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Abstract: Technological innovations including risk-stratification algorithms and large databases
of longitudinal population health data and genetic data are allowing us to develop a deeper un-
derstanding how individual behaviors, characteristics, and genetics are related to health risk. The
clinical implementation of risk-stratified screening programmes that utilise risk scores to allocate
patients into tiers of health risk is foreseeable in the future. Legal and ethical challenges associated
with risk-stratified cancer care must, however, be addressed. Obtaining access to the rich health
data that are required to perform risk-stratification, ensuring equitable access to risk-stratified care,
ensuring that algorithms that perform risk-scoring are representative of human genetic diversity, and
determining the appropriate follow-up to be provided to stratification participants to alert them to
changes in their risk score are among the principal ethical and legal challenges. Accounting for the
great burden that regulatory requirements could impose on access to risk-scoring technologies is
another critical consideration.
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1. Introduction

“All Screening Programmes Do Harm; Some Do Good as Well, and of These, Some Do
More Good than Harm at Reasonable Cost” [1].

By 2025, 130 million genomes are expected to be sequenced, of which 83 million will be
cancer genomes [2]. Whole genome sequencing (WGS) results, when combined with other
real-world clinical and socio-demographic data, will allow for ongoing risk stratification
and re-classification with prognostic value not only for prevention but also for resource
allocation via targeted screening within given populations. This shift to a more dynamic,
algorithmic approach will improve, if not radically alter, population screening programmes
from both scientific and social perspectives.

In 1968, the WHO in its Principles and Practice of Screening for Disease set the
criteria for modern screening programs in populations [3]. Around the world, the general
criteria for establishing a screening programme still include the classical components of the
importance of the condition, an acceptable and suitable test (clinical utility), the availability
and acceptability of treatment, a policy on whom to treat, the availability of screening
facilities, and continuity [4]. The WHO criteria have since been refined to also include the
importance of an acceptable balance between benefit and harm, integrated monitoring
and evaluation (cost-effectiveness), equity, and informed choices [5]. With the exception
of newborn screening programmes that seek to find asymptomatic, at-risk newborns and
that are generally considered to be in the best interests of all children, participation in
population screening remains voluntary.

Screening finds apparently well persons in a given population who may have a disease
and who are then individually tested. Screening can also identify persons with an increased
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susceptibility to a genetic disease, but screening is not a diagnostic test. Screening is applied
across populations for diseases for which early detection and treatment can prevent or
at least, ameliorate the consequences. Screening can also be applied to sub-populations,
such as women over 50 years of age who are routinely offered breast cancer screening. Pap
smear and mammography screening initiatives date back to the 1950–1960s.

The intention of any cancer screening programme is not merely to detect cancers
but also to treat them so as to reduce deaths. Not all individuals involved in screening
benefit, and in fact, some can be harmed. The trade-offs include missing cancer diagnosis
or subjecting an individual to unnecessary investigation, overdiagnosis, and overtreatment.
To date, several studies in breast and prostate cancer have reported that tailoring screening
to an individual’s risk level could improve the efficiency of the screening program and
reduce its adverse consequences [6–8].

At present, the mammographic breast screening programmes for the general popula-
tion have age as the only entry criterion. The starting and stopping ages (varying from 40 to
74 years) and the frequency of screens (yearly to triennially) differ between countries [9].

The risk of developing breast cancer varies among women. There are different sub-
types of breast cancer, and the growth rate of breast cancers, even of the same subtype,
varies widely, from being almost static to fast-growing [10]. The age-based or the “one-
size-fits-all” approach, however, does not take into account the heterogeneity of the breast
cancer subtypes, biological behaviour, and the risk in the population.

Fast growing cancers quickly lead to symptoms and death. Uniform screening would
miss detecting fast growing tumours. Some tumours grow at a slow enough pace that
the individual would die from other causes before the cancer manifests symptoms. As
mentioned, detecting these tumours and treating them does not necessarily benefit the
person but can harm them. Nonetheless, it is not possible to determine if a cancer is
over-diagnosed. Identifying subgroups of individuals likely to have progressive tumours
and targeting screening to them or tailoring the screening frequency and age according to
their risk score could reduce the adverse consequences of screening.

