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Abstract: Recent studies utilizing deep convolutional neural networks (CNN) have described the
central venous catheter (CVC) on chest radiography images. However, there have been no studies
for the classification of the CVC tip position with a definite criterion on the chest radiograph. This
study aimed to develop an algorithm for the automatic classification of proper depth with the
application of automatic segmentation of the trachea and the CVC on chest radiographs using a deep
CNN. This was a retrospective study that used plain chest supine anteroposterior radiographs. The
trachea and CVC were segmented on images and three labels (shallow, proper, and deep position)
were assigned based on the vertical distance between the tracheal carina and CVC tip. We used a
two-stage approach model for the automatic segmentation of the trachea and CVC with U-net++

and automatic classification of CVC placement with EfficientNet B4. The primary outcome was a
successful three-label classification through five-fold validations with segmented images and a test
with segmentation-free images. Of a total of 808 images, 207 images were manually segmented and
the overall accuracy of the five-fold validation for the classification of three-class labels (mean (SD))
of five-fold validation was 0.76 (0.03). In the test for classification with 601 segmentation-free images,
the average accuracy, precision, recall, and F1-score were 0.82, 0.73, 0.73, and 0.73, respectively. We
achieved the highest accuracy value of 0.91 in the shallow position label, while the highest F1-score
was 0.82 in the deep position label. A deep CNN can achieve a comparative performance in the
classification of the CVC position based on the distance from the carina to the CVC tip as well as
automatic segmentation of the trachea and CVC on plain chest radiographs.

Keywords: image; central venous catheter; deep learning; machine learning; artificial intelligence; AI

1. Introduction

In the emergency room and intensive care unit, temporary central venous catheters
(CVC) placed on internal jugular, subclavian, and femoral vein catheters are frequently used
for drug administration, central venous pressure monitoring, and short-term hemodialy-
sis [1,2]. The ideal position of the CVC tip via the internal jugular vein (IJV) and subclavian
vein (SCV) is in the bottom one-third of the superior vena cava (SVC) near the junction
of the right atrium (RA) and SVC [3–5]. If the CVC is implanted too deeply in the RA,
central venous pressure monitoring may still be performed, but malignant arrhythmias
and catheter erosion may develop, leading to perforation, hemothorax, and cardiac tam-
ponade [6,7]. If it is positioned too shallowly, the risk of local venous thrombosis, catheter
malfunction, and cranial retrograde injection increases [8,9].

Clinicians can attempt to position the CVC tip for optimal placement using a variety
of techniques during and after the procedure. The intracavitary electrocardiographic
method is currently recommended in international guidelines for determining the proper
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depth of the CVC tip [10,11]. Transesophageal echocardiography is the gold standard
for assessing the placement of the CVC tip [12]. Transthoracic echocardiography with
a contrast enhancement may be an accurate method of detecting CVC misplacements
following IJV cannulation [13]. However, these techniques may not be readily accessible in
clinical practice settings such as the emergency room and intensive care unit. Postprocedure
chest radiograph imaging was not necessary because a chest radiograph is not a reliable test
to confirm the tip location, and it has the major disadvantage of being post-procedural [14].
However, confirmation of tip location by this radiograph remains acceptable practice and
is required in the absence of technology used during the procedure [14–16]. Because of its
widespread availability and low cost, it might still be the most common tool for confirming
the position of the CVC tip [16,17].

Recent studies utilizing deep convolutional neural networks (CNNs) have described
the CVC on chest radiography images [18–23]. Among them, two studies showed that the
network for segmentation can increase the effectiveness of CVC tip detection and type
classification [18,19]. Only one study demonstrated that deep learning using the National
Institute of Health (NIH) ChestXRay14 dataset could classify the catheter malposition
(normal, abnormal, and borderline) [21]. However, there was no definite criterion for the
placement of the CVC tip on the chest radiograph and its performance. The vertical distance
between the tracheal carina and the CVC tip in CXR could be a simple and precise method
to confirm not only the safe placement of the CVC tip but also its optimal positioning for
accurate hemodynamic monitoring. [16] This study aims to develop an algorithm for the
automatic classification of the proper depth based on the vertical distance between the
tracheal carina and the CVC tip (shallow, proper, and deep position) with the application
of automatic segmentation of the trachea and the CVC on chest radiographs using a deep
CNN.

