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Abstract: Accurate nuclear segmentation in histopathology images plays a key role in digital pathol-
ogy. It is considered a prerequisite for the determination of cell phenotype, nuclear morphometrics,
cell classification, and the grading and prognosis of cancer. However, it is a very challenging task
because of the different types of nuclei, large intraclass variations, and diverse cell morphologies.
Consequently, the manual inspection of such images under high-resolution microscopes is tedious
and time-consuming. Alternatively, artificial intelligence (AI)-based automated techniques, which
are fast and robust, and require less human effort, can be used. Recently, several AI-based nu-
clear segmentation techniques have been proposed. They have shown a significant performance
improvement for this task, but there is room for further improvement. Thus, we propose an AI-based
nuclear segmentation technique in which we adopt a new nuclear segmentation network empowered
by residual skip connections to address this issue. Experiments were performed on two publicly
available datasets: (1) The Cancer Genome Atlas (TCGA), and (2) Triple-Negative Breast Cancer
(TNBC). The results show that our proposed technique achieves an aggregated Jaccard index (AJI) of
0.6794, Dice coefficient of 0.8084, and F1-measure of 0.8547 on TCGA dataset, and an AJI of 0.7332,
Dice coefficient of 0.8441, precision of 0.8352, recall of 0.8306, and F1-measure of 0.8329 on the TNBC
dataset. These values are higher than those of the state-of-the-art methods.

Keywords: multi-organ histopathology images; triple-negative breast cancer; The Cancer Genome
Atlas; artificial intelligence; nuclear segmentation; stain normalization; cancer grading and prognosis

1. Introduction

A nucleus is a highly specialized organelle that serves as the information processing
and administrative center of a cell. It has been studied to determine the cell and tissue
phenotypes, cellular processes, and cell populations [1]. It can also be used to determine mi-
tosis and the level of nuclear pleomorphism, which are used for the grading and prognosis
of cancer [2]. Moreover, nuclear morphology and features, such as density, size, and shape,
are helpful for the assessment of treatment effectiveness [3,4]. Nuclear segmentation can
enable the extraction of high-quality features for nuclear morphometric and other analyses.
Kumar et al. proposed a method [5] for prostate cancer recurrence prediction based on
nuclear segmentation. Zhao et al. proposed a selective-edge-enhancement-based nuclear
segmentation method [6] for cervical smear images, which play a crucial role in cervical
cancer detection. Quantification of protein expression and the study of cell function can
also be done after nuclear segmentation. Gharipour et al. proposed a method [7] using a
region-based active contour model in a variational level set formulation for fluorescence mi-
croscopy images. Breast cancer detection from cytological images is standard practice, and
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nuclear segmentation plays a key role as it allows observing breast cancer malignancy [8].
George et al. proposed an automated nuclear segmentation method [8] in breast cancer
histopathology images for diagnosis and prognosis of breast cancer.

Histopathology images are widely used to assess the grade and prognosis of cancer [9].
Biopsies or surgical specimens are studied under high-resolution microscopes by pathol-
ogists after being processed through a staining procedure. Despite the standardization
of staining procedures, there remains a significant variation in the color, intensity, and
morphological features of images. Consequently, this procedure has several limitations.
For example, the analysis of multiple stain slides per patient is tiresome, which can affect
the pathological diagnostic performance. Consequently, digital pathology is widely used
to address these issues. Digital pathology has become increasingly popular in the past
decade due to improvements in computer vision techniques. Today, whole-slide images
(WSIs) can be easily acquired, stored, and processed using dedicated scanners and software.
Moreover, advanced artificial intelligence (AI)-based techniques that automatically analyze
and quantify information from tissue slides have been developed. The task of nuclear
segmentation has also been addressed using AI-based automated methods. However, this
task is very challenging because different types of nuclei exist depending on the organ type.
Furthermore, intra- and interclass variations in the morphological appearance of nuclei
exist. Figure 1 presents a sample histopathology image to demonstrate the complexity of
the problem.

Figure 1. Sample histopathology image for nuclear segmentation: (a) histopathology image,
(b) zoomed image, and (c) ground-truth image for (b). Blue regions in (a,b) and white areas in
(c) represent nuclei, which need to be segmented.

Recently, AI-based methods have been developed to address various problems [10–12].
Accordingly, AI has been adopted in digital pathology for various diagnostic
systems [13,14] because AI-based solutions are robust and fast, and require less human
effort. Owing to the importance of nuclear segmentation in digital pathology, researchers
have proposed several methods based on either conventional image processing or AI-based
techniques. Conventional image processing methods are mainly based on algorithms such
as Otsu’s thresholding [15], the watershed algorithm [16], and gradient vector flow [17].
However, these methods lack robustness and require parameter settings. Consequently,
AI-based methods have been adopted to overcome these problems. These methods have
shown a significant performance improvement for the nuclear segmentation task, but
there is room for further improvement. Therefore, we propose a nuclear segmentation
method based on a novel residual-skip-connections-based segmentation network for nuclei
(R-SNN). Two publicly available datasets—The Cancer Genome Atlas (TCGA) and Triple-
Negative Breast Cancer (TNBC)—are used in the experiments. These datasets comprise
images from various organs, including the brain, breast, kidney, liver, prostate, bladder,
colon, stomach, and lungs. Experimental results show that our proposed technique is
superior to the state-of-the-art methods.

Our study is novel in five ways compared with previous works.
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- In our proposed method, full-size patches of 1000 × 1000 pixels for TCGA dataset and
512 × 512 pixels for the TNBC dataset are processed without converting them into sub-
patches, whereas existing methods converts full-size patches into sub-patches before per-
forming segmentation. The proposed method exhibited good segmentation performance
without the additional requirements of sub-patch conversion. In addition, our method does
not require postprocessing, unlike other nuclear segmentation techniques.

- The performance of nuclear segmentation is improved by maintaining high-frequency
information owing to spatial information transfer from the encoder to the decoder
through residual connectivity.

- With the specified design, we reduce the number of convolution layers, and the
proposed R-SNN utilizes fewer trainable parameters.

- The training of the network is fast, and the network converges rapidly in only
30 epochs (27,210 iterations) on average, owing to the residual connections and re-
duced structure of the network.

- As shown in [18], our trained models and codes are available on request for
research purposes.

