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Abstract: Background: To evaluate the performance of a machine-learning (ML) algorithm to detect
and classify choroidal neovascularization (CNV), secondary to age-related macular degeneration
(AMD) on spectral-domain optical coherence tomography (SD-OCT) images. Methods: Baseline fluo-
rescein angiography (FA) and SD-OCT images from 1037 treatment-naive study eyes and 531 fellow
eyes, without advanced AMD from the phase 3 HARBOR trial (NCT00891735), were used to develop,
train, and cross-validate an ML pipeline combining deep-learning-based segmentation of SD-OCT
B-scans and CNV classification, based on features derived from the segmentations, in a five-fold
setting. FA classification of the CNV phenotypes from HARBOR was used for generating the ground
truth for model development. SD-OCT scans from the phase 2 AVENUE trial (NCT02484690) were
used to externally validate the ML model. Results: The ML algorithm discriminated CNV absence
from CNV presence, with a very high accuracy (area under the receiver operating characteristic
[AUROC] = 0.99), and classified occult versus predominantly classic CNV types, per FA assessment,
with a high accuracy (AUROC = 0.91) on HARBOR SD-OCT images. Minimally classic CNV was
discriminated with significantly lower performance. Occult and predominantly classic CNV types
could be discriminated with AUROC = 0.88 on baseline SD-OCT images of 165 study eyes, with CNV
from AVENUE. Conclusions: Our ML model was able to detect CNV presence and CNV subtypes on
SD-OCT images with high accuracy in patients with neovascular AMD.

Keywords: age-related macular degeneration; choroidal neovascularization; classification; machine
learning; optical coherence tomography

1. Introduction

Early detection of active choroidal neovascularization (CNV) is crucial for the timely
treatment of neovascular age-related macular degeneration (nAMD), in order to achieve
a good outcome [1]. Clinicians are increasingly switching from fluorescein angiography
(FA) to optical coherence tomography (OCT) for the diagnosis and management of nAMD,
due to the advantages associated with OCT, including being noninvasive, enabling quick
acquisition of retinal images with minimum technician training, and providing both quali-
tative and quantitative information [2-4]. However, an advantage of FA is that it provides
information on flow dynamics within the lesion [5], and most importantly, confirms dis-
ease activity, characterized by dye leakage. Phenotyping CNVs at baseline on FA, and
sometimes additionally on indocyanine green angiography, has long been the standard
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of care and helps establish the management plan. For example, patients with polypoidal
choroidal vasculopathy (PCV) may benefit from combination therapy [6-8]. In clinical trials,
this information would help identify subgroups of patients with particularly beneficial
outcomes, with novel therapies [9]. Optimal patient stratification may become increasingly
important, as multiple combination therapies are poised to enter the market or are in
clinical trials, especially in patients who show partial response or non-response to current
first-line treatment with antiVEGF agents [10,11].

In OCT, CNV is graded based on its relationship to the retinal pigment epithelial
layer [12,13], whereas in FA, en-face flow patterns within the lesion are used to phenotype
the CNV [13]. By comparing the two modalities and using an automated approach to
evaluate the large quantity of data from three-dimensional SD-OCT volume scans, key
features mirroring the flow dynamics and substituting en-face information available in FA
could be extracted. Once identified, the impact of novel and existing therapies on these key
features could increase our understanding of the disease phenotype, pathophysiology, and
specific response to therapy.

Machine learning has the potential to unravel high-dimensional patterns from image
data (complex interactions related to a given phenotype), as opposed to features that are
correlated only individually to the outcome, providing enhanced capabilities for knowledge
extraction. It also provides options for automated screening and diagnosis, enhancing the
speed and reproducibility of these processes.

In this study, using the phenotypic CNV definitions derived from FA as the reference
standard, we developed a machine learning (ML) model capable of identifying these CNV
subtypes, using OCT alone. We present the data on performance of this model for the
detection and classification of CNV (as per FA) using the SD-OCT images. In addition,
using a sub-symbolic approach, we identified key features on OCT that relate to particular
CNYV subtypes on FA. To the best of our knowledge, no previous study has leveraged
this combination of ML approaches or reported findings similar to those presented in the
current study.

2. Materials and Methods
2.1. Participants

This study was a retrospective analysis of prospectively collected baseline FA and
SD-OCT images of the study eyes and fellow eyes of patients with nAMD, in the phase 3
HARBOR (NCT00891735) and phase 2 AVENUE (NCT02484690) trials.