The implementation of this approach must be carefully examined, including its socio-
ethical and legal implications. Indeed, some would argue that the notion that risk scores
will offer equivalent utility population-wide by providing informative risk stratification
across multiple diseases is misleading, “raising unrealistic expectations and implementing
programmes without careful evaluation risks compromising the application of risk scores
for specific niches, and indeed, of genomic medicine as a whole” [11].

Another challenge inherent in implementing population health screening programmes
is establishing the subsequent benefit–harm balance thereof [12–14]. Evidence of an ap-
propriate benefit–harm balance can be difficult to adduce for screening programmes, as
the earlier detection of disease can increase post-detection survival without decreasing
cancer-specific mortality [15–17]. Randomised controlled trials are considered to be the
gold standard for demonstrating the effectiveness of screening programmes. However,
performing randomised controlled trials (RCTs) of population screening programmes is
an onerous undertaking, as such trials are costly to implement and must necessarily be
performed relative to a stable cohort across many years [14]. Evidence of the benefit–harm
balance of a screening programme could potentially be adduced in reliance on data derived
from the long-term evaluation of its functioning upon implementation, to alleviate the
difficulties in performing RCTs [14].

Furthermore, the practical implementation of population screening creates further
potential obstacles to establishing that the benefits thereof outweigh the harms, as the
improper implementation thereof can negate the anticipated benefits [18]. Economic
factors can also be relevant to the implementation of a population screening programme.
The use of health-sector resources to implement and maintain a population screening
programme must be justified relative to other potential uses of available resources (e.g.,
administrative resources, funding, labor, use of technological infrastructure) [7,14].
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Assessing the benefit–harm balance of a population screening programme also re-
quires reaching consensus on a number of social policy issues. Such policy issues include
determining the most desirable balance between sensitivity and specificity (i.e., the balance
of false positives to false negatives) and establishing appropriate metrics for assessing cost-
effectiveness (e.g., increased screening could prevent more deaths but also could increase
false findings, overdiagnosis, and use of resources). For example, a screening test can lead
to improved prognosis or could lead to an improved quality of life or a less invasive course
of treatment because of the earlier detection of the concerned health condition. Conversely,
a false positive screening test could lead to unnecessary clinical interventions and to stress
and anguish for affected persons [19]. It is also critical to address issues of equitable access
and equitable outcomes in programme implementation.

Further, the active surveillance of identified low-risk cancers is increasingly used as
an alternative to surgical intervention in certain cancer treatment contexts, suggesting that
accurate risk stratification is of growing relevance to clinical decision-making (e.g., for
prostate cancers or thyroid cancers) [20–24]. Both Canada and England have successfully
implemented risk-stratified approaches to the follow-up care of cancer survivors (i.e.,
determining the magnitude of follow-up care and whether oncologists or primary care
physicians perform such follow-up) [25]. In sum, there is evidence that risk stratification
could improve both the cost–benefit and risk–benefit profiles of cancer interventions that
today present ambiguous cost–benefit and risk–benefit propositions, including cancer
screening [26–28]. Presently, individual characteristics, such as age and family histories
are used to determine whether screening or preventive mastectomy are liable to produce
better or worse outcomes for patients [29].

In this review, we examine the socio-ethical and legal implications of risk-based breast
cancer screening programmes. In particular, we study issues arising from stratification
approaches that use multivariate algorithms to improve personalized risk level assessment.
Such algorithmic breast cancer risk prediction models incorporate individual data, admin-
istrative health data, and possibly genetic data. Under this promising approach, women
receive an estimate of a risk level or category in the form of a risk score (e.g., average,
higher-than-average, high risk) (Part I). We also examine the impact of current regulatory
classification of polygenic risk scores on such stratified screening programmes (Part II).