2. Methods
2.1. Study Design

This was a retrospective study employing plain chest supine anteroposterior (AP)
radiographs for automatic segmentation of the trachea and the CVC and classification of
the distance between the carina of the trachea and the tip of the CVC using a deep CNN.
The study was conducted between September 2021 and July 2022 at a regional emergency
center at a tertiary hospital in Seoul (Seoul, Korea) using data from January 2017 to August
2021. The Institutional Review Boards (IRBs) at Hanyang University Hospital approved this
study (reference number 2021-08-063) and waived the requirement for informed consent.
All methodologies and procedures were conducted in line with the Helsinki Declaration.

2.2. Dataset of Participants

A flowchart of data collection and analysis is shown in Figure 1.

2.2.1. Extraction and Categorization of Images on Chest Radiograph with CVC

We organized and collected supine AP chest radiographs of 18 to 80-year-old patients
who underwent the CVC procedure in the emergency room between January 2017 and
August 2021. Images with the CVC were extracted by searching the comment of “C line”
or “C-line” using the picture archiving and communication system (PACS, Centricity, GE
Healthcare, Milwaukee, WI, USA). Except for the permanent catheter and the temporary
CVC implanted through the femoral vein, we included images of the temporary CVC
inserted through the IJV and SCV. We omitted images with extensive pleural effusion,
hemothorax, and pneumothorax, as well as low-quality images caused by serious trauma
to anatomical structures. We did not, however, exclude images with an endotracheal
tube, electrodes, or nasogastric tubes. In our emergency room, IJV and SCV catheters are
inserted to a depth of 14 to 18 cm, depending on the direction and vein type, using almost
real-time ultrasound guidance or infrequently landmarks [24,25]. Kang et al. reported that
the distance of −6.7 to 15.6 mm on the chest radiograph is a simple and accurate guide
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for confirming the safe placement of the CVC tip and optimal positioning for accurate
hemodynamic monitoring [15]. The area under the curve (AUC) was 0.987 for the SVC
entrance of the CVC tip and 0.965 for the RA insertion of the CVC tip. With this range, we
classified chest radiograph images under three labels (shallow, proper, and deep position).
Two authors (Jung, S. and Oh, J.) agreed on each position of the carina and the CVC
tip and drew two horizontal lines between them. We measured the vertical distance
from the carina to tip (CTD) in millimeters (mm) using the PACS scale. These images
were assigned one of three CVC position labels: (1) shallow CVC location (−6.7 mm),
(2) proper CVC position (between −6.7 and 15.6 mm) (3) deep CVC position (more than
15.6 mm) based on the vertical distance between the carina and CVC tip [15]. When
storing images for data collection, these were extracted and stored as digital imaging and
communication in medicine (DICOM) format images utilizing a PACS system without
any personal information. Before coding and saving, arbitrary numbers were allocated
to photos before they were taken at random and stripped of any personally identifying
information.
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Figure 1. Flowchart of data collection for training/validation with segmented images and a test set
with segmentation-free images in the study. All the images are classified according to CTD. CVC,
central venous catheter; CTD, distance from the carina to tip of the catheter.

2.2.2. Segmentation of the Trachea and the CVC on Images

In agreement with another author (Oh, J.), an author (Jung, S.) painted the entire
trachea and the entire CVC area as binary masks to segment them. Using the AVIEW pro-
gram, these segmented images were saved as NIfTI (Neuroimaging Informatics Technology
Initiative) files (AVIEW-Research, Corelinesoft, Seoul, Korea).

