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Abstract: Myasthenia gravis (MG), an acquired autoimmune-related neuromuscular disorder that
causes muscle weakness, presents with varying severity, including myasthenic crisis (MC). Although
MC can cause significant morbidity and mortality, specialized neuro-intensive care can produce a
good long-term prognosis. Considering the outcomes of MG during hospitalization, it is critical to
conduct risk assessments to predict the need for intensive care. Evidence and valid tools for the
screening of critical patients with MG are lacking. We used three machine learning-based decision
tree algorithms, including a classification and regression tree, C4.5, and C5.0, for predicting intensive
care unit (ICU) admission of patients with MG. We included 228 MG patients admitted between
2015 and 2018. Among them, 88.2% were anti-acetylcholine receptors antibody positive and 4.7%
were anti-muscle-specific kinase antibody positive. Twenty clinical variables were used as predictive
variables. The C5.0 decision tree outperformed the other two decision tree and logistic regression
models. The decision rules constructed by the best C5.0 model showed that the Myasthenia Gravis
Foundation of America clinical classification at admission, thymoma history, azathioprine treatment
history, disease duration, sex, and onset age were significant risk factors for the development of
decision rules for ICU admission prediction. The developed machine learning-based decision tree
can be a supportive tool for alerting clinicians regarding patients with MG who require intensive
care, thereby improving the quality of care.

Keywords: myasthenia gravis; machine learning; intensive care unit; decision tree; predication

1. Introduction

Myasthenia gravis (MG) is an acquired autoimmune neuromuscular disorder present-
ing as muscle weakness in the eye, bulbar, limbs, and respiratory muscles that worsens
with repeated muscle motion [1,2]. The pathogenesis of MG is caused by antibodies
against post-synaptic proteins in the neuromuscular junction, the most common being
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the anti-acetylcholine receptor (AChR) antibody that accounts for 70% of patients with
MG, and 15% of patients with thymoma [3]. Currently, the management of MG has been
well-documented in recent years, and the survival rate of patients has improved [4–6].
However, the relapse rate and severity varies; approximately 38% of MG patients experi-
ence remission, and 10% are refractory to conventional rescue therapy, requiring repeated
hospitalization or intensive care unit (ICU) admission, resulting in a decline in the quality
of life and functional ability [7]. One of the most serious complications of MG is myasthenic
crisis (MC), which presents with respiratory distress requiring ventilator support [8]. About
10%–20% patient with MG will experience at least one episode of MC who require ICU
admission, and it is also the major cause of morbidity and mortality in MG [9,10]. A 10-year
retrospective review of ICU admission in MG showed that more than 50% of patients had
systemic infection during MC and 50% of patients with MC required ventilator support.
The majority reasons for cause of death were respiratory failure and sepsis [11].

Although MC can cause significant morbidity and mortality, specialized neuro-intensive
care, including respiratory monitor, nutrition support, non-invasive positive pressure ven-
tilation, and intubation, can produce a good long-term prognosis in patients with severe
MG symptoms [12–14]. The mortality rate of myasthenia crisis declined from 40% to 5%
recently because of the novel medication development and the improvement intensive
care techniques, especially related to ventilation management [15]. Specialized intensive
care can result in better prognosis [16]. A retrospective study shows that the mortality rate
is high (up to 30%) in places where intensive care resources are scarce [17]. Therefore, it
is critical for better prognosis of patients with MG to determine the need admission to
intensive care unit for close monitoring, and immediate access to resuscitation facilities
as early as possible. Due to these reasons, many studies have attempted to explore the
predictive factors for ICU admission in myasthenia crisis [18,19].

Autoimmune diseases, including MG, have chronic and fluctuating courses along
with a complex pathophysiology. Prediction of outcomes and risk factors for autoimmune
diseases is difficult due to the different phenotypes of clinical presentation. Current medical
treatment integrates machine learning (ML) methods that play a critical role in personalized
medicine by providing computers with the ability to learn from experience without rules
specified by humans [20]. The basic principle of ML is predictive performance on unseen
data that assists doctors in improving care quality and making precise decisions [21]. In ad-
dition, ML algorithms automatically learn useful data representations and process different
types of input data. Thus, ML fills a gap in learning from clinical experience. It translates
the knowledge gained into clinical evidence, with computers capable of predicting clin-
ical outcomes, recognizing disease patterns, detecting disease features, and optimizing
treatment strategies [22].