We draw on our experience from the PERSPECTIVE I&I breast cancer project. This
“Personalized Risk Assessment for the Prevention and Early Detection of Breast Cancer”
seeks to improve risk-stratification to allow for cost-effective, population-based screening
in Canada.

2. PART I: Risk Stratification: Socio-Ethical Implications

Risk stratification is a proposed method to improve the benefit–harm balance of
screening programmes and other health interventions (e.g., preventive surgeries, lifestyle
modification) [30,31]. The rationale is to identify high-risk individuals within a chosen
population for targeted health interventions rather than to perform such interventions
across the entire population. This can improve the balance of risks and benefits and the cost-
effectiveness of the concerned interventions (e.g., by reducing the number of false positives
and overdiagnosis of screening programmes) [32]. In ensuring that health interventions are
provided to individuals that stand to benefit from them the most (i.e., through stratification),
the potential negative externalities of such interventions can be minimised and the potential
benefits maximised. The targeted provision of screening and other health interventions
could also help to ensure that greater benefit is obtained from such initiatives relative to
their costs. It must be acknowledged that certain elements of cost–benefit analysis remain
inherently subjective. Competing values are engaged, including accessibility, equity, and
benefit-maximization for both individuals and subpopulations [33].

Cancer care is susceptible to benefit from risk-stratified screening and other risk-
stratified health interventions. Certain cancers exhibit much worse prognosis for high-risk
individuals than for low-risk individuals, which implies that accurate risk stratification
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for the purposes of targeted intervention may be more apt to lead to improved clinical
outcomes than it is to increase cancer detection [34]. Screening methodologies that are
effective in cancer care are often associated with high costs or limited availability (e.g.,
genetic testing for BRCA 1 and BRCA 2) [35]. Preventive surgeries often impose significant
burdens on patients (e.g., inherent risks or associated adverse effects) [36,37]. Information
such as age, gender, family history of cancer, select biomarkers, and membership in select
populations that exhibit heightened risk (e.g., persons of Ashkenazi Jewish ancestry) [38]
are already relied on to personalise cancer care to anticipated risk in such subpopulations,
partly in recognition of these imperatives [39,40].

In developing policies and assessment methodologies for the provision of risk-stratified
healthcare, it is necessary to define the concerned population and to categorise popula-
tion members according to their individuated health risk in accordance with a defined
risk-stratification methodology. Methodologies for assessing individual health risk in-
clude algorithmic methodologies that entail the calculation of a risk score based on input
data and human-initiated methodologies that are reliant on clinical judgment to assess
health risk [41]. In practice, the most common are hybrid approaches, which involve the
application of human interpretation to algorithm-derived scores [42]. Consequently, the
ethical, legal, and policy issues considered relate both to the development of algorithmic
risk stratification methodologies and to the application thereof by clinicians (i.e., clinical
implementation).

Other related issues include ensuring that risk-stratification achieves comparable
performance across sub-populations and across human genetic diversity, ensuring that
individuals in different healthcare contexts obtain equitable access to risk-stratified care,
and ensuring that individuals and healthcare practitioners understand their respective re-
sponsibilities in obtaining appropriate follow-up care after their risk level has been assessed.

2.1. Access to Data Required to Develop and Understand Risk-Stratification Algorithms

One challenge to the creation of accurate risk-stratification algorithms relates to data
access. Creating accurate risk stratification algorithms for cancer can require the combina-
tion of data from multiple sources, including clinical data, environmental data, lifestyle
and behavioral data, and genomic data [43]. Contemporary initiatives have created breast
cancer risk prediction models that incorporate both the presence of known pathogenic
variants (e.g., BRCA 1 and BRCA 2) and polygenic risk scores that calculate a risk-score
expressing the cumulative risk arising from the presence of multiple genetic variants that
individually create small increases in genetic risk [44–46].