2.3. Proposed Models for Classification of Three Classes of CVC Position with Application of
Automatic Segmentation Using Deep CNN

Figure 2 represents the work flow of our classification model. It classifies the CVC
position on chest radiograph images with three labels: shallow, proper, and deep position.
Inspired by [21,26], we proposed a two-stage classification model that segments the trachea
and CVC region first, then uses the segmentation results for the classification of the CVC
position. To segment the trachea and the CVC regions, we used U-net++ (unet++) with
fine-tuning of our own dataset. For the classification of the segmentation result, we utilized
the EfficientNet-b4 (effnet) model, which required only a single segmented image as an
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input. We employed the initially pretrained EfficientNet on the ImageNet dataset and then
fine-tuned its parameters using our own dataset. The input image and binary masks of
the trachea and catheter identified by our segmentation network were concatenated and
fed to the classification network. We resized input images as 224-by-224 resolution and
trained them with 50 epochs and 32 batches. The AdamW optimizer and OneCycleLR
scheduler were used to minimize the cross-entropy loss during training, and the learning
rate and weight decay factor were set to 0.0001 and 0.005, respectively. All training and
testing phases were carried out on a RTX 3090 GPU, and we implemented our model as
PyTorch library (PyTorch).
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Figure 2. Work flow of our segmentation model of the trachea and CVC as well as three-class problem
for correct position of the CVC tip on chest radiographs. U-net++ generates segmentation results as
binary images. These binary segmentation images are fed into EfficientNet-b4 as an additional input
to enhance the classification accuracy of the three-class problem of CVC position.

2.4. Experiments

We separately trained the proposed models for the segmentation and classification
tasks and evaluated their performance using five-fold cross-validation on a training and
validation set comprised of segmented images. Images of chest radiographs were randomly
divided into five sets; four of the five sets were used for training, and the remaining set was
used for validation. This strategy would allow us to train the five models using five distinct
training and validation datasets to validate the model generalization. Finally, we trained
the optimized model with whole sets of training images and evaluated the classification
performance of the CVC tip position using a test set.
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2.5. Primary Outcomes

The primary outcome was a successful three-class problem based on the relationship
between the tracheal carina and the tip of the CVC. We selected the prediction label with the
highest prediction probability from the three-class labels, validated five-fold performance
using a module with accuracy, precision, recall, and F1-score, and analyzed these values
according to the performance of each label. The proportion of accurate predicted images
relative to the total images of predictions was the accuracy. Precision was the ratio of
correctly positive predicted images by our network to all positive predicted images, which
was the positive predictive value. Recall was sensitivity or the proportion of correctly
positive predicted images by our network to all real positive images. F1-score was the
harmonic mean of precision and recall.

2.6. Statistical Analysis

The data were compiled using a common spreadsheet program (Excel 2016; Microsoft,
Redmond, WA, USA) and analyzed using NCSS 12 (Statistical Software 2018, NCSS, LLC.
Kaysville, UT, USA, http://www.ncss.com/software/ncss (accessed on 31 May 2022)). The
Shapiro–Wilk test was performed to demonstrate the normal assumption of all datasets.
Depending on the normality, we generated descriptive statistics and presented them as
median and interquartile range (IQR) or mean and standard deviation (SD) for continuous
data. Student’s tests or Mann–Whitney tests were used to compare the CTD between the
segmented and segmentation-free data in same label. p-values < 0.05 were considered
statistically significant.

3. Results

Out of the total 808 images, 207 were categorized as 77 images of shallow position,
80 images of proper position, and 50 images of deep position for training and five-fold
validation. The distances between the tracheal carina and the CVC tip did not differ
significantly between segmented and segment-free image datasets except in the proper
position (Table 1). Table 2 represents the results of five-fold validation for the classification
of the three-class problem based on the distance between the CVC tip and the carina.
Overall accuracy (mean (SD)) of five-fold validation was 0.76 (0.03).

Table 1. Label-based comparison of the distances between the carina of the trachea and the tip of the
CVC in segmented and segmentation-free image datasets.