The remainder of this article is organized as follows: Section 2 describes the related
work. Section 3 presents the proposed method. Section 4 presents the experiments and
performance analysis. Section 5 provides the discussion. Section 6 presents the conclusion.

2. Related Works

Although studies on digital image analysis have been conducted previously [19],
recent developments in digital pathology have triggered a surge in the development of AI-
based methods. The nuclear segmentation task is addressed by using either conventional
handcrafted-feature-based or deep-feature-based methods.

2.1. Handcrafted-Feature-Based Methods

Conventional handcrafted-feature-based techniques for nuclear segmentation are
mostly based on watershed segmentation [20], mathematical morphology, graph-based
segmentation, color-based thresholding, active contours, and their variants. Yang et al.
proposed a nuclear segmentation technique for time-lapse microscopy images by using
marker-controlled watershed segmentation [21]. Context information among the neighbor-
ing frames was utilized for the over-segmented and under-segmented cells. Moreover, a
combination of mean shift and the Kalman filter was used for tracking purposes. Cosatto
et al. [22] proposed a technique based on the Hough transform [23] and active contour
model. The nuclear pleomorphism was predicted from the segmented nuclei. Ali et al. [24]
proposed a technique based on an active contour model that integrates the region, bound-
ary, and shape information. They proved that their technique could be used for the
segmentation of nuclei, lymphocytes, and glands in histopathology images. Huang et al.
presented a technique based on marker-controlled watershed segmentation, followed by
refinement through a snake model, and finally classification using a support vector machine
(SVM)-based decision graph classifier [20]. The major limitation of nuclear segmentation
techniques based on handcrafted features is their sensitivity to the parameter settings
and the specific types of nuclei structures. Therefore, a generalized and robust nuclear
segmentation technique is required.

2.2. Deep-Feature-Based Methods

In recent years, researchers have proposed different techniques based on deep learning.
In conventional machine-learning techniques, feature processing is used for the collection of
optimal features and the training of machine-learning models. Features such as shape, color,
texture, color histogram, Laplacian of Gaussian, and gradients have been used [25,26]. In
contrast, deep-learning techniques are based on automatic feature extraction, and they have
been used to develop robust, fast, and high-performance models. Different types of deep-
learning models have been adopted. One such example is the mask-region convolutional
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neural network (RCNN) [27], which has been used in other studies for nuclear segmentation
and achieved a good performance [28]. A fully convolutional network (FCN) has also been
used for this task. FCN is a well-known segmentation network that achieves good results
but requires many learnable parameters, which need to be reduced. Kumar et al. provided
a nuclear segmentation dataset and proposed a simple nuclear segmentation technique
by considering nuclear segmentation as a three-class problem [29]. They compared their
results with those of CellProfiler (CP) [30] and Fiji (ImageJ) [31] and proved that the
performance of a simple CNN-based network is better than that of CP and Fiji. Similarly,
Naylor et al. [32] provided another dataset and performed experiments on three well-
known networks, namely, PangNet [33], FCN [34], and DeconvNet [35], for the nuclear
segmentation. In addition, they used the ensemble classification model, which showed
high accuracy. Kang et al. proposed a technique based on two-stage learning and deep
layer aggregation (DLA) [36]. They considered nuclear segmentation as a three-class
problem by considering the boundaries of the nuclei as the third class. Their method
comprised two stages, which consisted of a U-Net empowered by the DLA. Zhou et al.
used spatial and texture dependencies between the nuclei and the contour in their proposed
method [37]. A contour-aware informative aggregation network (CIA-Net) was proposed
for nuclear segmentation in which the information was aggregated at multiple levels
using two task-specific decoders. Losses were modulated using a novel smooth truncated
loss. U-Net was also used for the nuclear segmentation task. U-Net is a convolutional
network designed for medical applications. Mahbod et al. [38] proposed a technique
containing two sequential stages in which nuclei were separated from the background
using a U-Net-based classification network in stage 1, followed by the generation of a
distance map using regression U-Net in stage 2. Zeng et al. [39] proposed a technique
based on U-Net empowered by inception modules. Chidester et al. proposed a technique
based on rotation-equivariant convolutional layers in a U-Net architecture [40]. Although
most previous studies showed good accuracy, there is room for further performance
improvement. In addition, most of these methods require additional postprocessing. In
previous research [41], the authors proposed a stain normalization method of whole-slide
images in histopathology, but they did not deal with nuclear segmentation with the stain-
normalized image.

Although it did not deal with nuclear segmentation, a previous study proposed OR-
Skip-Net [42], to which our R-SNN is different as described below. In terms of applications,
R-SNN is an end-to-end semantic segmentation network for nuclear segmentation, whereas
OR-Skip-Net is an end-to-end semantic segmentation network for skin and gland segmen-
tation. In terms of the number of convolution layers, R-SNN has 20 convolution layers. The
encoder and decoder use 10 convolution layers each, whereas OR-Skip-Net has 16 convolu-
tion layers with the encoder and decoder using eight convolution layers each. R-SNN has
four encoder and four decoder blocks, whereby the first two blocks of encoder and decoder
have two convolution layers while the other two blocks have three convolution layers.
However, OR-Skip-Net also has four blocks, but each block of the encoder and decoder has
two convolutional layers. R-SNN skip connections use identity mapping for the addition
of residual connections, whereas OR-Skip-Net skip connections use non-identity mapping
for the addition of residual connections. Lastly, R-SNN has a total of 15,279,174 trainable
parameters, whereas OR-Skip-Net has a total of 9,718,786 trainable parameters.

Considering the limitations of previous research, we propose a nuclear segmentation
method based on the novel R-SNN. Table 1 presents a comparison between the existing
methods and our nuclear segmentation technique.
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Table 1. Summarized comparisons of the proposed and state-of-the-art techniques for nuclear segmentation.

Type Techniques Strength Weakness

Handcrafted feature-based

Marker-controlled watershed
segmentation, and combination of mean

shift and the Kalman filter for the tracking
of nuclei [21]

Superior performance to other
techniques such as k-means clustering

-Long inference time
-Optimization of marking region is

required.

