similarity, unlike the commonly used scoring functions. CATC showed significant im-
provement in the ASD classification based on clustered inputs. Comparative evaluation of
various classification algorithms showed better improvement with the Random Forest clas-
sifier. On the implementation of mobile apps for ASD screening, Wingfield et al. [12], and
Shahamiri and Thabtah [11] embedded RF and CNN-based scoring models, respectively,
while Thabtah [13] employed ML to validate ASDTest; a mobile screening app embedded
with non-ML functions. In all the foregoing studies, the commonly used evaluation metrics
are classification accuracy, sensitivity, and specificity. Specificity is the ratio of non-ASD
cases that are correctly classified (i.e., true negatives rate) and sensitivity is the ratio of
true ASD cases that are correctly classified (i.e., true positives rate), while classification
accuracy is derived from sensitivity and specificity—as the measure of precisely classified
cases from the total number of the cases.
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Table 2. Information extracted from the articles.

Article/
Citations Aim Tool Data Source FS/FT FS/FT Method Modeling Algorithms Key Findings

Goel et al. [51]
C = 10

Proposed Optimization
Algorithm for improved

performance over
common ML

AQ-10 (child,
adolescent, adult) ASDTest - - GOA, BACO, LR, NB, KNN,

RF-CART + ID3, * MGOA

The proposed MGOA (GOA with
Random Forest classifier) predicted

ASD cases with approximate
accuracy, specificity, and sensitivity

of 100%.

Shahamiri and Thabtah
[11]

C = 0

Implementation and
evaluation of

CNN-based ASD
scoring system

Q-CHAT-10, AQ-10 ASDTest - - C4.5, Bayes Net, RIDOR, * CNN

The performance evaluation showed
the superior performance of CNN

over other algorithms; indicating the
robustness of the

implemented system.

Thabtah and Peebles
[52]

C = 28

Demonstrate the
superiority of

Rules-based ML over
other models

Q-CHAT-10, AQ-10
(child, Adolescent,

adult)
ASDTest - - RIPPER, RIDOR, Nnge, Bagging,

CART, C4.5, and PRISM, * RML

Empirically evaluated rule induction,
Bagging, Boosting, and decision trees
algorithms on different ASD datasets.

The superiority of the RML model
was reported in not only classifying
ASD but also offer rules that can be

utilized in understanding the reasons
behind the classification.

Wall et al. [35]
C = 106

Streamlining ADR-I
and evaluate

ML performance
ADI-R AGRE, SSC, AC FS Trial-error

* ADTree, BFTree, ConjunctiveRule,
DecisionStump, FilteredClassifier, J48,
J48graft, JRip, LADTree, Nnge, OneR,
OrdinalClassClassifier, PART, Ridor,

and SimpleCart

The best model utilized 7 of the
93 items contained in the ADI-R in

classifying ASD with 99.9% accuracy.

Duda et al. [39]
C = 50

Streamlining ADOS and
demonstrate the

superior performance of
ADTree over common
hand-crafted methods

ADOS AC, AGRE, SSC,
NDAR, SVIP FS Trial-error ADTree 72% reduction in the items from

ADOS-G with >97% accuracy.

Küpper et al. [40]
C = 2

Streamlining ADOS and
demonstrate the

performance of SVM
ADOS

ASD outpatient
clinics in
Germany

FS Recursive Feature
Selection SVM

SVM achieved good sensitivity and
specificity with fewer ADOS items
pointing to 5 behavioral features.

Wall et al. [34]
C = 160

Streamlining ADOS
and evaluate

ML performance
ADOS AC, AGRE, SSC FS Trial-error

* ADTree, BFTree, Decision Stump,
Functional Tree, J48, J48graft, Jrip,

LADTree, LMT, Nnge, OneR, PART,
Random Tree, REPTree, Ridor,

Simple Cart

The ADTree model utilized 8 of the
29 items in Module 1 of the ADOS

and classified ASD with
100% accuracy.

Levy et al. [50]
C = 21

Streamlining ADOS
and evaluate

ML performance
ADOS AC, AGRE,

SSC, SVIP FS

Sparsity/parsimony
enforcing

regularization
techniques

LR, Lasso, Ridge, Elastic net, Relaxed
Lasso, Nearest shrunken centroids,

LDA, * LR, * SVM, ADTree, RF,
Gradient boosting, AdaBoost

With at most 10 features from
ADOS′s Module 3 and Module 2,

AUC of 0.95 and 0.93 was
achieved, respectively.
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Table 2. Cont.