The Distance from the Carina to Tip of the CVC (CTD), Median (IQR)

Segmented Images
for the Training and 5-Fold Validation

Segmentation-Free Images
For the Test p-Value

Labels
Shallow, mm −16.39 (−26.04, −11.23) −19.11 (−26.31, −12.46) 0.30
Proper, mm 0 (−2.84, 9.865) 4.57 (0, 10.45) 0.02
Deep, mm 34.19 (21.9, 46.18) 32.61 (23.02, 45.17) 0.99

CTD, the distance from the carina to tip of the CVC; CVC, central venous catheter; IQR, interquartile range.

Table 2. Outcomes of five-fold validation for classification of three labels according to the vertical
distance from the carina to the CVC tip.

1-Fold 2-Fold 3-Fold 4-Fold 5-Fold Total

Overall Accuracy
(F1 score) 0.76 0.74 0.71 0.80 0.76 0.75

http://www.ncss.com/software/ncss
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Table 3 shows the confusion matrix and overall performance and each label for clas-
sifying the segmentation-free images following training with all segmented images. The
overall accuracy was 0.73. The average accuracy, precision, recall, and F1-score were 0.82,
0.73, 0.73, and 0.73, respectively. Accuracy had the highest value of 0.91 in the shallow
position label, whereas the F1-score had the highest value of 0.82 in the deep position label.

Table 3. Confusion matrix (A) and outcomes (B) of performance test for classification of three labels
of segmentation-free images after training with all segmented images.

(A) Confusion Matrix
Labels

Shallow Proper Deep Sum

Prediction
Shallow 33 22 7 62
Proper 16 127 30 173
Deep 10 77 279 366

Sum 59 226 316 601

(B) Outcomes
Labels

Shallow Proper Deep Average

Overall
Accuracy 0.73

Accuracy 0.91 0.76 0.79 0.82
Precision 0.53 0.73 0.76 0.73

Recall 0.56 0.56 0.88 0.73
F1 score 0.55 0.64 0.82 0.73

4. Discussion

In this study, we first proposed a deep CNN for an automatic three-label classification
model for the proper position of the CVC tip relative to the tracheal carina using chest
radiograph images. In tests with segmentation-free images, the overall accuracy was 0.73
which represents the true positive proportion of all cases including the three classifications.
In each label classification, the shallow label classification had the best accuracy at 0.91.
This indicates that our network accurately classified 91 out of 100 images as shallow label
images and non-shallow label images. The precision of the deep label classification was
0.76, the highest. This means that when our network classifies 100 images as deep label
images, 76 images of the predictions are accurate, while the remaining 24 images are wrong.
The most sensitive was the deep classification with 0.88 of recall. This indicates that 88 out
of 100 deep images are accurately predicted by our network, while the remaining 12 are
incorrectly classified. F1-score, the harmonic mean of precision and recall was the highest
at 0.82 in the deep classification since precision and recall were both the highest.

Five-stage research questions covering presence, detection of the tip, course, type, and
satisfactory position were answered for the study about catheter positions on radiographs
using a deep CNN [23]. Sabramanian et al. demonstrated that the automatic detection and
type classification of the CVC on chest radiographs is feasible with a high performance
using a modified U-net for segmentation and a random forest for type classification [22].
However, they did not conduct the classification of proper position of the CVC tip. Yu
et al. reported that their novel multi-task deep CNN using U-net for catheter segmentation
and Faster R-CNN/VGG-net for tip detection achieved the best performance with an
F1-score of 0.74 for detecting the tip of the peripherally inserted central catheter (PICC)
in chest radiograph images [18]. Lee et al. demonstrated that absolute distances from
ground truth to predicted mask using PICC line segmentation and tip region of interest
with full CNN were 3.10 mm on mean, with a standard deviation of 2.0 mm [19]. However,
there was no classification report for the PICC tip position. Khan et al. reported that their
proposed network achieved about 0.98 for macro-average AUC in 11 labels, including the
CVC, nasogastric tube, and endotracheal tube placement [21]. There was no result for
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classification of only CVC position. In our test with U-net++ for CVC line segmentation
and EfficientNet-b4 for the CVC position classification, overall accuracy for the three labels
was 0.73. Average accuracy and F1-score were 0.82 and 0.73, respectively. However, we did
not estimate the accuracy of tip detection and the difference between the ground truth and
the predicted mask of the CVC tip. There is no deep learning study for the proper position
of the CVC tip that compares to our network’s performance. In our previous study for the
proper position of the endotracheal tube tip on chest radiography using deep CNN, we
achieved high sensitivity and specificity about 0.85~0.93 for shallow and deep positioning
of the endotracheal tube while the precision and F1-score were low, at about 0.32~0.46
for them [26]. If the postoperative chest radiograph is to be used as a screening tool to
assess the optimal depth of the CVC tip, it should be more sensitive. The recall (sensitivity)
of the shallow and appropriate images were 0.56 while the recall of the deep image was
0.88. We think that the performance of our network using the chest radiograph could be
acceptable as a screening tool when we focus on fatal issues that arise in the deep cases
of CVC tip rather than the shallow cases. We believe that chest radiography would still
be useful for the conformation for the proper depth of the CVC tip when intracavitary
electrocardiographic and ultrasound is not available. If our network for classification of
the CVC tip on chest radiograph using deep CNN is developed as a suitable software,
alarm messages from this software could aid physicians working in busy and human
resources-limited environments such the emergency room.