Large quantities of data from multiple sources are required to create accurate predic-
tions of health risk that account for multiple potential sources of health risk (e.g., genomic
data, clinical data, research data and data from biobanks, administrative health data, and
aggregate population-level information) [47–49]. Indeed, recent research suggests that the
creation of clinical risk scores for breast cancer that combine polygenic risk scores to other
established biomarkers could enhance the performance of risk prediction models [28,50].
Furthermore, continuing to refine and to improve upon risk-stratified healthcare delivery
will require access to rich data about the patients that participate in such initiatives and the
clinical outcomes of each, for broad quality assurance and research purposes.

Barriers to such data-sharing include non-harmonised or unclear data protection laws
and data localisation requirements, which can preclude the creation of large representative
datasets. Legal doctrines including collection limitation and data minimisation, purpose
limitation [51,52], and strict interpretations of consent requirements and anonymisation
requirements [53–55]—all common to data protection law—can impede the collection of
rich datasets and the efficient sharing thereof. Default preclusions on inter-institutional,
inter-sectoral, and international data flows can inhibit the creation of the data needed
to create effective risk-stratification algorithms, as it is difficult or impossible for one
institution to generate all the data needed to create such algorithms [56].
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There is no doubt that tailoring screening to scores via risk stratification not only
will foster more targeted care but also will help to promote the economic sustainability of
universal health care systems. To that end, age-based programmes require re-examination
as does screening frequency, to say nothing of accounting for human genetic diversity.

2.2. Risk Stratification across Human Genetic Diversity

Another challenge for the clinical implementation of stratified health risk is the need
to produce estimates that can be generalised for individuals exhibiting different genetic
ancestry or coming from different population groups. Risk stratification increasingly
leverages genetic data. Human genetic composition and determinants of genetic risk or
hereditary risk differ considerably across different human ancestry groups [57].

Health disparities in access to personalised risk stratification levels could arise across
different ancestral groups due to a lack of access to rich genomic data concerning such
ancestry groups that are often underrepresented in population health databases or large-
scale genetic databases (i.e., data concerning individuals that do not exhibit European
genetic ancestry) [2,58]. If insufficient input data are available for individuals of an ancestry
group, it is probable that a risk stratification algorithm would be less effective for that
group than for the larger population. Genetic ancestry groups that are underrepresented in
available data could therefore be subject to less accurate risk stratification than are genetic
ancestry groups that are traditionally well-represented in biomedical datasets.

To ensure that risk stratification algorithms can produce accurate risk-estimates for all
members of society, a number of approaches might be practicable. Possibilities discussed
in the scientific literature include the creation of separate PRS algorithms or risk stratifica-
tion methodologies for individuals from distinct genetic ancestry groups, as well as the
creation of a singular algorithm trained on holistic training data that are representative of
diversity in genetic ancestry (i.e., PRS scores with cross-population portability) [59–67]. In
either instance, it will be necessary for large quantities of rich data from diverse human
populations to be made available to health sector entities to ensure that risk stratification
methodologies yield equitable and applicable results [68].

2.3. Equitable Access to Risk Stratification

Ensuring equitable access to risk stratification programmes is another considerable
policy challenge. This is difficult because specialised staff, technological infrastructures,
and considerable data storage are required to implement and maintain risk-stratification
programmes. Such infrastructures may be accessible in the major metropolitan health
centres but could be inaccessible in healthcare centres located in rural areas or in healthcare
institutions situated in developing economies [69,70]. There is no doubt that infrastructural
investment in the informatics resources and personnel needed to support personalised
medicine should be adopted in tandem with risk stratification programmes.

Effective communication between members of the healthcare team is also required to
successfully act upon a heightened health risk [71,72]. If healthcare practitioners cannot
effectively ensure that the identification of heightened health risk leads to beneficial changes
in healthcare pathways or in patient decision-making, the enterprise of risk-stratified
care provision could be threatened [73,74]. It is therefore critical that health institutions
and health professionals understand and be able to act on the knowledge gained from
risk profiling.