Article/
Citations Aim Tool Data Source FS/FT FS/FT Method Modeling Algorithms Key Findings

Kosmicki et al. [37]
C = 84

Streamlining ADOS
and evaluate

ML performance
ADOS AC, AGRE, SSC,

NDAR, SVIP FS Stepwise Backward
Feature Selection

ADTree, * SVM, Logistic Model Tree, *
LR, NB, NBTree, RF

The best performing models have
utilized 9 of the 28 items from module
2, and 12 of the 28 items from module
3 in classifying ASD with 98.27% and

97.66% accuracy, respectively.

Thabtah [13]
C = 31

Propose ASDTest;
AQ-based mobile

screening app,
streamline AQ-10 items,

and evaluate the
performance of

2 ML models

AQ-10 (child,
adolescent, adult) ASDTest FS Trial-error NB, * LR

Feature and predictive analyses
demonstrate small groups of autistic
traits improving the efficiency and

accuracy of screening processes.

Thabtah et al. [46]
C = 47

Demonstrate the
superiority of Va over

other FS methods based
on the performance of

ML models on the
streamlined datasets

Q-CHAT-10, and
AQ-10 (child,

adolescent, adult)
ASDTest FS Va, IG, Correlation,

CFS, and CHI

Repeated Incremental Pruning to
Produce Error Reduction (RIPPER),

C4.5 (Decision Tree)

Va derived fewer features from
adults, adolescents, and child
datasets with optimal model

performance. Demonstrate the
efficacy of Va over IG, Correlation,

CFS, and CHI in reducing
AQ-10 items

Thabtah et al. [48]
C = 13

Streamlining AQ-10 and
demonstrate the

superior performance of
LR over common

hand-crafted methods

AQ-10
(adolescent, adult) ASDTest FS IG, CHI LR

LR showed acceptable performance
in terms of sensitivity, specificity, and

accuracy among others.

Suresh Kumar and
Renugadevi [49]

C = 0

Algorithm
Optimization

(improvement in
accuracy compared to

common ML)

AQ-10 (child,
adolescent, adult) ASDTest FS SFS SVM, ANN, * DE SVM, DE ANN

DE optimized SVM outperformed
ANN and DE optimized ANN in
classifying ASD. DE is effective.

Pratama et al. [47]
C = 0

Input Optimization
using Va

AQ-10 (child,
adolescent, adult) ASDTest FS Va SVM, * RF, ANN

RF succeeded in producing higher
adult AQ sensitivity (87.89%), and a

rise in the specificity level of
AQ-Adolescents was better produced

using SVM (86.33%).

Usta et al. [45]
C = 9

ML Performance
Evaluation

Autism Behavior
Checklist, Aberrant
Behavior Checklist,

Clinical Global
Impression

Ondokuz Mayis
University

Samsun
FS Trial-error NB, LR, * ADTree

The ML modeling revealed the
significant influence of other
demographic parameters in

ASD classification.
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Table 2. Cont.

Article/
Citations Aim Tool Data Source FS/FT FS/FT Method Modeling Algorithms Key Findings

Wingfield et al. [12]
C = 3

Propose PASS; a
culturally sensitive app

embedded with
ML model

PASS VPASS app FS CFS, mRMR * RF, NB, Adaboost, Multilayer
Perceptron, J48, PART, SMO

PASS app overcomes the cultural
variation in interpreting ASD

symptoms, and the study
demonstrated the possibility of
removing feature redundancy.

Duda et al. [36]
C = 89

ML Performance
Evaluation in

classifying ASD from
ADHD

SRS AC, AGRE, SSC FS Forward Feature
Selection

ADTree, RF, SVM, LR, Categorical
lasso, LDA

All the models could classify ASD
from ADHD by utilizing 5 of the

65 items of SRS with high average
accuracy (AUC = 0.965).

Duda et al. [53]
C = 25

Improve models’
reliability using

expanded datasets for
classifying ASD from

ADHD

SRS
AC, AGRE, SSC,

and crowdsourced
data

FS - SVM, LR, * LDA LDA model achieved an AUC of 0.89
with 15 items.

Bone et al. [38]
C = 77

Demonstrate the
improved accuracy of

SVM over common
hand-crafted rules

ADI-R, SRS
Balanced

Independent
Dataset

FT

Tuned parameters
across multiple

levels of
cross-validation

SVM

The SVM model utilized five of the
fused ADI-R and SRS items and

classified ASD sufficiently with below
(above) 89.2% (86.7%) sensitivity and

59.0% (53.4%) specificity.

Puerto et al. [42]
C = 17

Propose MFCM-ASD
and evaluate its

performance against
other ML models

ADOS, ADI-R APADA FT Inputs fuzzification * MFCM-ASD, SVM, Random
forest, NB

The superior performance of MFCM
characterized by its robustness makes

it an effective ASD
diagnostic technique.