The above trials adhered to the tenets of the Declaration of Helsinki, were Health In-
surance Portability and Accountability Act compliant, and the protocols were approved by
the relevant institutional review boards and ethics committees. Patients provided written
informed consent for secondary use of data at enrolment, including future medical research,
and additional analyses. In HARBOR, SD-OCT was performed using the Cirrus HD-OCT
III instrument (Carl Zeiss Meditec, Dublin, CA, USA) producing 512 x 128 x 1024 voxels
with a size of 11.7 x 47.2 x 2.0 um3, covering a volume of 6 x 6 x 2 mm?3. In AVENUE,
SD-OCT was performed using the Heidelberg Spectralis instrument (Heidelberg Engineer-
ing, Heidelberg, Germany). Study design and main outcomes of HARBOR [14,15] and
AVENUE [10] have been published previously. In brief, both studies recruited patients
with treatment-naive subfoveal CNV secondary to AMD, as diagnosed by a reading center
(Digital Angiography Reading Center, Great Neck, NY [DARC]). In AVENUE, patients
with juxtafoveal CNV on FA, with a subfoveal component on SD-OCT were also included.
Eligibility for both studies was confirmed by the same central reading center (DARC), and
the published standard definitions of CNV types have been used in both studies [13].

2.2. Classification of CNV

Both studies allowed recruitment of all CNV types. CNVs were classified at baseline
on FA as predominantly classic, minimally classic, or occult, based on the proportion of
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the occult component within the CNV lesion, as previously described by the Macular
Photocoagulation Study (MPS) Group [13].

2.3. Selection of Fellow Eyes

Treatment-naive fellow eyes of patients in HARBOR without advanced AMD, were
also included to train the model. Fellow eyes were filtered to exclude those with prior
treatment or any type of late-stage AMD.

2.4. OCT Image Processing and Analysis
2.4.1. Retinal Layer Segmentations

Twelve retinal layers (Figure 1; among them inner limiting membrane and retinal
pigment epithelium [RPE]) were automatically segmented in all selected SD-OCT volumes
using the Iowa reference algorithm [16]. Bruch’s membrane was added as the thirteenth
layer (convex hull of the RPE) and was computed using scikit-image [17]; thus, it was
based on an approximation and not on a real segmentation.

Figure 1. Example of the automated layer segmentation of 13 retinal layers. BM, Bruch’s membrane; BMEIS, boundary of

myoid and ellipsoid inner segments; GCL-IPL, ganglion cell layer-inner plexiform layer; IB OPR, inner boundary outer

photoreceptor; IB RPE, inner boundary retinal pigment epithelium; ILM, internal limiting membrane; INL-OPL, inner

nuclear layer-outer plexiform layer; IPL-INL, inner plexiform layer-inner nuclear layer; IS] OS], inner segment/outer

segment junction; OB OPR, outer boundary outer photoreceptor; OB RPE, outer boundary retinal pigment epithelium;

OPL-HFL, outer plexiform layer-Henle’s fiber layer; and RNFL-GCL, retinal nerve fiber layer-ganglion cell layer.

2.4.2. Fluid Annotations

Fluid volumes were annotated by experts from the Liverpool Ophthalmology Read-
ing Center on the B-scan level and subjected to internal quality assurance processes (a
subselection of B-scan annotations of each grader was adjudicated and reviewed by a
senior clinician). Specifically, a sparse selection of 19 B-scans per volume scan across a
total of 50 volume scans (950 B-scans in total), obtained from Cirrus (Carl Zeiss Meditec)
OCT machines (see Supplementary Table S1 for definitions used for the annotations), were
annotated by drawing contours of the intraretinal fluid (IRF; cystoid spaces), subretinal
fluid (SRF), and pigment epithelial detachment (PED), as well as subretinal hyperreflective
material (SHRM; a morphological feature seen on OCT as hyperreflective material located
external to the neurosensory retina but internal to the RPE [18,19]).

Contours were drawn on the B-scans, stored in the raster format, and then converted
to label maps of the original image dimension. The annotations were done using a Matlab
software tool developed for the Liverpool reading center.

2.4.3. Fluid Segmentations

The U-Net, a convolutional neural network for biomedical image segmentation [20],
was trained to recognize fluids, using the annotated volumes as a training material (pixel-
level semantic segmentation). All SD-OCT volumes from both HARBOR and AVENUE
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were segmented with the trained U-Net model, and there was no adaptation of the model to
accommodate the specific characteristics of the AVENUE volumes (Heidelberg Spectralis).

2.4.4. Feature Generation

In total, 105 volume and volume-wide thickness descriptors (see Supplementary Table 52
for a detailed feature list), based on the macular subfield definitions provided by the Early
Treatment Diabetic Retinopathy Study [21] grid, were automatically extracted from the
automated segmentations. See Figure 2 for a sketch of the segmentation and feature
extraction pipeline. Specifically, IRF, SRF, and PED, as well as SHRM, were segmented
using the segmentation method described above, then reassembled into volumes, where
each voxel is mapped to either one of the four segmented targets, or not mapped to any.
Finally, descriptors were first individually derived for all B-scans of a volume, and then
combined to form C-scan volume measurements.

Training Prediction Features
b [ Label Maps B-Scans ] [ Fluidic Features ]
Learning [ Segmented Volumes J [ el o ]

Data
Preparation

B-Scan
extraction

by — et X [Bmm}, size 512 X [6mm}. size 512

Annotation
Processing
Transform:

A

Figure 2. Segmentation pipeline. Sketch of the segmentation pipeline, involving training, prediction, and feature calculation

for both fluidic and layer features. See Supplementary Table S2 for a detailed feature list.