2.4. Long-Term Follow-up for Risk-Stratified Patients

Another policy challenge for cancer risk stratification is the need to establish expec-
tations concerning the future care of screening participants who have been stratified into
specific risk levels. It is important to communicate whether the risk profile obtained is
anticipated to remain static in the future or whether changes in the individual’s health or
lifestyle or in the state of medical knowledge could prompt the recalculation of personalised
risk estimates. Certain risk factors are liable to change throughout the lifecycle (e.g., risk
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factors related to lifestyle choices and environmental exposures) [75]. Other assessed risk
factors could be subject to changed interpretations in the future, such as genetic variants,
the interpretation of which is susceptible to change as scientific consensus evolves (i.e.,
variant reclassification) [76].

Screened individuals should be informed of whether changes in their risk profile
will be communicated to them absent an intervention (e.g., in the instance that medical
knowledge evolves) and whether they should return for their risk category to be calculated
anew. It is dubious that the legal duties of healthcare practitioners include the obligation
to recontact screening participants to inform them of changes in their risk level resulting
from changes in scientific knowledge (e.g., a genetic variant reclassification or a modified
personal risk score arising from a change in the method used to assess genetic risk) [77,78].
A potential duty to update individuated risk profiles could however arise if a healthcare
practitioner learns about novel information that clearly changes prognosis or the treatment
path for a specific patient under the healthcare practitioner’s care [77,78].

Nonetheless, healthcare practitioners should clearly establish respective responsi-
bilities for ensuring the re-calculation and updating of risk levels in collaboration with
patients [31]. Empirical research drawn from the literature of genetic recontact suggests
that patients in the United Kingdom could anticipate that their physician will contact them
to update them as to changes in their health risk, unless told otherwise [79]. However, such
expectations might not be held in other countries in which most individuals do not have an
active and ongoing relationship with a primary care physician or with specialised genetic
care providers.

It also bears noting that patients have an established ethical right to decide whether
or not to be informed of new information that is relevant to their health status (i.e., the
right to know and its corollary, the right not to know). Therefore, it is prudent to dialogue
with patients to establish respective obligations to update individual health risk [80]. In the
future, it is possible that physicians could have a legal duty to alert patients to significant
changes in their health risk if new technologies were to enable the seamless integration
of such communication to clinical workflows (e.g., the advent of learning health systems
enabling the automated dissemination of updated risks scores to patients) [81].

3. PART II: Polygenic Risk Scores: Regulatory Implications

Genome-wide association studies (GWAS) have uncovered the relevance of inherited
variants to common complex diseases, furthering the integration of genetic data within risk
score algorithms [82,83]. Most non-communicable disorders have a genetic component that
comprises hundreds or thousands of genetic variants, each of which has a small effect on
the disease risk [83]. While genetic testing is widely used to diagnose monogenic diseases
determined by mutations in a single gene, polygenic disorders are caused by many genetic
variants located throughout the whole genome, as well as by environmental and lifestyle
factors [84]. Each of these variables is valuable in the pathway of the disorder, but it is not
informative for assessing the overall disease risk [82,83]. A PRS is a weighted sum of several
of the risk variants for a particular disease [83,84]. It provides an estimate of an individual’s
genetic vulnerability to a trait or disease [82]. In other words, PRSs are the tool by which
the knowledge of these common variants can be used to improve healthcare by providing a
point of reference that could place an individual is a lower-than-average, average, or above-
average risk category and therefore potentially improve screening, advance preventive
medicine, and achieve a more personalized treatment [12,83]. The estimate provided
by PRSs is calculated based on the individual’s genotype profile in comparison with
the relevant GWAS data [82]. The ever-growing use and availability of large quantity of
genomic and health-related data from which the foregoing can be discovered and furthered,
the identified advantages of preventive medicine, and the increasing personalization of
medicine have emphasized the use and potential usefulness of polygenic risk scores (PRS)
in risk stratification and screening practices and programmes [85].
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Considering the role that PRSs play and continue to play in programmes and practices
of screening and stratification involving genomic data, any of the implementation, adoption,
and development issues related to PRSs are therefore of paramount importance while
discussing those of programmes and practices of screening and stratification involving
genomic data. The regulatory framework applicable to PRS as a non-device clinical decision
support tool or as a medical device is one of the most crucial systemic implementation
issues. Regulatory frameworks differ in this context.