Akter et al. [44]
C = 6

Compare FT methods
and evaluate the

performance of ML
models on the

transformed datasets

Q-CHAT-10, and
AQ-10 (child,

adolescent, adult)
ASDTest FT Log, Z-score, and

Sine FT
Adaboost, FDA, C5.0, LDA, MDA,

PDA, SVM, and CART

Varying superior performances of the
ML models and FT approaches were

achieved across the datasets.

Baadel et al. [43]
C = 2

Input Optimization
using a clustering

approach

AQ-10 (child,
adolescent, adult) ASDTest FT CATC OMCOKE, RIPPER, PART, * RF,

RT, ANN

CATC showed significant
improvement in screening ASD based

on traits′ similarity as opposed to
scoring functions. The improvement

was more pronounced with
RF classifier.

ASD, autism spectrum disorder; FS, feature selection; FT, feature transformation; ML, machine learning; ANN, artificial neural network; SVM, support vector machine; CNN, convolutional neural network; RF,
random forest; LR, logistic regression; ADTree, alternative decision tree; LDA, linear discriminant analysis; MGOA, modified grasshopper optimization algorithm; BACO, binary ant colony optimization; NB,
naïve Bayes; KNN, K-nearest neighbor; RIPPER, repeated incremental pruning to produce error reduction; ADOS, autism diagnostic observation schedule; ADI-R, autism diagnostic interview-revised; Q-CHAT,
quantitative checklist for autism toddlers; AQ, autism quotient; SRS, social responsiveness scale; PASS, pictorial autism assessment schedule; AC, boston autism consortium; AGRE, autism genetic resource
exchange; SSC, Simons Simplex Collection; NDAR, National Database for Autism Research; SVIP, Simons Variation In Individuals Project; APADA, Association of Parents and Friends for the Support and
Defense of the Rights of People with Autism; MFCM, multilayer fuzzy cognitive maps; CATC, clustering-based autistic trait classification. * Best performing models.
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4. Discussion

The search for cost-effective ASD assessment coupled with the global rise in ASD
cases attracted the implementation of quick and accurate assessment measures based on
data intelligence techniques, including machine-learning algorithms. Despite the various
attempts in ML-based ASD assessment using functional magnetic resonance imaging (MRI),
eye tracking, and genetic data, among others, the promising results based on behavioral
data call for further research. For instance, Plitt et al. [60] found that ASD classification
via behavioral measures consistently surpassed rs-fMRI classifiers. Accordingly, in line
with the common research aim of the behavioral studies, various dimensionality reduction
techniques were employed to improve the diagnostic speed of the resulting ML models.
However, unlike the reduced dimensions, there is enough evidence on the good reliability,
high internal consistency, and convergent validity between the common assessment instru-
ments within large samples [61–65]. Furthermore, studies have ascertained the robustness
of the common assessment instruments in the quantitative measurement of the various
dimensions of communication, interpersonal behavior, and stereotypic/repetitive behavior
associated with ASD. Therefore, it will be difficult to sufficiently measure the key dimen-
sions of the instruments using the fewer items generated by the common dimensionality
reduction techniques. For instance, while professionals interpret SRS scores based on the
sum of its 65 items, Bone et al. [38], Duda et al. [36], and Duda et al. [53] implemented
SRS-enabled machine-learning models with at most 5, 5, and 15 items, respectively. Specifi-
cally, Duda et al. [36] and Duda et al. [53] focused on classifying ASD from ADHD using
the SRS data from AC, AGRE, SSC. Duda et al. [36] implemented ADTree, RF, SVM, LR,
Categorical lasso, and LDA models and achieved the highest area under the curve (AUC)
of 0.965 in classifying ASD from ADHD by utilizing five of the 65 items of SRS identified
using forward feature selection. Duda et al. [53] validated the findings of Duda et al. [36]
with crowdsourced data to improve the model’s capability on ‘real-world’ data, and the
findings revealed that LDA outperformed LR and SVM by achieving an AUC of 0.89 with
15 items. Despite the high metrics reported by the studies, based on the standard clinical
procedures for ASD diagnosis, the ML models are neither clinically sufficient nor readily
implementable for real-life use.