Considering the heterogeneity of myasthenia crises and the importance of intensive
care to improve prognosis, it is critical to conduct risk assessments to predict the need
for intensive care. Few studies had identified the risk factors of requirement of intensive
care or intubation in patient with MG, including higher MG activities of daily living (MG-
ADL) scores, initial symptom of bulbar weakness, infection, higher PCO2, and higher
Myasthenia Gravis Foundation of America (MGFA) clinical classification [18,23]. However,
there is still a lack of research constructing an effective prediction model for investigating
the need for intensive care and ICU admission specific to MG and providing a valid
tool for clinical factors screening and clinical practice. Our study aimed to construct an
explainable predictive model to predict ICU admission in patients with MG; this predictive
model was developed for clinical practice, based on ML decision tree methods, in order
to screen clinical factors and decision rules for clinical practice. To our knowledge, there
are no studies using ML-based decision tree techniques for building predictive models for
ICU admission in patients with MG. Three ML-based decision tree techniques, including
classification and regression tree (CART), C4.5, and C5.0, were used to construct explainable
predictive models for identifying important clinical factors and for developing decision
rules for ICU admission in MG patients during hospitalization.
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2. Materials and Methods
2.1. Participant and Study Design

The data of 513 hospital admissions of patients with MG who were admitted to the
Shin-Kong Wu Ho-Su Memorial Hospital in Taipei, Taiwan, between December 2015 and
October 2018, were retrospectively analyzed. The inclusion criteria for patients with MG
were (1) admission due to MG symptoms deterioration and (2) admission for MG-related
management, including thymectomy or for immunotherapy. The exclusion criteria were
(1) incomplete data and (2) admission that unrelated to myasthenia gravis. A total of
188 hospital admissions were excluded because they were not due to MG and 13 were
excluded due to data loss, respectively. After cleaning the data, data from 200 patients
with 312 hospital admissions were used for the analyses. The data in cases where the same
patient had been hospitalized for the same reason were merged. Finally, a total number
of 228 hospitalizations (including 200 patients) were used for the analysis (Figure 1). The
protocol of this study was evaluated and deemed acceptable by the Research Ethics Review
Committee of the Shin Kong Wu Ho-Su Memorial Hospital (No. 20190109R).

J. Pers. Med. 2022, 11, x FOR PEER REVIEW 3 of 17 
 

 

2. Materials and Methods 
2.1. Participant and Study Design 

The data of 513 hospital admissions of patients with MG who were admitted to the 
Shin-Kong Wu Ho-Su Memorial Hospital in Taipei, Taiwan, between December 2015 and 
October 2018, were retrospectively analyzed. The inclusion criteria for patients with MG 
were (1) admission due to MG symptoms deterioration and (2) admission for MG-related 
management, including thymectomy or for immunotherapy. The exclusion criteria were 
(1) incomplete data and (2) admission that unrelated to myasthenia gravis. A total of 188 
hospital admissions were excluded because they were not due to MG and 13 were ex-
cluded due to data loss, respectively. After cleaning the data, data from 200 patients with 
312 hospital admissions were used for the analyses. The data in cases where the same 
patient had been hospitalized for the same reason were merged. Finally, a total number 
of 228 hospitalizations (including 200 patients) were used for the analysis (Figure 1). The 
protocol of this study was evaluated and deemed acceptable by the Research Ethics Re-
view Committee of the Shin Kong Wu Ho-Su Memorial Hospital (No. 20190109R). 

 
Figure 1. Subject identification process. 

2.2. Data Collection and Clinical Measurement 
A retrospective review of medical records, including information on the age, sex, age 

at diagnosis, disease duration, autoantibodies present, medications used, maximum dos-
age of corticosteroid before admission, thymic histology, history of thymectomy, treat-
ment during hospitalization, and length of ICU admission, was conducted. Disease sever-
ity was graded according to the classification of the Myasthenia Gravis Foundation of 
America (MGFA) classification. Twenty clinical variables were collected. Table 1 lists 
twenty clinical factors (variables X1–X20) associated with patient with MG that may affect 
ICU admission. 

The inclusion criteria for patients with MG were (1) Myasthenia Gravis Foundation 
of America (MGFA) class II and III, and (2) no medication adjustment in the last 6 months. 
The exclusion criteria were (1) unstable MG symptoms and (2) history of intensive im-
muno-modulation therapy, including immunoglobulins, high dose intravenous cortico-
steroid, or plasmapheresis, 6 months before enrollment—because the use of these short 
action immunotherapy means that the patient has a life-threatening phenomenon and un-
stable symptoms. Patients were eligible if they were diagnosed with MG based on the 
MGFA criteria. Briefly, the diagnosis of MG was based on fluctuating muscle weakness 
with fatigability, decreased symptom severity after use of acetylcholinesterase inhibitors, 
decremental changes in repetitive nerve stimuli on repetitive nerve stimulation test, or 
presence of anti-AchR autoantibodies. 