2.4.5. Machine Learning

The SD-OCT features were profiled for their utility to predict various binary outcomes
(see the Results section for outcome definitions) derived from FA. Cross-validation was
used to assess the predictive performance. When no hyperparameter tuning or feature
selection was used, no holdout set was put aside and every data point was predicted
exactly once. The corresponding performance was reported. This approach was used for all
outcomes that reached very high area under the receiver operating characteristic (AUROC)
values, namely the CNV presence/absence outcome. Otherwise, a holdout set with 15% of
the data was put aside first, and supervised feature elimination and hyperparameter tuning
were performed in two stages, using non-nested cross-validation on 85% (Supplementary
Figure S1) of the imaging data. A model was established using the best feature sets and
the hyperparameter values found, and the predictive performance on the holdout set was
subsequently reported.

When classifying predominantly classic versus occult CNV, the tuning process de-
scribed above was applied to 100% of HARBOR data, and the established model was
used to predict predominantly classic and occult CNV on SD-OCT of AVENUE study eyes
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(Supplementary Figure S2). The predictions were then compared with the FA labeling in
AVENUE for accuracy. See the Supplementary Methods for details on the ML methodology.

2.5. Statistical Analysis
2.5.1. Classification

AUROC was used to measure performance of the models to discriminate two classes
from each other. AUROC is a measure of discriminative performance of a binary classifier
predicting a numeric score (probability) for class membership. AUROC was obtained by
sliding a threshold over the predicted probability to assess the tradeoff between sensitivity
and specificity learned by the model. Each point thus obtained was associated with a certain
sensitivity and specificity. Reported pairs of sensitivity and specificity corresponded to
Youden’s cutoff point. The receiver operating characteristic (ROC) curve was plotted with
sensitivity and specificity on the y- and x-axes, respectively. The perfect classifier will have
sensitivity and specificity = 1, and the ROC curve will pass through the top left corner
of the chart, with an AUROC = 1. Confidence intervals for ROC values were obtained
by bootstrapping.

2.5.2. Correlations

To validate the automatically generated features, non-parametric Spearman correlation
coefficients were used, measuring the correlations between the reading center reads and an
associated subset of the automated image analysis features.

2.5.3. SHapley Additive exPlanations (SHAP) Analysis

SHAP analysis [22] is a means to analyze individual predictions made by an ML
model. For each feature and predicted data point, SHAP analysis explains the difference
between the average model prediction of a given dataset and the individual prediction of
this point. This approach explains individual predictions and contributions of each feature,
as well as analyzes the overall significance (impact and bias) of the features in a trained
ML model, with respect to a given population.

3. Results
3.1. Patient Characteristics

Out of a total of 1098 patients randomized in HARBOR, baseline FA and SD-OCT
images were available for 1037 study eyes. In the HARBOR baseline data, CNVs were
classified (per FA) as predominantly classic in 163 eyes, minimally classic in 492 eyes, and
occult in 382 eyes. Out of a total of 272 patients randomized in AVENUE, baseline FA and
SD-OCT images were available for 268 study eyes. CNVs in AVENUE at baseline were
classified (per FA) as predominantly classic in 39 eyes, minimally classic in 103 eyes, and
occult in 126 eyes. Additionally, 531 healthy fellow eyes from HARBOR without advanced
AMD (neither CNV nor GA) were used as negative controls.

3.2. Feature Generation

Segmentation performance for SRF, IRF, PED, and SHRM was assessed against annota-
tions on the HARBOR SD-OCT images and was measured via DICE scores (Serensen—Dice
similarity coefficients; Table 1). Performance for SHRM and PED was better than that for
SRF and IRF. Feature evaluation was also performed on various thickness and volumetric
reads from AVENUE. Automatically extracted features with the closest definitions to the
reading-center-defined feature readouts were selected for comparison to the manual reads,
in order to demonstrate that there was a high correlation between manual readouts and
automated readouts (Table 2).
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Table 1. Segmentation Performance—DICE Scores for the three fluids (IRF, SRE, PED), and SHRM.

. . Validation DICE
Type N (Total) N (Train/Valid) Mean (SD)
SRF 700 557/143 0.67 (0.05)
IRF 935 694/241 0.46 (0.12)
PED 622 508/114 0.63 (0.07)
SHRM 760 312/65 0.71 (0.06)

Table 2. Human Readouts vs. Automated Readouts for AVENUE. Many automated readouts were
generated. This table demonstrates that there was a high correlation between manual readouts that
most clearly correspond to the automated [MA1] readouts.