Segmentation based on the Hough
transform and active model [22]

-Robust to noisy data
-Can handle missing information

-Can easily adapt to different shapes

-Computationally complex and expensive,
and has a low accuracy

-Inability to separate connecting objects

Active contour and shape model with the
integration of region, boundary, and shape

information [24]

Autonomous and self-adaptation can
track objects in both temporal and

spatial directions

-Need for an initial counter
-Can become stuck in local minima

-Computationally expensive and has a long
runtime

-Cannot manage intensity inhomogeneity
effectively

Marker-controlled watershed
segmentation, snake model, and SVM

classifier [20]

-Resulting boundaries of the objects
correspond to contours

-Postprocessing not required

-Excessive over-segmentation and requires
the optimization of marker

-Long inference time

Deep feature-based

Mask-RCNN [28] Good for instance segmentation High computational cost of region
proposals

Three-class CNN [29] Simple structure Uses many parameters due to fully
connected layers

PangNet, FCN, DeconvNet, and ensemble
classification [32] Good for jointly segmented nuclei Postprocessing overhead and low accuracy

Two-stage learning using U-Net and DLA
[36]

High accuracy by considering nuclear
segmentation as a three-class problem

Computationally expensive due to two
stages and multiple networks

Multilevel information aggregation using
task-specific decoders and novel smooth

truncated loss [37]

Good generalization capability
because the network focuses on

learning from reliable and informative
samples

Computationally expensive due to
multiple decoder networks

U-Net-based
classification and regression in two

sequential stages [38]

-Good performance for the prediction
of the pixels of the border

-Images of different sizes can be used
as input due to the absence of a dense

layer in U-Net

Postprocessing overhead and requires
many learnable parameters

U-Net variant
[39]

-Inception module captures detailed
information Postprocessing overhead

U-Net variant with group-equivariant
convolution and upsampling [40]

-Easy training on multiple GPUs and
possibility of model parallelization

-Can learn powerful representations
based on symmetry pattern

-Postprocessing overhead and requires
many learnable parameters

-Low performance due to the lack of
meaningful relationships based on relative

positions, orientations, and scales

R-SNN (the proposed method)
Robust segmentation with fewer

trainable parameters without
postprocessing

Stain normalization as preprocessing

3. Proposed Method
3.1. Overview of the Proposed Architecture

The proposed method has two main stages: stain normalization and nuclear segmen-
tation, as shown in Figure 2. In the first stage, a histopathology image is stain-normalized
to balance the color and intensity variation. Subsequently, it is used as an input to the
R-SNN which outputs a segmented image.
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Figure 2. Overview of the proposed technique.

3.2. Preprocessing by Stain Normalization

Stain normalization techniques aim to reduce the variations in color and intensity
of histopathology images by generating images with a standard appearance [41]. In our
proposed technique, we adopted the stain normalization technique proposed by Macenko
et al. [43] in which optical density (OD) and color deconvolution schemes are used. The
RGB color values of an input image are converted into OD values. OD is the log ratio of the
incident light image (Ii) and transmitted light image (It) and is represented by Equation (1).

OD = Log10 (Ii/It), (1)

In Equation (1), Ii represents the input image, whereas It is the transmitted light image.
In our proposed technique we adopted It = 240 for both training and testing images on the
basis of previous research [43]. The transformation of RGB values into OD values results
in a space where the linear combination of stains would result in a linear combination of
OD values. Then, all pixels with 0 or low OD values are removed by using a threshold
called β. We used β = 0.15 on the basis of previous research [43]. After this, singular value
decomposition (SVD) is performed on the OD tuples, and a plane is created from the SVD
directions. The OD values are projected onto the plane and normalized to a unit length.
The angle of each point is calculated with respect to the first SVD direction and, then, the
robust extremes of the angle are calculated. They are then converted back to OD to obtain
the optimal stain vector. Figure 3 shows the images obtained using the stain normalization
method. This figure shows that the variations in color and intensity are reduced in the
normalized images compared with those in the original images. In addition, we show
pre- and post-normalization image histograms for quantitative comparison. As shown in
Figure 3, we confirm that the post-normalization image histograms are more closely related
to a Gaussian distribution with the mean value close to the median pixel value (127) than
the pre-normalization image histograms.

3.3. Architecture of the Proposed R-SNN

The proposed R-SNN is an end-to-end encoder–decoder semantic segmentation net-
work in which the input image is first downsampled by passing it through multiple
deep-learning convolution and pooling layers in the encoder part and then upsampled
to the original size by the decoder part. The convolution layers create a feature map that
represents the significant features in the input image, and these features are used for the
training of the network. The pooling layer is responsible for the reduction in the number
of parameters and computation time by downsampling the input image and feature map.
The number and design of layers are important because information may be lost during
extraction, which results in the performance degradation of the network [42]. In the nuclear
segmentation problem, the regions of interest (ROIs) are small with diverse morphological
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features. Therefore, the design of a semantic segmentation network is very challenging be-
cause, if a shallow network with very few layers is developed, the model may not be robust.
In contrast, if a deep model having several layers is developed, semantic information may
be lost due to successive convolution and pooling operations, which can negatively affect
the performance of the model. Therefore, the proposed model is developed by considering
all the aforementioned aspects.

Figure 3. Sample images after stain normalization: (a) original image, (b) histogram of (a), (c) normalized image, and
(d) histogram of (c). The upper and lower images represent TCGA and TNBC datasets, respectively. In (b,d), horizontal and
vertical axes represent pixel value and the number of pixels, respectively.

The residual connectivity proposed in the residual network (ResNet) reduces the loss
of information and resolves the vanishing gradient problem [44]. The proposed R-SNN
uses residual connectivity to empower the feature passing through the network. Unlike
conventional ResNet [44], which connects the convolutional layers of the current block via
a residual connection, the proposed R-SNN directly connects each encoder block to the
corresponding decoder block using residual skip connections. As shown in Figures 4 and 5,
these skip connections begin after the first convolutional layer of each encoder block
and terminate before the last convolutional layer of each decoder block. Specifically, as
shown in Figure 4, the convolutional layer of the decoder block produces the local features
LFL-i, which are combined with the transferred features TF from the encoder through
element-wise addition, resulting in the enhanced features EFL-I, given by Equation (2).