The MGFA clinical classification was based on previous reviews that represented the 
clinical severity of the patient upon admission [24]. The maximum daily oral steroid dose 
before admission was recorded from the dosages during outpatient visits conducted 
within 1 month before hospitalization. Disease duration was defined as the time from the 
onset to the first visit after December 1, 2015. 

Figure 1. Subject identification process.

2.2. Data Collection and Clinical Measurement

A retrospective review of medical records, including information on the age, sex, age
at diagnosis, disease duration, autoantibodies present, medications used, maximum dosage
of corticosteroid before admission, thymic histology, history of thymectomy, treatment
during hospitalization, and length of ICU admission, was conducted. Disease severity was
graded according to the classification of the Myasthenia Gravis Foundation of America
(MGFA) classification. Twenty clinical variables were collected. Table 1 lists twenty clinical
factors (variables X1–X20) associated with patient with MG that may affect ICU admission.

The inclusion criteria for patients with MG were (1) Myasthenia Gravis Foundation of
America (MGFA) class II and III, and (2) no medication adjustment in the last 6 months.
The exclusion criteria were (1) unstable MG symptoms and (2) history of intensive immuno-
modulation therapy, including immunoglobulins, high dose intravenous corticosteroid,
or plasmapheresis, 6 months before enrollment—because the use of these short action
immunotherapy means that the patient has a life-threatening phenomenon and unstable
symptoms. Patients were eligible if they were diagnosed with MG based on the MGFA
criteria. Briefly, the diagnosis of MG was based on fluctuating muscle weakness with fatiga-
bility, decreased symptom severity after use of acetylcholinesterase inhibitors, decremental
changes in repetitive nerve stimuli on repetitive nerve stimulation test, or presence of
anti-AchR autoantibodies.
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Table 1. Variable definitions.

Variables Description Unit

X1 Age at admission Age of first visit after 1 December 2015 Years

X2 Disease duration Time from the onset to the first visit after
1 December 2015 Months

X3 Age at onset Age of MG symptoms onset Years
X4 Gender Male/Female —

X5 MGFA clinical classification

The maximum MGFA clinical severity
during enrollment period:

1: Class I: ocular muscle weakness
2: Class II: Mild limbs, axial, bulbar or

respiratory weakness
3: Class III: Moderate limbs, axial,

bulbar or respiratory weakness
4: Class IV: Severe limbs, axial, bulbar or

respiratory weakness
5: Class V: Intubation

—

X6 Thymoma Thymus present with thymoma Yes/No

X7 Hyperplasia Thymus present with
thymic hyperplasia Yes/No

X8 Thymectomy

History of received thymectomy
0: No

1: Received thymectomy at
presented hospitalization

2: Received thymectomy before

—

X9 Anti-AChR Ab Serology of autoantibody against
Anti-AChR Yes/No

X10 Anti-MuSK Ab Serology of autoantibody against
Anti-MuSK Ab Yes/No

X11 dSN Double seronegative Yes/No

X12 PSL Maximum daily dose
The maximum dose of corticosteroid
from the first visit between December

2015 and October 2018
mg

X13 OI
Treatment with Oral

Immunosuppressant during enrollment
period

Yes/No

X14 AZA Treatment with Azathioprine during
enrollment period Yes/No

X15 MMF Treatment with Mycophenolate mofetil
during enrollment period Yes/No

X16 OT Treatment with Oral Tacrolimus during
enrollment period Yes/No

X17 IVIG
Treatment with Intravenous

immunoglobins during
enrollment period

Yes/No

X18 PP

Treatment with plasmapheresis during
enrollment period

1: No
2: 5 sessions

3: >5 sessions

—

X19 IC Treatment with intravenous
corticosteroid during enrollment period Yes/No

X20 RTX Treatment with Rituximab during
enrollment period Yes/No

Y ICU admission

ICU admission was defined as greater
than 1 day
0: ≤1 day
1: >1 day

—

Note: Anti-AChR Ab—anti-acetylcholine receptor; Anti-MuSK Ab—muscle-specific receptor tyrosine kinase;
dSN—double-seronegative; PSL—prednisolone; OI—oral immunosuppressant; AZA—azathioprine; MMF—
mycophenolate mofetil; IVIG—intravenous immunoglobins; PP—plasmapheresis; IC—intravenous corticosteroid;
RTX—rituximab; OT—oral tacrolimus; ICU—intensive care unit.
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The MGFA clinical classification was based on previous reviews that represented the
clinical severity of the patient upon admission [24]. The maximum daily oral steroid dose
before admission was recorded from the dosages during outpatient visits conducted within
1 month before hospitalization. Disease duration was defined as the time from the onset to
the first visit after 1 December 2015.