Reading Center Feature Automated Feature Spearman r

Central subfield thickness IB
CENT RET THICK pum RPE-to-ILM 0.5 mm min 0.84

Central subfield thickness
CENT RET/LESION THICK pm BM-to-ILM 0.5 mm min 0.79

Central subfield thickness IB
CENT SUBFIELD THICK ILM-RPE pm RPE-to-ILM 0.5 mm mean 0.93

Central subfield volume IB
CUBE VOL ILM-RPE mm 3.0 mm RPE-to-ILM 3.0 mm 0.90

Central subfield thickness

LESION THICK pm BM-to-ILM 3.0 mm max 0.83
PED THICK pm C-scan height PED 3.0 mm 0.71
SUBRET FLUID THICK pm C-scan height SRF 3.0 mm 0.61

Type indicates volumetric pathology type; N (Train/Valid) indicates number of sam-
ples in the training and validation datasets, respectively; validation DICE indicates the
DICE score achieved during the validation of the model.

IRF, intraretinal fluid; PED, pigment epithelial detachment; SD, standard deviation;
SHRM, subretinal hyperreflective material; and SREF, subretinal fluid.

Various thickness and volumetric measurements compared to the reading center readouts.

BM, Bruch’s membrane; IB, inner boundary; ILM, inner limiting membrane; Spearman
1, Spearman correlation coefficient; PED, pigment epithelial detachment; RPE, retinal
pigment epithelium; and SRF, subretinal fluid.

Balance indicates the number of positive/negative cases; cutoff indicates the critical
value of the predicted score corresponding to the AUROC value.

AUROC, area under the receiver operating characteristic; CNV, choroidal neovascu-
larization; FA, fluorescein angiography; FN, number of false negatives; FP, number of false
positives; and SD-OCT, spectral-domain optical coherence tomography.

3.3. HARBOR Analysis

As described in the section ‘Machine Learning’, we assessed the ability of ML to
discern eyes with any CNV type from eyes without CNV on SD-OCT, by pooling data
across the three types (predominantly classic, minimally classic, and occult) and contrasting
them with feature data from the 531 healthy fellow eyes. Presence of any CNV could be
almost perfectly discriminated from absence of CNV (AUROC, 0.99; 95% CI, 0.99-1.00;
Table 3). Occult and predominantly classic CNV could be discriminated with high accuracy
from each other with AUROC = 0.91 (95% CI, 0.89-0.94; Figure 3, Table 4). Specificity
for discrimination of occult from a predominantly classic CNV was 81%, with a sensitiv-
ity of 89%, when defining occult as the positive class and predominantly classic as the
negative class. There were 32 false positives and 41 false negatives out of 163 actually
negative and 382 actually positive observations, respectively (Table 5). Minimally classic
was discriminated from occult and predominantly classic with AUROC = 0.70 (95% CI,
0.60-0.79) and AUROC = 0.73 (95% CI, 0.61-0.85), respectively. Occult was discriminated
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from minimally classic and predominantly classic (when the two were pooled together)
with AUROC = 0.81 (95% CI, 0.73-0.88).

Table 3. Diagnostic Accuracy of the Algorithm in Detecting FA-Defined CNV Phenotype on SD-OCT; Cross-validation
results report best-tuned performance across the parameter grid. External validation reports unbiased performance against
hold-out data.

Outcome Balance FP/FN Cutoff Sensitivity Specificity AUROC (95% CI)
Cross-Validated Performance for CNV vs. No CNV on HARBOR (No Parameter Tuning)

Any CNV vs. none 1037/531 23/15 0.3815 0.99 0.98 1.00 (0.99-1.00)

Predominantly classic vs. none 163/531 1/7 0.9996 0.99 1.00 1.00 (1.00-1.00)

Minimally classic vs. none 492/531 10/10 0.6227 0.98 0.98 1.00 (0.99-1.00)

Minimally classic + predominantly 653/531 14/6 0.1831 0.99 0.98 0.99 (0.99-1.00)
classic vs. none

Occult vs. none 382/531 17/24 0.9785 0.96 0.96 0.99 (0.99-1.00)

Holdout Performance as Measured on 15% of HARBOR

Minimally classic + predominantly

classic vs. occult 104/56 20/19 0.4036 0.67 0.81 0.81 (0.73-0.88)
Predomi“anﬂycclfss;: vs. minimally 22/82 22/8 0.7051 0.74 0.65 0.73 (0.61-0.85)
Occult vs. minimally classic 55/81 25/16 0.5390 0.72 0.70 0.70 (0.60-0.79)
Best-Tuned Performance on HARBOR for Predominantly Classic vs. Occult
Predominantly classic vs. occult 163/382 32/41 0.6110 0.89 0.81 0.91 (0.89-0.94)
External Performance on AVENUE for Predominantly Classic vs. Occult
Predominantly classic vs. occult 126/39 7/24 0.8058 0.81 0.84 0.88 (0.82-0.95)

Table 4. Resampling performance.

ROC Sens Spec Resample
0.953 0.750 0.948 Fold 1
0.930 0.641 0.957 Fold 2
0.901 0.840 0.880 Fold 3
0.900 0.568 0.960 Fold 4
0.921 0.786 0.950 Fold 5

Table 5. Contingency table, counting all combinations of the predicted versus observed.