EFL-i = LFL-i + TF, (2)

where EF, LF, and TF represent the enhanced, local, and transferred features, and i = 1
represents the second last layer of each block, respectively. The subscript L denotes the
L-th layer of each block, from which the features are extracted. The performance of the
proposed model is enhanced through residual connectivity.
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Figure 4. Schematic of residual connectivity used in the R-SNN. E-Con1, BN-E-Con1, and ReLU-E-
Con1 indicate the convolution layer of the encoder, batch normalization, and rectified linear unit of
the first layer, respectively. D-ConL, BN-D-ConL, and ReLU-D-ConL indicate the convolution layer
of the decoder, batch normalization, and rectified linear unit of the L-th layer, respectively.

Figure 5. Proposed R-SNN.

The second important aspect of our proposed R-SNN is the use of fewer layers in
our model and the confinement of the feature map size at the last convolution block to
31 × 31. The feature map from the last convolution block is important when dealing with
tiny object classification and segmentation tasks. There is a tradeoff between the loss of
semantic information and the feature map size. In deep networks, more concentrated and
filtered information is obtained; however, information that can play an important role in the
segmentation of tiny ROIs may be lost. The vanishing gradient problem may also occur. In
contrast, shallow networks use only a few layers to avoid the loss of semantic information;
however, these networks lack robustness and generalization capabilities. Thus, we use
only 10 convolution layers in each encoder and decoder and confine the feature map size
to 31 × 31. Figure 5 shows a detailed diagram of the proposed R-SNN, and Table 2 lists the
layer-wise details of the proposed R-SNN.
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Table 2. Layer-wise details of the proposed R-SNN (EB-n = encoder block-n, RC-n = residual connection-n,
EConvBR = encoder block convolution + batch normalization + ReLU, DConvBR = decoder convolution + batch nor-
malization + ReLU, DB-n = decoder block-n, Add-n = element-wise addition).

Block Name/Size Number of Filters Output Feature Map Size
(Width × Height × Number of Channels)

Number of Trainable
Parameters

EB-1

EConvBR-1_1/3 × 3 × 3
To decoder (RC-1) 64

500 × 500 × 64
1792 + 128

EConvBR-1_2/3 × 3 × 64 64 36,928 + 128

Pooling-1 Pool-1/2 × 2 - 250 × 250 × 64 -

EB-2

EConvBR-2_1/3 × 3 × 64
To decoder (RC-2) 128

250 × 250 × 128
73,856 + 256

EConBR-2_2/3 × 3 × 128 128 147,584 + 256

Pooling-2 Pool-2/2 × 2 - 125 × 125 × 128 -

EB-3

EConvBR-3_1/3 × 3 × 128
To decoder (RC-3) 256

125 × 125 × 256

295,168 + 512

EConvBR-3_2/3 × 3 × 256 256 590,080 + 512

EConvBR-3_3/3 × 3 × 256 256 590,080 + 512

Pooling-3 Pool-3/2×2 - 62 × 62 × 256 -

EB-4

EConvBR-4_1/3 × 3 × 256
To decoder (RC-4) 512

62 × 62 × 512

1,180,160 + 1024

EConvBR-4_2/3 × 3 × 512 512 2,359,808 + 1024

EConvBR-4_3/3 × 3 × 512 512 2,359,808 + 1024

Pooling-4 Pool-4/2 × 2 - 31 × 31 × 512 -

Unpooling-4 Unpool-4 -

62 × 62 × 512

-

DB-4

DConvBR-4_3/3 × 3 × 512 512 2,359,808 + 1024

DConvBR-4_2/3 × 3 × 512 512 2,359,808 + 1024

Add-4 (DConvBR-4_2 + RC-4) - -

DConvBR-4_1/3 × 3 × 512 256 62 × 62 × 256 1,179,904 + 512

Unpooling-3 Unpool-3 -

125 × 125 × 256

-

DB-3

DConvBR-3_3/3 × 3 × 256 256 590,080 + 512

DConvBR-3_2/3 × 3 × 256 256 590,080 + 512

Add-3 (DConvBR-3_2 + RC-3) - -

DConvBR-3_1/3 × 3 × 256 128 125 × 125 × 128 295040 + 256

Unpooling-2 Unpool-2 -

250 × 250 × 128

-

DB-2

DConvBR-2_2/3 × 3 × 128 128 147,584 + 256

Add-2 (DConvBR-2_2 + RC-2) - -

DConvBR-2_1/3 × 3 × 128 64 250 × 250 × 64 73,792 + 128

Unpooling-1 Unpool-1 -

500 × 500 × 64

-

DB-1
DConvBR-1_2/3 × 3 × 64 64 36,928 + 128

Add-1 (DConvBR-1_2 + RC-1) - -

Output DConvBR-1_1/3 × 3 × 64 2 500 × 500 × 2 1154 + 4

3.4. Loss Function

Loss functions are used during the training of the model to calculate the penalty of
any deviation of the predicted output from the actual output. The partial derivatives of
the loss function are calculated for each trainable weight of the model, and these weights
are adjusted to obtain a minimal loss. Various types of loss functions have been adopted,
such as Dice loss [45], focal loss [46], mean squared error or hinge loss [47], and log loss
(cross-entropy loss) [48]. In the proposed R-SNN, we used cross-entropy loss because of its
logarithmic function and probabilistic approach. In our nuclear segmentation task, ROIs
are tiny and over- and under-segmentation can occur. Therefore, cross-entropy loss helps
to avoid gradient saturation for extreme values, and the probabilistic approach penalizes
both types of errors (over-segmented and under-segmented). In the cross-entropy loss, the
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output of the model is shown as a probability between 0 and 1, and its value increases as the
predicted probability diverges from the actual label. This can be expressed by Equation (3).

Loss = − 1
M ∑M

m=1[ym · log(hθ(xm)) + (1− ym) · log(1− hθ(xm))], (3)

where M, ym, xm, and hθ are the number of training data, the target label for training data m,
the input for training data m, and the model with weight θ, respectively. In cross-entropy
loss, only the probability of a data point assigned to its corresponding ground-truth class
is emphasized.

4. Experiments and Performance Analysis

This section presents the datasets, experimental hardware, and software specifications
along with the evaluation criteria and performance analysis.

4.1. Datasets

In our experiments, we used two publicly available datasets of nuclear segmentation,
namely, TCGA [29] and TNBC [32] datasets. The datasets are described in detail below.