3.1. Regulatory Framework

Medical device (MD) regulatory frameworks ensure that MDs brought to market are
safe and effective. They do so by evaluating their quality, effectiveness, accuracy, and
safety [86,87]. PRSs keep evolving, moving from research discovery studies to clinical
research studies and to possible clinical implementation [83]. However, their clinical
utility and analytical validity are still to be improved and refined for wider clinical use
in risk prediction, treatment response, and prognosis [83]. These scientific and technical
limitations complicate their current definition within the regulatory frameworks, as their
use for medical purposes is uncertain under the law [12,85]. This uncertainty extends to
all jurisdictions. Furthermore, this uncertainty is exacerbated because, despite increasing
efforts, MD regulatory frameworks are not internationally harmonised. The regulatory
processes (requirements, costs, timelines, risk classes) as well as their applicability to the
specific device vary across jurisdictions. While in some jurisdictions, PRSs could be deemed
to fall under MD regulatory oversight, in others, they would not [88–92]. Moreover, as MDs,
they could be considered standalone MDs or accessories, or even in vitro (IV) MDs [85,93].

If the PRS were to fall within the oversight of MD regulation, it would impose time-
lines, costs, and stringent and formal requirements concerning the clinical evaluation and
safety and performance certifications on the manufacturer for the PRS to be placed in
the market [92,94–98]. The stringent and formal requirements involve hiring specialized
services to prepare the supporting documentation to attach to the application file. The costs
associated with obtaining MD licenses/certifications include administrative fees for the
regulatory agency to receive, evaluate, and issue the license/certification; the preparation
of supporting documentation; and annual renewals (in some jurisdictions). These costs
vary depending on the risk class assigned (out of four different risk classes), the type of
MD (MD or IVMD), and the jurisdiction (we reviewed Canada, the US, and the EU): they
can range between USD 300 and 12,000 for the administration fees, USD 300 for annual
fees, and USD 3000 and 8000 for the preparation of supporting documentation [99–103].
The timelines to undergo the regulatory approval process can range from 15 and 177 days,
depending on the same parameters as with respect to the costs [104–109].

Where PRSs are not regulated as MDs, PRSs would be considered non-device clinical
decision support tools. Clinical decision support refers broadly to tools that “provide
healthcare professionals and patients with knowledge and person-specific information, in-
telligently filtered or presented at appropriate times, to enhance health and healthcare” [90].
Tools that support diagnosis are one example. In this case, MD regulations do not apply.
Manufacturers and researchers are instead encouraged to follow best practices for valida-
tion and quality assurance (e.g., ISO standards related to health software, medical device
software, medical devices).

Subjecting PRSs to a MD regulatory framework would have enormous implications on
the use, implementation, and further development of PRSs and therefore on the associated
stratification and screening programmes. We identified two main implications for such a
classification: the further development of PRS and access thereto.