The history of thymectomy was divided into three categories, as follows: (1) the
patient had never undergone thymectomy; (2) the patient had undergone thymectomy
during this admission; (3) thymectomy had been performed previously. The treatment
during hospitalization included plasmapheresis, intravenous corticosteroid administration,
intravenous immunoglobulin administration, and rituximab administration. Treatment
with plasmapheresis was divided into three categories, as follows: (1) the patient did not
undergo plasmapheresis; (2) the patient underwent five sessions; (3) the patient underwent
more than five sessions. The serology status of MG autoantibodies included anti-AChR
antibody and anti-MuSK antibody positivity or negativity, as well as double seronegativity.

As per the protocol of our hospital, patients with MG who are hospitalized for thymec-
tomy must be observed in the ICU for 1 day after the operation. This distinguishes which
groups of MG patients require ICU admission and then further divides them into two
categories: ICU admission more than 1 day and less than 1 day. Most patients with MG
are treated regularly in the ward, and those who require thymectomy are required for
admission to the ICU for 1 day. Therefore, ICU admission in our study was defined as
greater than 1 day.

In total, 228 patients included in the study (Figure 1) along with 20 clinical variables.
Patient demographics are presented in Table 2. The average age at admission was 49.1 years
with female predominance (61.4%). The average disease duration was 68.75 months. The
average age at onset of MG symptoms was 43.2 years. Of the patients, 88.2% showed
anti-AChR antibody positivity, 4.8% showed anti-MuSK antibody positivity, and 7.5%
showed double seronegativity. A total of 12.7% of the patients were admitted to the ICU
for more than 1 day.

Table 2. Subject demographics.

Characteristics Metrics

Basic Information: Mean ± SD

X1: Age at admission 49.14 ± 17.01
X2: Disease duration 68.75 ± 84.40
X3: Age at onset 43.22 ± 17.43
X4: Gender: N (%)

Male 88(38.60%)
Female 140(61.40%)

X5: MGFA clinical classification: N (%)
Class I 24(10.53%)
Class II 88(38.60%)
Class III 74(32.46%)
Class IV 26(11.40%)
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Table 2. Cont.

Characteristics Metrics

Basic Information: Mean ± SD

Class V 16(7.02%)
Thymus: N (%)

X6: Thymoma:
No 118(51.75%)
Yes 110(48.25%)

X7: Hyperplasia:
No 161(70.61%)
Yes 67(29.39%)

X8: Thymectomy:
No 80(35.09%)

Received thymectomy at presented 93(40.79%)
Received thymectomy before 55(24.12%)
Autoantibody: N (%)

X9: Anti-AChR Ab:
No 27(11.84%)
Yes 201(88.16%)

X10: Anti-MuSK Ab:
No 217(95.18%)
Yes 11(4.82%)

X11: dSN:
No 211(92.54%)
Yes 17(7.46%)

Treatment status: Mean ± SD
X12: PSL Maximum daily dose 14.60 ± 15.68
X13: OI: N (%)

No 91(39.91%)
Yes 137(60.09%)

X14: AZA: N (%)
No 152(66.67%)
Yes 76(33.33%)

X15: MMF: N (%)
No 219(96.05%)
Yes 9(3.95%)

X16: OT: N (%)
No 222(97.37%)
Yes 6(2.63%)

X17: IVIG: N (%)
No 213(93.42%)
Yes 15(6.58%)

X18: PP: N (%)
No 66(28.95%)

5 sessions 131(57.46%)
>5 sessions 31(13.60%)

X19: IC: N (%)
No 185(81.14%)
Yes 43(18.86%)

X20: RTX: N (%)
No 222(97.37%)
Yes 6(2.63%)

Y: ICU admission: N (%)
≤1 day 199(87.28%)
>1 day 29(12.72%)

Note: Anti-AChR Ab—anti-acetylcholine receptor; Anti-MuSK Ab—muscle-specific receptor tyrosine kinase;
dSN—double-seronegative; PSL—prednisolone; OI—oral immunosuppressant; AZA—azathioprine; MMF—
mycophenolate mofetil; IVIG—intravenous immunoglobins; PP—plasmapheresis; IC—intravenous corticosteroid;
RTX—rituximab; OT—oral tacrolimus; ICU—intensive care unit.
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The MGFA clinical classification at admission divided the patients into 5 groups:
24 patients (10.53%) were classified as class I, 88 patients (38.60%) as class II, 74 patients
(32.46%) as class III, 26 patients (11.40%) as class IV, and 16 patients (7.02%) as having MG
crisis. Regarding the medications used, 141 patients (60.1%) were treated with different
oral immunosuppressants. According to the thymus histology, 110 patients (48.25%)
had thymoma, and 67 patients (29.39%) had thymic hyperplasia. A total of 148 patients
underwent thymectomy.