4.1.1. TCGA Dataset

TCGA is a publicly funded project that aims to create an atlas of cancer genomic
profiles. To date, over 20,000 cases of 33 cancer types have been analyzed by TCGA
researchers. The major objective is to provide publicly available datasets [49]. Kumar
et al. selected 44 WSIs of multiple organs and generated ground truths for the nuclear
segmentation task [29]. Each WSI is cropped from a nuclear-dense area to a sub-image of
size 1000 × 1000 at a magnification of 40×. There are 44 images in total, among which the
provider predetermined 30 images for training and 14 for testing without a validation set.
We followed the same scheme for a fair comparison of previous researches. Nine organs,
i.e., breast, liver, kidney, prostate, bladder, colon, stomach, lung, and brain, are represented
in this dataset. A multi-organ nucleus segmentation challenge (MoNuSeg 2018) was also
successfully organized using this dataset at the International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI 2018) [50]. The objective of
this challenge was to develop generalized nucleus segmentation techniques. Table 3
summarizes the composition of TCGA dataset, and Figure 6 shows sample images from
TCGA dataset.

Table 3. Number of images of TCGA dataset divided into training and testing data. “-” indicates not
given.

Data
Organ

Total Breast Kidney Liver Prostate Bladder Colon Stomach Lung Brain

Training 30 6 6 6 6 2 2 2 - -

Testing 14 2 3 - 2 2 1 - 2 2

4.1.2. TNBC Dataset

The TNBC dataset was presented by Naylor et al. along with their nuclear segmen-
tation technique for breast cancer histopathology images [32]. TNBC is a type of breast
cancer in which the cancer cells do not have estrogen or progesterone receptors and do not
make too much of the protein called HER2. This type of breast cancer spreads faster than
other invasive breast cancers [51]. The WSI images of 11 patients were randomly selected
from an unpublished TNBC patient database and cropped at multiple random positions
at a magnification of 40× and a size of 512 × 512 to obtain this dataset. Then, 3–7 images
having diverse and complex nuclei were selected. There were a total of 50 images from 11
patients. The leave-one-patient-out scheme was used for experiments. In every experiment,
data from eight patients were used for training, data from two patients were used for
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validation, and the remaining data from one patient were used for testing. Figure 7 shows
the sample images from the TNBC dataset.

Figure 6. Sample images of breast (upper) and kidney (lower) cancers from TCGA dataset: (a) image
and (b) ground truth.

Figure 7. Sample images of breast cancer of the TNBC dataset: (a) image and (b) ground truth.

4.2. Data Augmentation

Diverse variations usually exist even within the patterns of the same class of training
and testing data. Training with a large amount of data is necessary to develop a robust
and accurate model. However, the collection of large amounts of data is difficult in the
medical domain. Data augmentation can be used to solve the problem of limited data. To
this end, the original training data are transformed using various transformations, and new
training data are generated and added to the original data. In our study, TCGA dataset
has 30 images for training, whereas the TNBC dataset has 50 images for both training and
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testing. For data augmentation, translation and cropping are employed first, followed
by horizontal and vertical flipping. Then, random translation is employed on the x- and
y-axes. In the proposed work, we applied offline augmentation to increase the quantity
of training data for successful training. That is, data augmentation was not performed on
each epoch of training. Instead, it was done in advance before training, and we started the
training with the already augmented training data.

In the case of TCGA dataset, an image of size 1000 × 1000 was cropped to 500 × 500
with a pixel difference of 500 and, thus, 120 images were produced. Horizontal flipping
was then performed, yielding 120 additional images. Thus, these 240 images were further
vertically flipped, producing 480 images. Then, translation at x = 10 and y = 10 was
performed, followed by cropping and resizing. This technique produced 480 additional
images. From these procedures, 960 images were produced, which were further augmented
by translation at x = −5 and y = −5, cropping, resizing, and horizontal flipping, yielding a
total of 1920 images. Then, 960 additional images were produced using the same scheme by
performing translation at x = 5 and y = 5. Then, the total number of training images was 2880
in TCGA dataset, which was sufficient for the successful training of our network. Table 4
and Figure 8 present detailed explanations of the data augmentation for TCGA dataset.

Table 4. Number of images produced in data augmentation.

Dataset Original Images
Data Augmentation

TotalTranslation and
Cropping Horizontal Flipping Vertical Flipping Translation, Cropping,

and Resizing

TCGA 30 120 120 240 2400 2880

TNBC 43 172 172 344 1376 2064

Figure 8. Data augmentation scheme used in the proposed technique. H-Flip and V-Flip indicate
horizontal and vertical flipping, respectively.
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In the case of the TNBC dataset, 50 images were used for both training and testing
using the leave-one-patient-out scheme. In the first step, a pixel difference of 10 was used
for translation and cropping because the original image size was 512 × 512. The same
schemes of data augmentation were then applied. As the leave-one-patient-out scheme
was used in the experiments, an example of data augmentation used for the testing of
patient 1 is presented in Table 4. A total of 43 images were augmented to 2064 images using
the same data augmentation as for TCGA dataset.

4.3. Experimental Setup and Training
4.3.1. Experimental Setup

The proposed technique was implemented using MATLAB R2019a (MathWorks, Inc.,
Natick, MA, USA) [52] on a desktop computer operating with the Windows 10 operating
system. The desktop computer included a central processing unit (CPU) with a 3.60 GHz
Intel® (Santa Clara, CA, USA) Core-i7-7700 [53], 16 GB random access memory (RAM), and
an NVIDIA GeForce GTX 1070 graphic processing unit (GPU) with 8 GB GPU memory [54].

4.3.2. Training

The proposed R-SNN was trained from scratch without prior weight initialization.
Random weights were assigned at the beginning of training. The training parameters were
maintained the same for both datasets. In TCGA dataset, the training images were fixed
by the providers, whereas the leave-one-patient-out scheme was used for training with
the TNBC dataset. We used the Adam optimizer because it is considered robust to the
values of hyperparameters and can handle sparse gradients on challenging problems such
as nuclear segmentation [55]. The other training parameters were an initial learning rate
of 0.0001, a mini-batch size of 4, an L2 regularization of 0.0005, and a gradient threshold
of 8. The best configuration for these parameters was experimentally found with training
data as a function of training accuracy. During training, the proposed R-SNN converged
faster in only 30 epochs owing to the spatial information transfer from the encoder to the
decoder through residual connectivity and fewer convolution layers. Training for more
epochs did not improve the performance of the network. Figure 9 presents the training
accuracy and loss curves during the training of the proposed R-SNN on TCGA and TNBC
datasets. Figure 9a–c show the training accuracy and loss curves for TCGA and TNBC
datasets, and the validation accuracy and loss for TNBC dataset, respectively. It can be
observed from the convergence of curves in these figures that training was successfully
performed for both datasets.