3.2. Further Development of PRS

Many aspects of the complexity, interpretation, understanding, and significance of
the information provided by PRSs still need to be refined, validated, and translated into
clinical tools and models via ongoing research [12]. For instance, despite the growing
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association between PRS and disease status in research-based case-control studies, the
clinical utility of PRSs is yet to be established [83]. For PRSs to be used by clinicians
or researchers for individual diagnosis, prediction, and stratification, relative risks will
need to be transformed to absolute risks [83]. The focus of PRSs would then have to be
able to provide information for a single individual [83]. In complex disorders, there are
multiple factors that contribute to the disease, all of which need to be properly understood
in order to avoid imperfect or incorrect measures and reactions that could give false
impressions of genetic determinism and could harm health decisions. Likewise, while
currently unknown, PRSs could have a role in treatment response and in refining the
penetrance of high-risk variants [83]. Moreover, as we have already mentioned, health
disparities may be exacerbated by the focus of GWAS studies on individuals of European
ancestries and the under-representation of the ancestries of minority ethnic groups and low-
and middle-income countries. Current PRSs have limited clinical applicability in minority
ethnic groups and low- and middle-income countries, as their specific ancestries are usually
under-represented in the databases used to calculate their risk scores [83]. Improving the
scientific validity, clinical utility, and clinical validity of PRSs, as well as increasing the
ancestry diversity, greatly depends on global collaboration.

Uncertain or burdensome regulatory frameworks may discourage collaboration in
some cases, as potential collaborators or funders may not want to have to face any potential
consequence of that uncertainty or burden. Likewise, if PRSs were to be deemed subject
to the MD regulatory framework, the resources that their creator(s) and/or funders need
to invest, as well as the efforts and time that they would need to devote, could very
likely disrupt the current practices of open and broad sharing associated with PRSs and
prompt instead a proprietary attachment to the PRS methodology and knowledge. For
instance, this kind of proprietary attachment and perspective could lead to pursuing forms
of intellectual property, which would encourage and enable restrictive, complicated, and
burdensome terms to use, share, and/or collaborate with PRSs. Some of these terms
could involve charging licensing fees or royalties to potential collaborators or users, which
could unnecessarily complicate, extend, and raise the costs of collaborations. Uncertain,
complicated, and/or costly collaboration caused either by MD regulatory frameworks
or forms of intellectual property could reduce the number of potential collaborators. A
reduced network of collaborators could disrupt or decelerate the development of PRSs,
their clinical utility, and their overall translation into the clinical setting [85]. Reduced
collaboration could also limit the peer-reviewed accuracy and improvement of the different
methods used to calculate the PRSs. Likewise, complicated and costly collaboration could
also delay the inclusion of diverse ethnic groups and the applicability of PRSs to non-
European populations.

Furthermore, the risk arising from an individual’s genetic information is dynamic, as it
depends on and changes with other factors such as age, environmental exposures, and the
exposure to other illnesses [12,83]. Consequently, despite the risk stratification provided by
an individual’s genetic information, if that individual is not exposed to the other factors,
the relevance of the genetic risk may change [83]. This dynamism requires a framework
that is sufficiently flexible for the risk scores and PRSs methodology and calculations to
adapt to these changes in order to provide an accurate risk assessment without having to
obtain new regulatory authorizations. The current MD regulatory frameworks do not offer
this kind of flexibility, as most changes in the regulated devices bring about the need for
new assessments to determine whether the risk class has changed and whether the device
continues to be safe and effective.

3.3. Access

Burdensome and lengthy regulatory frameworks can negatively impact access to
PRSs in two ways: delaying the availability of PRSs and limiting patient access thereto. If
MD regulatory frameworks were to oversee PRSs, the latter would need to meet all the
applicable requirements and obtain the necessary licenses and authorizations before they
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could be brought to market. Until these requirements are met and licenses are obtained,
populations would have to wait to be able to benefit from the use of PRSs. Burdensome
and lengthy regulatory frameworks would extend this wait time [85]. This delay would be
exacerbated by the fact that regulatory frameworks are not harmonised among jurisdictions.
Furthermore, given the costs associated with the compliance the regulatory frameworks in
each jurisdiction, these added costs could discourage the introduction of the PRS to specific
markets. The proprietary approach that burdensome and costly regulatory frameworks
could prompt is also likely to impact the prices to access PRSs, creating inequitable access
to PRSs and therefore to healthcare.