In a study of deep CNNs and classification of 12 categories based on the distance from
the carina and the endotracheal tube tip at 1.0 cm intervals, the performance for detecting
shallow position images of the tube tip was 0.67 for recall, while for deep position images,
it was 0.90. This was due to the network mislabeling the ground truth of 70–80 mm above
the carina for a prediction of 60–70 mm, which reduced the sensitivity [27]. In this study,
we classified three labels for the CVC position with one decimal point between −6.7 and
15.6 mm. The recall for detecting shallow CVC position was 0.56, while it was 0.88 for
detecting deep CVC position. We believed this was difficult work in comparison to the
study on endotracheal tube positioning using deep CNN and chest radiographs because of
the narrow range of classification and the thin tip of the CVC catheter.

There were several limitations in this study. Regardless of the CVC insertion site, we
applied the classification for the proper depth of the CVC tip based on the same criteria.
It may actually be different according to right and left. Our proposed method could not
detect the caudal position of the CVC because we excluded these images. We used data
from chest radiographs taken at an emergency room from a single center, and this network
model may not be applicable to other environments. The patient’s position influences chest
radiographic verification of catheter tip position, and anatomical variation may also impact
the interpretation of the tip position [28,29]. Finally, we did not compare our algorithm’s
effectiveness as a screening tool to that of clinicians regarding aspects of inappropriate
CVC tip position detection and time to detection.

5. Conclusions

Deep CNNs can achieve a comparative performance in the classification of the CVC
position based on the distance from the carina to the CVC tip as well as on automatic
segmentation of the trachea and CVC on plain chest radiographs.
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et al. European Society of Anaesthesiology guidelines on peri-operative use of ultrasound-guided for vascular access (PERSEUS
vascular access). Eur. J. Anaesthesiol. 2020, 37, 344–376. [CrossRef]

11. Pittiruti, M.; Pelagatti, F.; Pinelli, F. Intracavitary electrocardiography for tip location during central venous catheterization: A
narrative review of 70 years of clinical studies. J. Vasc. Access 2021, 22, 778–785. [CrossRef]

12. Wirsing, M.; Schummer, C.; Neumann, R.; Steenbeck, J.; Schmidt, P.; Schummer, W. Is traditional reading of the bedside chest
radiograph appropriate to detect intraatrial central venous catheter position? Chest 2008, 134, 527–559. [CrossRef] [PubMed]

13. Corradi, F.; Guarracino, F.; Santori, G.; Brusasco, C.; Tavazzi, G.; Via, G.; Mongodi, S.; Mojoli, F.; Biagini, R.U.D.; Isirdi, A.; et al.
Ultrasound localization of central vein catheter tip by contrast-enhanced transthoracic ultrasonography: A comparison study
with trans-esophageal echocardiography. Crit. Care 2022, 26, 113. [CrossRef] [PubMed]