4.4. Performance Evaluation of the Proposed Method
4.4.1. Performance Evaluation Metric

The evaluation criteria for nuclear segmentation methods need to penalize both object-
level and pixel-level errors. Therefore, we used two different evaluation metrics: object-
level and pixel-level metrics. For object-level evaluation, the F1-measure was used [56],
whereas Dice’s coefficient (DC) [57] and aggregated Jaccard index (AJI) [29] were used for
pixel-level evaluations. We used the threshold of true positives (TP) at the object level as
50% as in most previous studies. The F1-measure was used only for object-level evaluations
in all tables presented in Sections 4.4.2 and 4.4.3, and there is no table where the F-measure
was used for pixel-level evaluation in our manuscript. On the other hand, DC and AJI were
used only for pixel-level evaluations in all tables presented in Sections 4.4.2 and 4.4.3.
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The F1-measure is the harmonic average of precision and recall. The F1-measure
evaluates precision and recall simultaneously. If the ground-truth objects are represented
by Gi and segmented objects by Sj (i and j represent indices), the F1-measure, precision,
and recall are evaluated by TP, false positives (FP), and false negatives (FN). TP is the
count of all the ground-truth objects Gi with the correctly segmented objects Sj. FP is the
count of all the incorrectly segmented objects Sj that are not actually the ground-truth
objects Gi. FN is the count of incorrectly unsegmented objects Sj that are the ground-truth
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objects Gi. In terms of these values, the F1-measure, precision, and recall are expressed by
Equations (4)–(6), respectively.

F1−measure =
2TP

2TP + FP + FN
, (4)

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
. (6)

The F1-measure does not consider pixel-level errors, and it cannot be used to evaluate
over-segmentation and under-segmentation. Therefore, along with the F1-measure, Dice’s
coefficient (DC) [57] and aggregated Jaccard index (AJI) [29] were also used. DC and AJI
measure the quality of segmentation at the pixel level. If pixels of a ground-truth nucleus
are represented by Gi and its associated segmented nucleus by Si, then DC can be expressed
by Equation (7).

DC = 2 .

∣∣ Gi ∩ Sj
∣∣

|Gi |+
∣∣Sj

∣∣ . (7)

AJI was also used as an evaluation criterion along with the DC for pixel-level evalua-
tion. AJI is the extension of the Jaccard index and is defined as follows:

AJI = ∑L
i=1|Gi ∩ Pi|

∑L
i=1|Gi ∩ Pi|+ ∑L

iε rest|Pi|′
. (8)

Pi is the predicted nucleus that maximizes the Jaccard index with the ground-truth
nucleus Gi, and the remainder refers to the collection of Pi with no match. AJI reflects the
proportion between the common region of matched elements and the segmented results.
Any imprecise segmentation, whether under- or over-segmentation, will lead to a decrease
in AJI.

4.4.2. Ablation Study

An ablation study was conducted in which the effects on the performance of a method
are analyzed by removing or adding a certain feature or module. We studied the effects of
data augmentation, stain normalization, residual skip connectivity, number of layers, and
robustness of the network. Data augmentation was used to solve the problem of limited
data for training of deep learning models. The original training data were transformed
using various transformations, and new training data were generated and added to the
original data. Experimental results show that data augmentation played a crucial role in
our proposed method. It can be seen in Table 5 that the proposed network had higher
accuracy when trained with augmented data than the case with no data augmentation.

Table 5. Ablation study on the effect of data augmentation on the performance on TCGA dataset.
AJI and DC were used for pixel-level evaluations, whereas the F1-measure was used for object-
level evaluations.

Methods AJI DC F1-Measure

No data augmentation 0.5546 0.7120 0.6845

With data augmentation 0.6420 0.7749 0.8165
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After data augmentation, we studied the role of stain normalization in our proposed
method. Stain normalization is important in histopathology images because the inconsisten-
cies created due to various factors are removed, which boosts the performance of the model.
Two experiments were performed with the same parameters and environmental setup to
confirm the above. In experiment 1, stain-normalized data were used, whereas stain nor-
malization was not employed in experiment 2. Experimental results show that the accuracy
with stain normalization was higher than that without stain normalization, as presented in
Table 6, which confirms the necessity of stain normalization for accuracy enhancement.

Table 6. Ablation study on the effect of stain normalization on the performance on TCGA dataset.
AJI and DC were used for pixel-level evaluations, whereas the F1-measure was used for object-
level evaluations.

Methods AJI DC F1-Measure

Without normalization 0.6420 0.7749 0.8165

With normalization 0.6794 0.8084 0.8547

In the next set of experiments, we studied the residual connections and number of
layers in the network. The proposed network with and without residual connectivity
(concatenation and addition) and different numbers of layers are studied. The proposed
network used 91 layers including 26 convolution layers in the encoder and decoder parts
of the network. Residual connections (concatenation and addition) were added and, after
multiple experiments, we found that the proposed network-RC (addition) had a higher
accuracy than the proposed network (no skip connections) and proposed network-RC
(concatenation). Table 7 presents the results of these experiments. Next, we tested the
performance of our proposed network by reducing and increasing the number of layers.
The number of layers is directly proportional to the computation cost of the model. It
was found that the proposed network-RL which used 75 layers had a higher accuracy
than the other networks. Results can be found in Table 7. The combined effect of residual
connections and reduced network produced better results than the other methods in terms
of the F1-measure, although the AJI and DC of the proposed network-RC + RL were similar
to those of the proposed network-RL.

Table 7. Ablation study of the proposed technique with or without RC and Rl on TCGA dataset.
AJI and DC were used for pixel-level evaluations, whereas the F1-measure was used for object-
level evaluations.