Predicted Observed n
POS (OCCULT) POS (OCCULT) 341
NEG NEG 131

POS (OCCULT) NEG 32
NEG POS (OCCULT) 41

ROC indicates area under the curve in percentage; and resample indicates the specific
fold from the five-fold cross-validation.

Predicted indicates class predicted by the model; observed indicates class as graded
on FA; and n indicates the number of samples.
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Figure 3. ROC analysis of predominantly classic versus occult (best-tuned performance). Sensitivity
versus specificity for all possible ROC cutoff points with respect to the predicted occult scores in
HARBOR, including 95% ClIs (bootstrapped). The location of the red crosshair indicates the operating
point of the model. AUROC, area under the receiver operating characteristic; FA, fluorescein
angiography; NEG, negative; POS, positive; ROC, receiver operating characteristic; Sens, sensitivity;
and Spec, specificity.

3.4. Recursive Feature Elimination

For discrimination of occult from predominantly classic CNV, when starting with
the full 105-feature set and recursively eliminating the least important features, by repeat-
edly cross-validating with the reduced set, only 21 features were necessary to sustain an
average AUROC = 0.91 (Figure 4A). The 20 most informative features for discrimination
between occult and predominantly classic on a population level include SHRM and PED
volumes (Figure 4B, Table 6). See Figure 5A,B for representative appearance of occult and
predominantly classic cases on SD-OCT. SHAP analysis (Figure 6, Table 7) indicates that
higher values of SHRM volumes and lower values of PED volumes are most characteristic
of predominantly classic CNV, as opposed to occult CNV. Note the largely overlapping
findings with feature elimination in Table 6.



J. Pers. Med. 2021, 11, 524

9 of 20

0.92 -

0.90 -

0.88 -

ROC (Cross—Validation)

0.86

0.84 -

20

40 60 80
Variables
(A)

Figure 4. Cont.

100



J. Pers. Med. 2021, 11, 524 10 of 20

= 1 2 3 4 5
i R =oer g
» 1 .y | . . =] .
i s b > % * S | i
@ - . @ 4 - EH ‘- k- .| ” [
? 1 r o: ? 1 b - H . o‘ we -q
o LY a P . L] - . b g 1
w y . @ . . 2 ‘.‘ . - ol e
o B = SRR SREE TR SR R N
=] 1 . — g ‘ge . :
13 v : : : o .
Z 5 ® a o
@ T =
@ 1 -+ ] | -
& | i :} aoe
- = [ =]
= -i: =) _.'; g Ny =) o
g i - S S
E & = & -
= CLASSIC OCCULT = CLASSIC OCCULT = CLASSIC OCCuULT = CLASSIC OCCULT CLASSIC OCCULT
[} 7 8 9 10
- - -
" - . :g g Ky .
§ ] :' g -. =8 - o
e . 3 .,

Tk
300

1000 2000 2000
h@
1000
ST
100 200
o Ao
100 200
S
| '@m.‘ ..I
200 300 400
i 2
e
¥ A

1500 2000 2500 3000
300

. § | - .
v ] ol e "
P
CLASSIC OCCULT CLASSIC OCCULT CLASSIC OCCULT CLASSIC OCCULT CLASSIC OCCULT
11 . - 12 . 13 14 . - 15 .

.t s S (s =] L = oy
e % | - = - ::.
. ’: . * :-"- 3; | - . :P:
o -y - * 8 & 2 : «
* £" g ae . - ]
S | = £ ) )

- > @ é | L -

* e %L
e, o
5.0e+07
+M.‘.. . -
g " vn .
20 40
#’1-0?-.. w’
% Ml
2e+08
- .
0 50 100
+"d-" e oe

0e+00 2e+08 4e+08 Ge+D8 Be+0B

2
n
=]
g = :i: |
5 ! o | 3 | |
CLASSIC OCCULT = CLASSIC OCCULT CLASSIC QCCULT = CLASSIC QCCULT CLASSIC QCCULT
g 16 17 . 2 18 g 19 20
*s » . . '.’. & .. . 2 . -l l'-: =3 ] .
o - HE = . e "h . R 3 = 5. L
& | W . g1 . > % .:!' ‘ % 1 :" .\-_- - “1 .
E "y & A [ 2 1 ’
= .S é = - ?ﬁa 3 3 | . = ’! -:= s"
] ] ] . g | E . .
g —d—,‘. 4 8 s % $ E e —'-‘"—‘,-, ‘2, g1 A
. 8 gl £ .
g g % 3 : ¥ —a— | ¢ 2
- . = -
§ @ . = (=1 .
= # - 3 . & | a “ .
& s 21 | & * =]
L £ L4 ] .
. . - [=1 M -
CLASSIC OCCULT CLASSIC OCCULT CLASSIC OCCULT CLASSIC OCCULT CLASSIC OCCULT

(B)