14. Gorski, L.A.; Hadaway, L.; Hagle, M.E.; Broadhurst, D.; Clare, S.; Kleidon, T.; Meyer, B.M.; Nickel, B.; Rowley, S.; Sharpe, E.; et al.
Infusion Therapy Standards of Practice, 8th Edition. J. Infus. Nurs. 2021, 44, S1–S224. [CrossRef] [PubMed]

15. Parmar, M.S. (F)utility of "routine" postprocedural chest radiograph after hemodialysis catheter (central venous catheter) insertion.
J. Vasc. Access. 2021, 22, 4–8. [CrossRef] [PubMed]

16. Kang, M.; Bae, J.; Moon, S.; Chung, T.N. Chest radiography for simplified evaluation of central venous catheter tip positioning for
safe and accurate haemodynamic monitoring: A retrospective observational study. BMJ Open 2021, 11, e041101. [CrossRef]

17. Tomaszewski, K.J.; Ferko, N.; Hollmann, S.S.; Eng, S.C.; Richard, H.M.; Rowe, L.; Sproule, S. Time and resources of peripherally
inserted central catheter insertion procedures: A comparison between blind insertion/chest X-ray and a real time tip navigation
and confirmation system. Clinicoecon. Outcomes Res. 2017, 7, 115–125. [CrossRef]

18. Yu, D.; Zhang, K.; Huang, L.; Zhao, B.; Zhang, X.; Guo, X.; Li, M.; Gu, Z.; Fu, G.; Hu, M.; et al. Detection of peripherally inserted
central catheter (PICC) in chest X-ray images: A multi-task deep learning model. Comput. Methods Programs Biomed. 2020, 197,
105674. [CrossRef]

http://doi.org/10.1056/NEJMra011883
http://www.ncbi.nlm.nih.gov/pubmed/12646670
http://doi.org/10.2214/ajr.179.2.1790309
http://www.ncbi.nlm.nih.gov/pubmed/12130425
http://doi.org/10.1016/j.crad.2012.10.013
http://www.ncbi.nlm.nih.gov/pubmed/23415017
http://www.ncbi.nlm.nih.gov/pubmed/9226858
http://doi.org/10.5455/medarh.2014.68.300-303
http://doi.org/10.4103/2229-5151.164940
http://doi.org/10.1093/bja/aes497
http://doi.org/10.1016/S0002-9610(99)00124-5
http://doi.org/10.1097/EJA.0000000000001180
http://doi.org/10.1177/1129729820929835
http://doi.org/10.1378/chest.07-2687
http://www.ncbi.nlm.nih.gov/pubmed/18641117
http://doi.org/10.1186/s13054-022-03985-3
http://www.ncbi.nlm.nih.gov/pubmed/35449059
http://doi.org/10.1097/NAN.0000000000000396
http://www.ncbi.nlm.nih.gov/pubmed/33394637
http://doi.org/10.1177/1129729820907259
http://www.ncbi.nlm.nih.gov/pubmed/32114897
http://doi.org/10.1136/bmjopen-2020-041101
http://doi.org/10.2147/CEOR.S121230
http://doi.org/10.1016/j.cmpb.2020.105674


J. Pers. Med. 2022, 12, 1637 9 of 9

19. Lee, H.; Mansouri, M.; Tajmir, S.; Lev, M.H.; Do, S. A Deep-Learning System for Fully-Automated Peripherally Inserted Central
Catheter (PICC) Tip Detection. J. Digit. Imaging 2018, 31, 393–402. [CrossRef]

20. Niehues, S.M.; Adams, L.C.; Gaudin, R.A.; Erxleben, C.; Keller, S.; Makowski, M.R.; Vahldiek, J.L.; Bressem, K.K. Deep-Learning-
Based Diagnosis of Bedside Chest X-ray in Intensive Care and Emergency Medicine. Investig. Radiol. 2021, 56, 525–534. [CrossRef]