Technique AJI DC F1-Measure Number of Parameters

Proposed Network
(no skip connections) 0.6540 0.7902 0.7617 29,444,162

Proposed Network-RC
(Concatenation) 0.6704 0.8020 0.8161 29,444,162

Proposed Network-RC (Addition) 0.6731 0.8039 0.8274 29,444,162

Proposed Network-RL 0.6738 0.8067 0.8342 15,279,174

Proposed Network-RC + RL 0.6794 0.8084 0.8547 15,279,174

The robustness toward various image sizes of the proposed network was studied
by resizing the test images to 500 × 500, 1500 × 1500, and 2000 × 2000 pixels. Table 8
presents the experimental results. It can be seen that the performance with the test image
of 1000 × 1000 pixels was superior to the other cases. When we magnified our test image
size to 2000 × 2000 pixels, background noise was also boosted, resulting in a reduction
in performance. The performance on 1500 × 1500 pixel images was better than that on
2000 × 2000 pixel images due to the slight increase in nuclear size and background region.
Contrary to this, the results with 500 × 500 pixel images were better than those with the
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2000 × 2000 and 1500 × 1500 pixel images due to the reduction in background noise,
despite the reduction in nuclear size.

Table 8. Ablation study of the proposed technique with different magnification of images of TCGA
dataset. AJI and DC were used for pixel-level evaluations, whereas the F1-measure was used for
object-level evaluations.

Size of Input Image AJI DC F1-Measure

2000 × 2000 0.5410 0.7004 0.5996

1500 × 1500 0.6185 0.7633 0.7452

1000 × 1000 0.6794 0.8084 0.8547

500 × 500 0.5955 0.7453 0.7977

We also tested other loss functions such as Dice loss [45] and focal loss [46], and the
experimental results proved that the accuracy with cross-entropy loss was higher than that
with other loss functions, as shown in Table 9.

Table 9. Comparative accuracy of the proposed method using difference loss functions. AJI and DC
were used for pixel-level evaluations, whereas the F1-measure was used for object-level evaluations.

Loss Function AJI DC F1-Measure

Dice loss [45] 0.6764 0.8063 0.8475

Focal loss [46] 0.6726 0.8035 0.8317

Cross-entropy loss 0.6794 0.8084 0.8547

4.4.3. Comparisons with State-of-the-Art Methods

In this section, we compare the performance of the proposed method with that of
state-of-the-art methods for nuclear segmentation. For a fair comparison, the training
and testing data along with the evaluation criteria were the same as those used for the
state-of-the-art methods. As shown in Tables 10 and 11, the proposed method had higher
accuracy than the existing techniques because of the adoption of stain normalization and
data augmentation, along with the R-SNN. Furthermore, we also present TCGA dataset
challenge (MICCAI 2018) [50] challenge results in comparison to our proposed method.
The leaderboard of MICCAI 2018 is presented in the Figure 10. The top scorers (CUHK and
IMSIGHT) achieved outstanding performance by using contour information aggregation-
based networks with extensive data augmentation. Smaller nuclei were missed, while larger
nuclei were over-segmented by this technique. The second-best scorer (BUPT.J.LI) proposed
a deep layer aggregation-based network [58] using color normalization as a preprocessing.
Unwanted overly smooth nuclei boundaries were produced by this method. The third-best
scorer (pku.hzq) used a combined U-Net [59] and Mask R-CNN [60]. Although the online
evaluation of the MICCAI 2018 challenge is closed, test data are publicly available. After
testing with the test data from the MICCAI 2018 challenge, we found that our proposed
method was ranked fourth on the leaderboard. However, we used a shallower model
compared to those ranked above, confirming the lower number of training parameters and
system complexity of our model.
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Table 10. Comparative accuracy of the proposed method and the state-of-the-art methods on TCGA
dataset (“–” indicates not reported). AJI and DC were used for pixel-level evaluations, whereas the
F1-measure was used for object-level evaluations.

Methods AJI DC F1-Measure

Cell profiler [29,30] 0.1232 0.5974 0.4046
Fiji [29,31] 0.2733 0.6493 0.6649

Kumar et al. [29] 0.5083 0.7623 0.8267
Kang et al. [36] 0.5895 – 0.8079
Zhou et al. [37] 0.6306 – 0.8458

Mahbod et al. [38] 0.5687 0.7939 0.8267
Zeng et al. [39] 0.5635 0.8008 0.8278

Chidester et al. [40] 0.6291 0.7980 0.8490
Proposed method 0.6794 0.8084 0.8547

Table 11. Comparative accuracy of the proposed method and the state-of-the-art methods on the
TNBC dataset. AJI and DC were used for pixel-level evaluations, whereas precision, recall, and
F1-measure were used for object-level evaluations.

Methods AJI DC Precision Recall F1-Measure

PangNet [32,33] – – 0.814 0.655 0.676
DeconvNet [32,35] – – 0.864 0.773 0.805

FCN [32,34] – – 0.823 0.752 0.763
Ensemble [32] – – 0.741 0.900 0.802
Kang et al. [36] 0.611 0.826 0.833 0.829

Proposed method 0.7332 0.8441 0.8352 0.8306 0.8329

Figure 10. MICCAI 2018 leaderboard results in comparison to the proposed method.

4.4.4. Correct and Incorrect Detection Cases Using the Proposed Method

The proposed method was tested on a diverse set of images from both datasets. Testing
images were obtained from nine organs: brain, breast, kidney, liver, prostate, bladder, colon,
stomach, and lungs. As the composition of tissues in each organ is different, segmentation
results differed according to the organ. Nevertheless, we obtained a good segmentation
performance, as shown in Figure 11. Figure 11a,b show the images taken from TCGA and
TNBC datasets, respectively. However, an incorrect segmentation performance was also
obtained in a few cases where the nuclei were overlaid by the background and a high
overlap existed among nuclei, as shown in Figure 12.
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Figure 11. Examples of good segmentation performance of the proposed method on test images
from (a) TCGA dataset and (b) the TNBC dataset. Blue, red, and green regions represent TP, FN, and
FP, respectively.
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Figure 12. Examples of bad segmentation performance of the proposed method on test images from
(a) TCGA dataset and (b) the TNBC dataset. Blue, red, and green regions represent TP, FN, and
FP, respectively.