2.3. Machine Learning-Based Decision Tree Analysis

ML-based decision tree algorithms are popular and effective approaches for clini-
cal/healthcare classification problems that visually represent the decision rules of generated
predictions using a tree-shaped figure [25–27]. A decision tree is composed of nodes that
are the optimum spilt of each feature, calculated by Gini or Entropy [28]. Gini measures the
probability that any element of the dataset will be mislabeled when it is randomly labeled.
Similar to Gini, Entropy measures information that indicates the disorder of the features
with the target. Thus, this study utilized three most used tree-based algorithms including
the following: CART, a decision tree based on the Gini method [29]; C4.5, a decision tree
based on the Entropy method [30]; C5.0, an upgraded version of C4.5 that adds several
facilities, such as variable misclassification costs [31]. The logistic regression (LR) is used as
a baseline for performance comparison as it is a classic regression algorithm that focused
on binary classification problems by calculating the natural logarithm of an odds ratio
(logit). It predicted the logit of the dependent variable, that is, the ratio of probabilities of
the dependent variable occurring from the logit of independent variables [32].

Figure 2 shows the overall flowchart of the proposed scheme. In the proposed scheme,
we first collected patients with MG and identified the subjects to prepare the dataset for
model construction, then the dataset was randomly split into 80% training dataset for
model building and 20% testing dataset for out of sample testing. Twenty clinical variables
(X1 to X20) were used as predictor variables and ICU admission (Y) was applied as the
target variable.

During the training phase, the hyperparameters of CART, C4.5, and C5.0 methods
needed to be tuned for constructing a relatively well performed model, so we applied a
10-fold cross-validation technique for tuning the hyperparameters of each method. The
training dataset was further randomly divided into 10 equal-sized folds, then 9 folds were
used as a training dataset to build the model with a different set of hyperparameters, the
remaining 1 fold was used as a validation dataset for model validation. The 10-fold cross-
validation was repeated 10 times, by changing the fold of the validation dataset, thus the
best hyperparameters set, which generated the best validation performance, based on the
area under the receiver operating characteristic (ROC) curve (AUC) metric for each decision
tree method, which was then used to construct the best CART, C4.5, and C5.0 models.

In the model evaluation phase, the testing dataset was used to evaluate the predictive
performance of the best CART, C4.5, and C5.0 models. The metrics used for performance
comparison were accuracy, sensitivity, specificity, AUC, and F1 score. In order to provide a
more robust comparison, the process mentioned above was randomly repeated 10 times,
and the averaged metrics were used to find the best decision model among the best CART,
C4.5, and C5.0 models.

Finally, based on the best decision tree model, the decision rules could be developed,
and the important clinical variables were identified. The rules were then discussed to
improve the early recognition and care of patients with MG who need intensive care.



J. Pers. Med. 2022, 12, 32 8 of 16
J. Pers. Med. 2022, 11, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 2. The overall flowchart of the proposed scheme. 

During the training phase, the hyperparameters of CART, C4.5, and C5.0 methods 
needed to be tuned for constructing a relatively well performed model, so we applied a 
10-fold cross-validation technique for tuning the hyperparameters of each method. The 
training dataset was further randomly divided into 10 equal-sized folds, then 9 folds were 
used as a training dataset to build the model with a different set of hyperparameters, the 
remaining 1 fold was used as a validation dataset for model validation. The 10-fold cross-
validation was repeated 10 times, by changing the fold of the validation dataset, thus the 
best hyperparameters set, which generated the best validation performance, based on the 
area under the receiver operating characteristic (ROC) curve (AUC) metric for each deci-
sion tree method, which was then used to construct the best CART, C4.5, and C5.0 models. 

In the model evaluation phase, the testing dataset was used to evaluate the predictive 
performance of the best CART, C4.5, and C5.0 models. The metrics used for performance 
comparison were accuracy, sensitivity, specificity, AUC, and F1 score. In order to provide 
a more robust comparison, the process mentioned above was randomly repeated 10 times, 
and the averaged metrics were used to find the best decision model among the best CART, 
C4.5, and C5.0 models. 