Figure 4. (A) Recursive feature elimination cross-validation. Optimal performance for predominantly classic versus occult
was reached with 101 features out of 106, and only 21 features were necessary to sustain the average model performance of
91% AUROC. (B) Distribution of the top 20 feature values in the training data (predominantly classic vs. occult classes).
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Table 6. The features from Figure 4B in descending order of importance. BM, Bruch’s membrane;
HFL, Henle’s fiber layer; IB, inner boundary; ILM, inner limiting membrane; max, maximum; OB,
outer boundary; OPL, outer plexiform layer; PED, pigment epithelial detachment; ROC, receiver
operating characteristic; RPE, retinal pigment epithelium; SHRM, subretinal hyperreflective material;

and SRF, subretinal fluid.
Rank Feature Name
1 C-scan volume SHRM 1.5 mm
2 C-scan volume SHRM 3 mm
3 C-scan volume SHRM 0.5 mm
4 C-scan volume PED 1.5 mm
5 Central subfield thickness BM-to-OB_RPE 0.5 mm max
6 C-scan width SHRM 3 mm
7 C-scan width SHRM 1.5 mm
8 Central subfield thickness BM-to-OB_RPE 1.5 mm max
9 C-scan height PED 0.5 mm
10 Central subfield thickness IB_RPE-to-OPL-HFL 1.5 mm max
11 C-scan volume PED 3 mm
12 Central subfield volume BM-to-OB_RPE 0.5 mm
13 Central subfield thickness BM-to-OB_RPE 1.5 mm mean
14 Central subfield volume BM-to-OB_RPE 1.5 mm
15 Central subfield thickness BM-to-OB_RPE 0.5 mm mean
16 Central subfield thickness IB_RPE-to-OPL-HFL 3.0 mm max
17 Central subfield thickness BM-to-IB_RPE 1.5 mm max
18 Central subfield volume IB_RPE-to-ILM 0.5 mm
19 C-scan width SRF 0.5 mm
20 Central subfield thickness IB_RPE-to-ILM 0.5 mm mean

A. Representative case of predominantly classic CNV, as appearing on SD-OCT (true negative).

Figure 5. Cont.
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B. Representative case of occult CNV, as appearing on SD-OCT (true positive).

C. Classified by automated algorithm as occult CNV (false positive).

Figure 5. Cont.
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D. Classified by automated algorithm as classic CNV (false negative).

Figure 5. Representative cases showing comparison of machine algorithm with angiography. (A-D) Central SD-OCT
B-scans (top), with segmented pixel masks of volumetric measures and Bruch’s membrane (middle left), en-face projections
(middle center), and thickness maps (middle right), as well as corresponding FAs (bottom). Colors on the SD-OCT images
indicate volumetric measures as follows—intraretinal fluid (red), subretinal fluid (green), PED (blue), and SHRM (cyan).
Bruch’s membrane is shown as a red line. In (A), FA shows an area of hypofluorescence due to hemorrhage, and a
well-demarcated area of hyperfluorescence due to a predominantly classic CNV that leaks in later frames. This was also
identified as classic CNV by our ML algorithm, due to increased SHRM height and volume. In (B), FA demonstrates an
ill-defined area of stippled hyperfluorescence, due to an occult CNV that leaks diffusely in mid and late frames, and was
also identified as occult CNV by the ML algorithm, due to the presence of the PED. In (C), FA shows an area of well-defined
hyperfluorescence in mid frames that stains and leaks in late frames due to fibrosis. The image was classified as classic CNV
by the reading center, but was identified as occult CNV by the ML algorithm due to low SHRM height and volume. In
(D), FA shows an area of hypofluorescence due to hemorrhage and a poorly demarcated area of hyperfluorescence due to
the CNV. This lesion was defined as minimally classic by the reading center, but was identified as classic CNV by the ML
algorithm due to the SHRM created by the hemorrhage. CNV, choroidal neovascularization; FA, fluorescein angiogram; ML,
machine learning; PED, pigment epithelium detachment; SD-OCT, spectral-domain optical coherence tomography; and
SHRM, subretinal hyperreflective material.
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Figure 6. SHAP analysis external validation. SHAP analysis for the CNV type predictions in
AVENUE. Every prediction contributes exactly one dot to each row. Blue and red colors indicate lower
and higher feature values, respectively. SHAP values (x-axis) add up to the predicted probability
for occult (only 20 features with highest SHAP variance shown here). BM, Bruch’s membrane; CNV,
choroidal neovascularization; HFL, Henle’s fiber layer; IB, inner boundary; ILM, inner limiting
membrane; IRF, intraretinal fluid; max, maximum; OB, outer boundary; OPL, outer plexiform layer;
PED, pigment epithelial detachment; RPE, retinal pigment epithelium; SHAP, SHapley Additive
exPlanations; and SHRM, subretinal hyperreflective material.

3.5. External Validation Using AVENUE Data

The performance of the model for differentiating predominantly classic from occult
CNV on SD-OCT images of AVENUE was AUROC = 0.88 (95% CI, 0.79-0.94; Figure 7).
Specificity was 84%, with sensitivity of 81%, when defining occult as the positive class and
predominantly classic as the negative class. There were seven false positives and 24 false
negatives out of 39 actually negative and 126 actually positive observations, respectively
(Table 8). The most important features (according to the model internal measures) for
detection of CNV were SHRM and PED (Figure 6 and Table 7).
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Table 7. The top 20 features from Figure 6 in descending order of importance.