5. Discussion

Deep learning models are considered as black boxes because there is no explanation
behind the prediction. It is difficult to determine how the network extracts the important
features in the input image, which neurons are activated during processing, and how the
network arrived at its final output. A visual explanation of the prediction plays a key role
in building trust in intelligent systems. Gradient-weighted class activation maps (Grad-
CAM) [61] were proposed for visual analysis of deep learning networks. In this technique,
activation maps along the feature channel are extracted and averaged to be presented as a
single image. This single Grad-CAM image is represented in a pseudo color scheme, in
which the red color indicates the maximum value and the blue color shows the minimum
value of an intensity to activation. In this way, we obtain a coarse localization map which
highlights the regions in the image for a prediction. Figure 13a,b present the input and
ground-truth images, respectively, and Figure 13c–f show the Grad-CAM images extracted
from various layers of our R-SNN. In Figure 13c, the Grad-CAM image was extracted
from the first layer (EConvBR-1_1), and, in Figure 13d, it was extracted from the last
convolution layer (EConvBR-4_3) of the encoder block. Figure 13e shows the Grad-CAM
image extracted from the initial layer (DConvBR-4_2) of the decoder block. Figure 13f
presents the Grad-CAM image from the DConvBR-1_2 layer of the decoder block, and it
can be observed that nuclear areas were highlighted. Nevertheless, these could also be
taken from the other layers of Table 2. Activation maps allow a visual explanation of the
network’s decision making. During the training process, networks can learn and draw
activation maps from noisy objects or background. We developed activation maps visually
discriminate the ROIs contributing most during training of the network. The F1-score gives
the final result of segmentation, whereas activation maps provide visual discriminative
features, as well as the activations contributing most to the training process.
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Figure 13. Input and ground-truth images, as well as Grad-CAM activation maps extracted from the intermediate layers of
the proposed network. Two examples are shown in the first and second rows: (a) input image, (b) ground-truth image,
(c) EConvBR-1_1 layer, (d) EConvBR-4_3 layer, (e) DConvBR-4_2 layer, and (f) DConvBR-1_2 layer of the network, as
presented in the Table 2.

In conclusion, it is clear from these activation maps that our proposed network is not
biased and was successfully trained to differentiate between the background and nucleus.

Nuclear segmentation in the histopathology images of cancer plays a key role in
its diagnosis and prognosis. AI-based segmentation is fast and robust and shows better
segmentation results than handcrafted-feature-based segmentation. It also saves the time
and effort required for the inspection of histopathology images by humans under high-
resolution microscopes. In this article, we proposed an AI-based nuclear segmentation
technique in which an image was first stain-normalized to remove inconsistencies, followed
by nuclear segmentation through the novel R-SNN. Experiments on publicly available
datasets proved that the proposed method showed better accuracy compared with state-
of-the-art nuclear segmentation methods. Some of the key observations derived from this
work are as follows:

• Stain normalization plays a key role in the classification, detection, and segmenta-
tion of histopathology images because it removes the inconsistencies caused by the
staining and environmental factors. The performance of deep-learning models was
also improved, as presented in Table 6, where the experiments performed with stain
normalization showed higher accuracy than those without stain normalization.

• Shallow networks lack generalization capabilities; therefore, deep networks are mostly
developed. However, in the case of applications related to histopathology images, a
severe vanishing gradient problem mostly occurs because the ROIs are usually tiny
and, thus, may vanish due to successive convolution operations. In our proposed
technique, we confined the feature map size to 31 × 31, which positively influenced
the performance of our segmentation model. The performance of SegNet was lower
than that of the proposed technique because the final feature map size of the encoder
was 7 × 7 in SegNet, indicating that important information may be lost in successive
convolution operations.

• The residual skip connections from the encoder to the decoder of the proposed R-
SNN empowered feature representation, which enabled the network to perform
well despite having only a few layers of convolution. In the proposed technique,
only 10 convolution layers were used in the encoder. However, the proposed model
showed higher accuracy than the state-of-the-art models because the residual skip
connections retained important information helpful for nuclear segmentation.

• AI-based applications can be applied to digital pathology because of their good gener-
alization capabilities, high performance, and short inference time. Experiments on two
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datasets—TCGA dataset containing images from breast, kidney, liver, prostate, blad-
der, colon, stomach, lung, and brain, and the TNBC dataset containing breast cancer
images—proved that AI-based applications have a good generalization capability.

• Accurate, robust, and computationally inexpensive AI-based methods play a very
important role in boosting the confidence level of pathologists toward AI. In this
regard, the proposed method can be adopted for real-time applications owing to its
good performance, robustness, and low computational cost.

• Despite the above, our proposed work had a few limitations. First, an intensive
task of stain normalization was performed, which could cause high computational
complexity. Second, neighboring nuclei were difficult to separate and were considered
a single object. Third, many applications involve whole-slide images, which are much
larger than 1000 × 1000 pixels. The extension of our research to whole-slide image
processing across different magnifications is required as future work.

Pathologists and AI-based methods can work together in cancer diagnosis and prog-
nosis. A simple mistake in cancer diagnosis can have disastrous consequences for patients.
Therefore, AI can be adopted to assist pathologists as a second opinion. Moreover, AI-
based methods can segment ROIs, indicate positive cases, and reduce the time taken during
clinical applications.

6. Conclusions

In this study, we aimed to develop a semantic segmentation method for nuclear seg-
mentation in multi-organ histopathology images. Segmented nuclei play a key role in can-
cer diagnosis and prognosis. Histopathology images from two publicly available datasets—
TCGA and TNBC—were used in this study. In the proposed method, a histopathology
image was stain-normalized and input to the trained model, which output segmented
images with nuclei. The proposed R-SNN maintains crucial features by using the residual
connectivity from the encoder to the decoder, and it also uses only a few layers, which
reduces the computational cost of the model. The selection of a good stain normalization
technique, the effective use of residual connections to avoid information loss, and the use
of only a few layers to reduce the computational cost yielded outstanding results. Thus,
our nuclear segmentation method is robust and superior to the state-of-the-art methods.
We expect that this study will contribute to the development of computational pathology
software for research and clinical use and enhance the impact of computational pathology.

In the future, we aim to increase the generalization capability of the proposed method
by testing it on more datasets with larger whole-slide images, as well as improve the
segmentation performance by using other convolution types such as separable, dilated, and
deformable convolutions. Furthermore, novel stain normalization and data augmentation
methods will be studied.
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