Figure 2. The overall flowchart of the proposed scheme.

All methods were implemented in the R software with the 3.6.2 version. LR was
constructed by the “blorr” package with the 0.3.0 version [33]; CART was constructed by
the “rpart” package with the 4.1.15 version [34]; C4.5 was constructed by the “RWeka”
package with the 0.4.42 version [35]; C5.0 was constructed by the “C50” package with the
0.1.5 version [36]. The hyperparameters of all the methods used were tuned by the “caret”
package with the 6.0.88 version [37].

3. Results

According to the proposed scheme, for modeling effective CART, C4.5, and C5.0
models, the hyperparameters of each method were tuned and evaluated. The LR method
without hyperparameters tuning—the baseline method—was constructed by using the
proposed scheme. The values of the hyperparameters which generated the best CART, C4.5,
and C5.0 models with the highest AUC values are listed in Table 3. Figure 3 uses confusion
matrices to demonstrate the predicted results of LR, CART, C4.5, and C5.0 methods. From
this figure, it can be observed that the best C5.0 method generated the best positive and
negative predicted results compared with that of the best LR, CART, and C4.5 methods.
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Table 3. Summary of the values of the hyperparameters for the best CART, C4.5, and C5.0 models.

Methods Hyperparameters Value Meaning

CART

minispilt 20
The minimum number of observations
that must exist in a node for a split to

be attempted.

minibucket 20 The minimum number of observations
in any terminal node.

maxdepth 10 The maximum depth of any node of
the final tree.

xval 10 Number of cross-validations.

cp 0.0781
Complexity parameter: The minimum
improvement in the model needed at

each node.

C4.5

C 0.5 The confidence threshold tree size
of pruning.

M 3 The minimum number of instances
per leaf.

C5.0

trials 20 The number of boosting iterations.

model Tree The model growing of type.

winnow F The tree be decomposed into a
rule-based model.

CART—classification and regression tree; C4.5—C4.5 decision tree; C5.0—C5.0 decision tree; cp—
complexity parameter.
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The performance of the LR, CART, C4.5, and C5.0 methods with 10 repetitions is
shown in Table 4, with the average and standard deviation (SD) of the 5 metrics used in
this study. As shown in the table, the CART, C4.5, and C5.0 methods have better AUC
performance than the classic LR. Among all three decision tree algorithms, C5.0 had the
highest average AUC (0.814), followed by CART and C4.5. The C5.0 method also performed
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best in terms of the accuracy (0.942), sensitivity (0.994), and F1 score (0.967). The ROC
curves, as well as the one SD of the mean AUCs of all methods, are shown in Figure 4. The
figure shows that C5.0 is the best predictive model in this study.

Table 4. The performance of the LR, CART, C4.5, and C5.0 methods.

Methods Accuracy
Mean (SD)

Sensitivity
Mean (SD)

Specificity
Mean (SD)

AUC
Mean (SD)

F1 Score
Mean (SD)

LR 0.862(0.08) 0.892(0.11) 0.702(0.27) 0.797(0.17) 0.915(0.06)
CART 0.942(0.02) 0.993(0.02) 0.633(0.10) 0.811(0.05) 0.967(0.01)
C4.5 0.929(0.03) 0.978(0.03) 0.639(0.09) 0.810(0.05) 0.959(0.02)
C5.0 0.942(0.02) 0.994(0.02) 0.639(0.09) 0.814(0.05) 0.967(0.01)

LR—logistic regression; CART—classification and regression tree; C4.5—C4.5 decision tree; C5.0—C5.0
decision tree.
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As C5.0 has the best AUC and outperforms the four competing methods, the impor-
tant clinical factors and decision rules generated and suggested by the best C5.0 model
are discussed.

4. Discussion

This is the first study to use the ML decision tree method for predicting ICU admission
in patients with MG. The C5.0 method generated the best and most promising classification
results and provided an output of six clinical features that were critical for determining the
risk of ICU admission. Figure 5 shows the decision rules for the prediction of ICU admission
in MG patients based on the six important clinical factors of the best model—the C5.0 model.
Table 5 summaries decision rules of combinations of clinical factors from Figure 5. The
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rules in Figure 4 and Table 5 are then discussed to improve the early recognition and care
of patients with MG who need intensive care.
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Table 5. Summarized decision rules of combinations of clinical factors.