Similarly, Wall et al. [35] compared the performance of 15 different ML algorithms on
AGRE, SSC, and AC datasets and found ADTree to outperformed other models by utilizing
7 of the 93 items contained in the ADI-R in classifying ASD with 99.9% accuracy. In a similar
study by Wall et al. [34], ADTree outperformed 17 comparative models by achieving 100%
accuracy with 8 of the 29 items in Module 1 of ADOS. Moreover, Duda et al. [39] demon-
strated the superior performance of ADTree in achieving 97% classification accuracy with a
72% reduction in ADOS-G items. Nonetheless, Levy et al. [50] and Kosmicki et al. [37] re-
duced the items of ADOS using sparsity/parsimony enforcing regularization and stepwise
backward feature selection techniques, respectively, and reported the superior performance
of LR and SVM over other ML algorithms. Specifically, in the study by Levy et al. [50],
with at most 10 features from ADOS’s Module 3 and Module 2, AUC of 0.95 and 0.93
was achieved, respectively. While Kosmicki et al. [37] recorded an accuracy of 98.27%
and 97.66% with 9 of the 28 items from module 2, and 12 of the 28 items from module
3, respectively. Recently, Küpper et al. [40] utilized ADOS data from a clinical sample
of adolescents and adults with ASD and reported good performance of SVM on fewer
items reduced using the recursive feature selection technique. The foregoing studies have
demonstrated how ML-enable ASD screening and diagnostic models could be developed
and evaluated. However, numerous challenges associated with the behavioral assess-
ment instruments, data repositories, and applied data intelligence algorithms need to be
understood and addressed.

Although ML-based approaches are data-centric and are expected to improve objec-
tivity and automation [66], with the global rise in ASD cases, the capacity to quickly and
accurately assess ASD requires a careful understanding of the conceptual basis of the assess-
ment instruments, as well as their relevance to the logical concepts of the ML algorithms.
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Nonetheless, discrepancies within the data repositories, such as data imbalance, limit the
clinical relevance of the high evaluation metrics reported in the studies [26,27]. For instance,
Torres et al. [67] studied the statistical properties of ADOS scores from 1324 records and
identified various factors that could undermine the scientific viability of the scores. Partic-
ularly, the empirical distributions in the generated scores break the theoretical conditions
of normality and homogeneous variance, which are critical for independence between bias
and sensitivity. Thus, Torres et al. [67] suggested readjusting the scientific use of ADOS, due
to the variation in the distribution of the scores, lack of appropriate metrics for characteriz-
ing changes, and the impact of both on sensitivity-bias codependencies and longitudinal
tracking of ASD. In essence, the applied data intelligence algorithms, and the resulting
models, missed the human knowledge upon which the assessment instruments were built
and applied by the professionals [25]. Additionally, most of the studies overlooked the
inherent limitations associated with the dimensionality reduction techniques, and the
assessment instruments [7–9]. Thus, the need for ascertaining the clinical relevance of the
data-centric approaches and readjusting the scientific use of the assessment instruments
remains. Obviously, in the future, it can be said that the trend in the application of ML in
the behavioral assessment of ASD will go on. On the other hand, the pressing demands for
cost-effective assessment of ASD remain. Thus, future studies need to revisit the relevance
of the data collection instruments to ML algorithms.

5. Conclusions and Recommendations

Machine learning has been broadly applied in the behavioral assessment of ASD
based on a variety of data types as input to data-intelligence algorithms. Commonly
utilized inputs include the items of screening tools, such as ADI-R and ADOS-G. Popular
ML algorithms used are SVMs, variants of the decision trees, random forests, and neural
networks. However, the multitudes of challenges in accurate ASD assessments are yet
to be addressed by the suggested machine learning approaches. Specifically, the high
metrics achieved with the data-intelligence techniques have not guaranteed the clinical
relevance of the ML models. Additionally, the commonly used evaluation measures of
classification accuracy, specificity, and sensitivity, among others cannot sufficiently reflect
the human knowledge applied by professionals in assessing behavioral symptoms of ASD.
Consequently, understanding the clinical basis of the assessment tools and the logical
concepts of the data-intelligence techniques will lead to promising studies on the real-life
implementation of cost-effective ASD assessment systems. The novelty in the present
review is that while previous literature reviews focused on the performance of various
data intelligent techniques on different data sets, this work systematically reviewed the
literature and provide a definitive explanation on the relevance of the reported findings
toward the real-life implementation of the ML-based assessment systems. The authors
hope that the findings of this systematic literature review will guide researchers, caregivers,
and relevant stakeholders on the advances in ASD assessment with ML.

Nonetheless, a few of the limitations associated with the present work include over-
looking other non-English documents. Thus, possible excellent studies reported in other
languages might have been missed. Secondly, the search filters spanned ten years and were
limited to the four scientific databases mentioned. Furthermore, the records retrieved relied
on the few search terms utilized in the search query. Therefore, relaxing the search filters
across additional databases could yield additional relevant studies. Lastly, the present
review considered only full-text online journal articles. Consequently, the findings are
limited to the studies included. The future research agenda will be based on relaxing the
search criteria to incorporate other scholastic databases for further comparative results. In
addition, future studies could relax the search filters to include books, conference papers,
and so on. Noteworthy, to build on or replicate the reviewed studies, future research
should explore data-intelligence techniques that will achieve not only excellent evaluation
metrics, but also adhere to the conceptual basis upon which professionals diagnose ASD.
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