The detrimental effects that ill-suited, convoluted, or uncertain regulatory frameworks
could have on the development, implementation, use, and access of PRSs could also extend
to those of other risk assessment tools. One of these tools could be risk prediction mod-
els, which can incorporate PRSs combining clinical, biochemical, lifestyle, and historical
risk factors to predict 10-year risk of cardiovascular disease, diabetes, or breast/ovarian
cancer [12,40,83,85,110–113]. As such, inappropriate or uncertain regulatory frameworks
could prevent patients from having access to available PRSs, risk prediction models, or
screening programmes that could enable timely diagnoses that could offer the opportunity
to make simple changes in their lifestyles or more moderate adjustments such as diet or
exercise instead of undergoing more radical course of action such as surgical procedures or
pharmacological interventions [83]. CanRisk is one of these risk prediction models.

While much of the research on PRSs comes from an interest on predicting and offering
better screening and treatment for patients with cardiovascular diseases, type 2 diabetes,
breast, cervical, and prostate cancer, Alzheimer’s disease, and psychiatric disorders [83,114],
the strongest clinical utility has been found in cardiovascular diseases and in breast cancer.
Even in these cases, there are still issues with respect to the applicability of these risk
assessments across ethnic groups. This means that there are still several scientific, technical,
and implementation issues that need to be resolved. Regulatory frameworks must provide
certainty about the regulatory path and strike a balance between ensuring safety and
encouraging wide collaboration and equitable use.

Finally, the legal classifications used by the regulators, that is, medical devices versus
non-medical device clinical support tools, are not “value neutral”: The socio-economic,
equity, and professional implications of classification algorithms as medical devices versus
the professional standards approach of clinical support tools has global implications for
healthcare system costs, access, and use. It is self-evident that screening for common
diseases and ensuring the appropriate stratification of such efforts remain health goals
of public importance. Therefore, risk-stratified care performed in reliance on PRS scores
requires further policy consideration. The same can be said of the ensuing professional
obligations related to risk-stratification tools, and the possible commercialisation of strat-
ification tools such as PRSs. Yet, there is no doubt that screening, stratification, and risk
scores have yet to enter common, professional, public, and political parlance.

4. Conclusions

In closing, it bears mention that the clinical implementation of personalised medicine
in health care systems, including risk-stratified medicine, will require the secondary use of
coded health data to be performed as a default proposition rather than as an exception to
the general non-use of health data [115,116]. Legislators and regulators need to provide
clarification as to the potential to collect, retain, use, and share rich datasets for the purpose
of improving screening and healthcare delivery. Not all data protection laws make clear
the lawfulness of doing so; ambiguities regarding the potential to keep and to share such
data can inhibit the development of tools for personalised medicine [117].

Institutions participating in the creation of risk-stratification algorithms or input
datasets should create practices and procedures for the generation and sharing of data in
collaboration with other institutions that are host to relevant datasets. The adoption of
shared policies and the creation of collaborative data commons can enable the creation
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of large datasets to serve as training data for risk stratification algorithms, even if legal
standards are not harmonised in the jurisdictions of all collaborators [118]. Likewise, it
is important to create and promote clear and harmonised regulatory frameworks that
enable both the scientific advancement and safety of risk assessment and stratification
tools, such as the PRS and risk prediction models that facilitate those stratification and
screening programmes.

In the long term, the adoption of concerted national and international institutions
dedicated to the clinical implementation of personalised medicine and to the creation of
common platforms for data storage, harmonisation and interpretation are necessary [119].
Such bodies could support local institutions in integrating risk-stratified care to their local
practice and could participate in collecting and analysing the large evidence-base needed
to perform effective population screening and risk-stratification, in compliance with ethical
and legal norms [120]. Such centralised support could assist in the development of standard
practices to ensure that data are collected and interpreted in interoperable formats [121].
This support could also help delegate responsibilities for data interpretation to appropriate
specialists, thereby reducing the burden of data collection and interpretation by health
professionals and ensuring effective screening, stratification, and communication of risk
scores throughout the health system [122].
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