Rules No. Combinations of Clinical Factors Cases Positive/Negative Accuracy

1 MGFA (>4) 9 Positive 100%
2 MGFA (≤4) + Thymoma (No) 81 Negative 98.7%

3 MGFA (≤4) + Thymoma (Yes)
+ AZA(No) 47 Negative 95.7%

4 MGFA (≤4) + Thymoma (Yes) +
AZA(Yes) + Disease duration (>41) 14 Negative 92.8%

5
MGFA (≤4) + Thymoma (Yes) +

AZA(Yes) + Disease duration (≤41) +
Gender (Male)

4 Positive 100%

6

MGFA (≤4) + Thymoma (Yes) +
AZA(Yes) + Disease duration (≤41) +

Gender (Female)+Age at
present (≤50)

2 Positive 100%

7

MGFA (≤4) + Thymoma (Yes) +
AZA(Yes) + Disease duration (≤41 +

Gender (Female)+Age at
present (>50)

2 Negative 100%

Note: AZA—Azathioprine.

The MGFA classification and the presence of thymoma were two of the important
physiological indices. The MGFA clinical classifications are used to identify the different
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clinical features and severity of patients with MG [38]. The higher the class of MGFA, the
more severe the symptoms. The severity at the onset of MG constituted a grave risk in our
patients, and the MGFA class at admission reflected the severity of MG upon admission.
The association of disease severity with a high risk of death could be explained by the
frequent involvement of the bulbar and respiratory muscles in these individuals. An MGFA
score of 4 indicates severe MG symptoms or an acute crisis that may require ventilator
support or intensive care [38]. Another physiological index for MG that influences ICU
admission is the presence of thymoma, which was found in approximately 15%–60%
of MG cases [39–41]. The presentation of thymoma is caused by an immune response
in thymoma cells [42]. Studies showed controversial outcomes and disease severities
regarding different thymic pathologies [43]. Zhang et al. also demonstrated that MG
patients with thymoma had a poorer prognosis than patients without thymoma [39] due to
serious disease manifestations. Our results are in line with those of previous studies that
show the important role of thymoma in ICU admission among patients with MG.

In addition, this study demonstrated that some treatments have influenced ICU ad-
mission in patients with MG, including treatment with oral azathioprine (AZA). According
to the international guidelines for the management of MG, immunosuppressive therapy
is used in patients with MG who have poor response to pyridostigmine alone [5]. AZA
was added early if the patient had comorbidities, such as diabetes, significant depression
(with steroids potentially exacerbating their mood), osteoporosis, and leg ulcerations and
could not tolerate steroid treatment [39,44]. Therefore, patients used AZA due to comor-
bidities and side effects that cause physicians to change their medications. This also meant
that such patients are likely to have other comorbid diseases that influence their need for
ICU admission.

The onset age and disease duration also influenced ICU admission in patients with
MG. Our results showed that late-onset MG, defined as MG at an onset age >50 years,
had a negative prediction for ICU admission. Previous studies indicated that patients
with late-onset MG are likely to have a thymoma and a severe disease that is difficult to
treat [45,46]. An observational cross-sectional multicenter study showed that patients with
late-onset MG may present with more severe symptoms than younger patients [47]. Other
large cohort studies suggested that late-onset MG patients are prone to increased disease
severity, and the mortality rate increased in the elderly [15,48]. This is because elderly
patients with MG tend to have comorbidities and complications, such as sepsis, resulting
in long hospital stays and high costs [49]. Old onset age of MG could be associated with
an increased susceptibility to autoimmune diseases, due to immune dysregulation and
increased inflammatory background that can cause a high production of autoantibodies [49].
Although the elderly have a more severe presentation than younger patients, they require a
low dosage of medications, have better prognosis to management, and a short weaning
time in the ICU after a myasthenic crisis [48]. This may explain why elderly patients were
less likely to be admitted in ICU in our study.