Rank Feature Name
1 C-scan volume SHRM 1.5 mm
2 C-scan volume SHRM 3.0 mm
3 C-scan volume SHRM 0.5 mm
4 C-scan volume PED 1.5 mm
5 C-scan volume PED 3.0 mm
6 Central subfield thickness BM-to-OB_RPE 0.5 mm max
7 C-scan width SHRM 3.0 mm
8 C-scan height PED 1.5 mm
9 Central subfield thickness IB_RPE-to-ILM 1.5 mm max
10 Central subfield volume BM-to-OB_RPE 1.5 mm
11 Central subfield thickness IB_RPE-to-ILM 0.5 mm max
12 C-scan height IRF 3.0 mm
13 C-scan height PED 3.0 mm
14 Central subfield thickness BM-to-ILM 1.5 mm max
15 Central subfield thickness BM-to-OB_RPE 1.5 mm max
16 Central subfield thickness BM-to-ILM 3.0 mm min
17 Central subfield thickness OPL-HFL-to-ILM 0.5 mean
18 Central subfield thickness BM-to-ILM 0.5 mm max
19 Central subfield thickness BM-to-OB_RPE 0.5 mm mean
20 Central subfield thickness BM-to-ILM 3.0 mm max

S _
@ _
= off: 0.8058
ns.: 0.81 Cl: 50.74, 0 8;
pec.. 0.84 CI: (0.70,0.95
©
Z2d 7
>
:ﬁ
c
B
o
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o
8 - AUROC: 0.88 CI: (0.82, 0.95)
I I I I I I
1.0 0.8 0.6 0.4 0.2 0.0

Specificity

Figure 7. ROC analysis of predominantly classic versus occult external validation. Sensitivity versus
specificity for all possible cutoff points with respect to predicted occult scores in AVENUE, including
95% Cls (bootstrapped). The location of the red crosshair indicates the operating point of the model.
AUROC, area under the receiver operating characteristic; FA, fluorescein angiography; NEG, negative;
POS, positive; ROC, receiver operating characteristic; Sens, sensitivity; and Spec, specificity.
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Table 8. Contingency table, counting all combinations of the predicted versus observed. Predicted
indicates class predicted by the model; observed indicates class as graded on FA; and n indicates the
number of samples.

Predicted Observed n
POS (OCCULT) POS (OCCULT) 102
NEG NEG 32

POS (OCCULT) NEG 7
NEG POS (OCCULT) 24

4. Discussion

Until recently, FA was the reference standard to establish the diagnosis of nAMD and
sometimes is also used to monitor patient response to treatment, by assessing reduction in
leakage or CNV area [5,23]. However, due to the ease of image acquisition and interpreta-
tion, OCT has become the modality of choice for monitoring disease course in clinics [2-4].
As the two imaging modalities use different features and provide different data, here, we
presented a bridging study that used data generated on FA to identify and subclassify
CNV on SD-OCT, using ML with high accuracy. The availability of two independent sets
of large and well-characterized data from the HARBOR and AVENUE clinical trials with
well-defined inclusion and exclusion criteria, standardized protocols for acquisition of
images, and grading of CNV, allowed the development and robust external validation of
our model.

Our ML SD-OCT algorithm was trained using FA-based classification of CNV. This
algorithm, developed using Zeiss Cirrus OCT images, was able to discriminate CNV ab-
sence versus CNV presence with very high accuracy (99%) and subclassify occult from
predominantly classic CNV subtypes, with an accuracy of 91% AUROC. Furthermore, the
performance accuracy of the ML algorithm using an external dataset was 88%, despite it be-
ing a different SD-OCT machine (Heidelberg Spectralis). Accuracy of FA-versus OCT-based
approaches for detection of fluid has been explored by several researchers [24-26], but few
have attempted to bridge the two technologies for the identification and classification of
CNV [27-31]. Using FA as the reference standard for identification and classification of
CNV, Wilde et al. [31] retrospectively evaluated 278 eyes diagnosed with CNV on SD-OCT,
with their corresponding FA. They reported that while sensitivity of SD-OCT in detection of
CNV was high (100%), it had a low specificity, with a 17% false-positive rate. Their findings
were similar to other studies [26,28,30] that evaluated leakage on FA as a surrogate marker
for CNV activity and found the sensitivity of SD-OCT to be high, but lacking specificity in
comparison. Limited details of criteria for CNV identification by SD-OCT are provided
in this publication, and it appeared that decision-making was mainly based on subjective
criteria; features such as SHRM and PED were not included in the analysis of SD-OCT.