21. Khan, A.B.M.; Ali, S.M.A. Early Detection of Malpositioned Catheters and Lines on Chest X-Rays using Deep Learning. In
Proceedings of the 2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST),
Tangerang, Indonesia, 29–30 June 2021; pp. 51–55. [CrossRef]

22. Subramanian, V.; Wang, H.; Wu, J.T.; Wong, K.C.L.; Sharma, A.; Syeda-Mahmood, T. Automated Detection and Type Classifi-
cation of Central Venous Catheters in Chest X-rays. In Proceedings of the Medical Image Computing and Computer Assisted
Intervention—MICCAI 2019, Shenzhen, China, 13–17 October 2019; Springer: Cham, Switzerland, 2019; Volume 11769. [CrossRef]

23. Yi, X.; Adams, S.J.; Henderson, R.D.E.; Babyn, P. Computer-aided Assessment of Catheters and Tubes on Radiographs: How
Good Is Artificial Intelligence for Assessment? Radiol. Artif. Intell. 2020, 2, e190082. [CrossRef]

24. Lee, J.B.; Lee, Y.M. Pre-measured length using landmarks on posteroanterior chest radiographs for placement of the tip of a
central venous catheter in the superior vena cava. J. Int. Med. Res. 2010, 38, 134–174. [CrossRef] [PubMed]

25. Kim, W.Y.; Lee, C.W.; Sohn, C.H.; Seo, D.W.; Yoon, J.C.; Koh, J.W.; Kim, W.; Lim, K.S.; Hong, S.B.; Lim, C.M.; et al. Optimal
insertion depth of central venous catheters–is a formula required? A prospective cohort study. Injury 2012, 43, 38–41. [CrossRef]
[PubMed]

26. Jung, H.C.; Kim, C.; Oh, J.; Kim, T.H.; Kim, B.; Lee, J.; Chung, J.H.; Byun, H.; Yoon, M.S.; Lee, D.K. Position Classification of
the Endotracheal Tube with Automatic Segmentation of the Trachea and the Tube on Plain Chest Radiography Using Deep
Convolutional Neural Network. J. Pers. Med. 2022, 12, 1363. [CrossRef]

27. Lakhani, P.; Flanders, A.; Gorniak, R. Endotracheal Tube Position Assessment on Chest Radiographs Using Deep Learning. Radiol.
Artif. Intell. 2020, 3, e200026. [CrossRef]

28. Kowalski, C.M.; Kaufman, J.A.; Rivitz, S.M.; Geller, S.C.; Waltman, A.C. Migration of central venous catheters: Implications for
initial catheter tip positioning. J. Vasc. Interv. Radiol. 1997, 8, 443–449. [CrossRef]

29. Aslamy, Z.; Dewald, C.L.; Heffner, J.E. MRI of central venous anatomy: Implications for central venous catheter insertion. Chest
1998, 114, 820–825. [CrossRef] [PubMed]

http://doi.org/10.1007/s10278-017-0025-z
http://doi.org/10.1097/RLI.0000000000000771
http://doi.org/10.1109/ICAICST5311609
http://doi.org/10.1007/978-3-030-32226-7_58
http://doi.org/10.1148/ryai.2020190082
http://doi.org/10.1177/147323001003800115
http://www.ncbi.nlm.nih.gov/pubmed/20233522
http://doi.org/10.1016/j.injury.2011.02.007
http://www.ncbi.nlm.nih.gov/pubmed/21377676
http://doi.org/10.3390/jpm12091363
http://doi.org/10.1148/ryai.2020200026
http://doi.org/10.1016/S1051-0443(97)70586-4
http://doi.org/10.1378/chest.114.3.820
http://www.ncbi.nlm.nih.gov/pubmed/9743173

	Introduction 
	Methods 
	Study Design 
	Dataset of Participants 
	Extraction and Categorization of Images on Chest Radiograph with CVC 
	Segmentation of the Trachea and the CVC on Images 

	Proposed Models for Classification of Three Classes of CVC Position with Application of Automatic Segmentation Using Deep CNN 
	Experiments 
	Primary Outcomes 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