Our findings found that disease duration shorter than 41 months was a factor that
could influence ICU admission in patients with MG [50]. Many reports have not concluded
that disease duration is closely associated with the prognosis in patients with MG [51]. A
large retrospective study, that is very similar to ours, demonstrated that the majority of
deaths occurred 5–10 years after the onset of the disease and rarely within 5 years; however,
the risk of death tended to decrease after 15 years of the prevalence of the disease [52]. Since
it is an autoimmune disease, proper medical intervention helps stabilize the symptoms
significantly [52]. This may be because the longer the course of the disease, the more stable
the drug treatment and the better the psychological adaptation of the patient to the disease,
resulting in a lower the rate of hospitalization requiring ICU admission. Our findings,
distinguished from other studies, defined an absolute point—that disease duration of 41
months can predict ICU admission. To the best of our knowledge, no previous study has
defined how long the duration of the disease may affect the outcomes of MG, and our
studies provide new insights into the clinical intensive care of MG.
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Management of MG upon admission would benefit from a good understanding of
the disease course. In this study, many of the risk factors associated with the prognosis
of hospitalized MG patients requiring ICU admission were identified using the C5.0 algo-
rithm. C5.0 is a promising ML-based decision tree algorithm and has been successfully
used in clinical/healthcare issues [26,53]. Previously published predictive factors of the
prognosis of MG in MG deterioration, severity, and hospital stay have used multivari-
able logistic regression analyses [49,54,55]. This research found that, compared with LR,
C5.0 and the other two ML-based decision tree algorithms can generate a better accuracy.
The results confirmed that ML algorithms are important for disease detection and risk
assessment in several autoimmune diseases, such as rheumatoid arthritis [56,57]. ML can
help clinicians detect and process clinically useful information in small patient samples,
gain a good understanding of disease courses, adapt treatments earlier, and find the best
management plan [56]. Most importantly, the natural course of an MG phenotype is highly
variable and impacts the disease clinical course and prognosis significantly, with no good
prediction target [58]. Our study tried to use the ensemble learning method to construct a
decision tree model for predicting ICU admission in MG patients during hospitalization
for future studies.

Some investigators have evaluated the potential risk factors of ICU care in patient with
MG. A retrospective study showed that higher MG-ADL scores with bulbar involvement
and higher MGFA classification were associated more frequently in the ICU group. Better
outcomes may be obtained with early intensive care management if the patient presents
with those factors [18]. Liu et al. suggested that CO2 level before intubation and the score
on MG-ADL at onset may be associated with prolonged ICU stays [20]. Some respiratory
management had been found for prevention of intubation, and prolonged ventilator use
in patients with MG had also been reported, including bilevel positive airway pressure
(BiPAP) [13], and hypercapnia could also be a predicting factor for early intubation under
BiPAP [12]. However, there was still no valid guidance that could identify the need for
intensive care in MG early.

This study had several clinical implications. First, the variable phenotype of MG
makes it difficult to determine the optimal management plan and prognosis; therefore,
physicians can use this decision tree model to identify patients likely to have ICU admission
during hospitalization. Second, this study may provide a possible tool for clinical guidance
for ICU clinicians to improve intensive care quality. This is because patients with MG
who are likely to stay in the ICU have a high mortality, require a ventilator, and suffer
severe disability. Due to the improvement in management and development of intensive
care techniques, the fatality rate of MG has been less than 5% in the recent years [15].
An early diagnosis of MG patients who need ICU can improve survival and outcomes.
Third, as ML expands its access to health care for patients with rheumatic disease, this
study, using ML methods to assess ICU admission, revealed a new point of view, and the
results showed that ML methods can provide a predictive accuracy. Using this method
could improve the quality of care of patients with MG. The model can be combined with
other clinical parameters, including the respiratory rate, difficulty with phonation, weak
neck muscles, oxygenation, and advanced electronic functionalities, such as monitoring of
partial pressure of carbon dioxide and testing of vital capacity. This study recommends
the model as a primary benchmarking tool to be used in the evaluation of MG patients
during hospitalization.

There are some limitations to this study. First, the usefulness of the model is probably
restricted to our hospital because of inter-hospital differences that impact the model of
ICU strategy in MG. Second, the data were acquired from chart reviews, and the spe-
cific details of each patient, such as the quantitative MG score, which can quantify the
severity and outcomes of treatment, were not available for analysis. Third, due to the
heterogeneity of MG symptoms, our model failed to account for additional clinical factors
known to influence ICU admission. These include the partial pressure of carbon dioxide at
admission, the activities of daily living score at myasthenia crisis onset, and nosocomial
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infection [18,20]. Finally, these models were chosen based on clinical data. Other variables,
such as corticosteroid dose, treatment period, and previous underlying diseases, including
chronic obstructive pulmonary disease and diabetes, were not included in our analysis.
Multicenter studies should be performed to ensure that the results are not due to artifacts
in ML systems. In addition, multicenter studies may complete the framework of this study.

5. Conclusions

This study uses an ML-based decision tree approach to predict ICU admission in pa-
tients with MG. Decision tree methods are promising tools that can build a predictive model
of ICU admission in patients with MG, and they can provide physicians with information
to evaluate the potential risk of ICU admission in patients with MG. Due to the varying
clinical presentation of patients with MG, the model produced can be used for performance
benchmarking and as a supportive tool for alerting clinicians regarding the patients with
MG who require intensive care and management; therefore, enabling clinicians to provide
timely and effective treatment, improving care quality and patient outcomes.
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