Our algorithm well-differentiated between occult and predominantly classic CNV
types, whereas the ability to differentiate minimally classic CNV from occult or predomi-
nantly classic was lower. Our model identified the most informative features for discrimi-
nation between occult and predominantly classic, such as SHRM and PED volumes; higher
SHRM volumes and lower PED volumes were most characteristic of predominantly classic
CNYV, as opposed to occult CNV. In contrast, absence of a well-defined SHRM in a case
classified as classic CNV on FA was diagnosed as occult CNV by our model (Figure 5C),
and the appearance of SHRM due to hemorrhage, resulted in our model identifying it
as predominantly classic CNV, while the lesion was classified by the reading center as
occult on FA (Figure 5D). Minimally classic CNV by definition has lesion components of
both classic and occult CNV [13]. As the algorithm learns to find salient characteristics
for either class during training, a class that combines characteristics of two other classes
(instead of having its own characteristic features), posed an intrinsically harder problem to
discriminate [13].

There are only a few publications that have attempted to correlate FA-defined pheno-
types of CNV with features of CNV on OCT [27,29]. In a recent study by Gualino et al. [29],
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five retina specialists compared SD-OCT combined with color fundus photography or FA in
148 patients with treatment-naive nAMD. They classified CNV as type 1, 2, or ‘other CNV’,
based on study-defined prespecified criteria, including features such as PED and SHRM in
their decision-making. Manual readouts performed using subjective criteria developed
specifically for these manuscripts/studies limit the wider application of their findings.
However, it is interesting and reassuring to note that our algorithm developed on FA takes
the same features into consideration as human graders in this study, to classify lesion types
into type 1 and 2 on SD-OCT [12,29]. The strength of our approach is that, it is completely
automated on SD-OCT and that we used the MPS standardized FA classification as the
base for classification of CNV [32]. Applied to clinical practice, this automated diagnostic
SD-OCT-only process may help to expand the population of patients that can benefit from
CNYV assessment, for example, in remote environments, without easy access to a retinal
center with multiple imaging modalities.

We also presented segmentation performance for the various OCT features. For
IRF and PED, the performance was poor at 0.46 (£0.12) and 0.63 (£0.07), respectively,
whereas for SRF, it was better (0.67 [£0.05]); see Table 1. Interestingly, for SHRM, the model
had good performance (0.71 [£0.06]). In the RETOUCH grand challenge, segmentation
performance ranged between 0.57-0.85 for IRF, 0.54-0.72 for SRF, and 0.66-0.82 for PED in
terms of DICE score [33]. SHRM segmentation was not part of the RETOUCH challenge. In
our study, SHRM performance was assessed using a subset of our annotations. The reduced
performance compared with the RETOUCH leaderboard for IRF and PED segmentation
could be due to the differences in image quality and the heterogeneous conditions within
the clinical trial setting (e.g., multiple study sites, imaging technicians, patient factors).
In contrast, the images in RETOUCH were selected for exceptionally high quality. The
challenges of manually identifying and correctly delineating these features on SD-OCT
and distinguishing them from adjoining normal retina, gliosis, or other lesions in clinical
trials and real-world settings cannot be underestimated. Therefore, an ML approach using
a variety of images of different quality to train the model may be generalizable to a wider
variety of data.

5. Limitations

ML is always impacted by variability and biases in the training data because the anno-
tation of images is performed manually. Although two graders annotated the OCT dataset,
each image was only annotated by one of them, potentially leading to a bias. Additionally,
FA assessment (the previous ‘reference standard’ for CNV assessment), is subject to reader
interpretation, however, here two graders assessed each FA image, with adjudication as
needed. Additionally, the scope of the current work is limited to classification of CNV on
FA as predominantly classic, minimally classic, and occult phenotypes. As information
about other CNV subtypes, such as retinal angiomatous proliferation and PCV, was not
available in HARBOR, these phenotypes could not be evaluated. Furthermore, novel
SD-OCT classification and terminology suggested by the Consensus on Neovascular Age-
Related Macular Degeneration Nomenclature (CONAN) group [12] were not available for
our data; therefore, comparison with an OCT-based classification system was not possible.
Moreover, as we restricted our selection of non-CNV eyes to fellow eyes without advanced
AMD or other pathologies, this may not be representative of what would be encountered
in the real world, and prospective validation in a broader population would be needed.
Finally, features such as intraretinal hyperreflective foci have not been included in this
model, as their role in diagnosis and prognosis have yet to be established [34].

6. Conclusions

Our study shows that using ML on SD-OCT images is sufficiently accurate to detect
and classify nAMD. This work highlights the reduced need of FA and provides an auto-
mated alternative to manual reading of images at baseline. This in turn limits the variety
of imaging data sources from which reads are drawn, reduces the need for multiple human
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graders, and minimizes the risk of inconsistencies in the diagnoses. Finally, automating the
read will also help with a major milestone of algorithmic models, which is to streamline
and standardize diagnostic processes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11060524/s1. Figure S1: non-nested cross-validation, Figure S2, Table S1: Definitions used
for the annotations, Table S2: Detailed feature list, Supplementary Methods: Details on ML methodology.
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