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Abstract: The Penn Medicine BioBank (PMBB) is an electronic health record (EHR)-linked biobank
at the University of Pennsylvania (Penn Medicine). A large variety of health-related information,
ranging from diagnosis codes to laboratory measurements, imaging data and lifestyle information, is
integrated with genomic and biomarker data in the PMBB to facilitate discoveries and translational
science. To date, 174,712 participants have been enrolled into the PMBB, including approximately
30% of participants of non-European ancestry, making it one of the most diverse medical biobanks.
There is a median of seven years of longitudinal data in the EHR available on participants, who
also consent to permission to recontact. Herein, we describe the operations and infrastructure of the
PMBB, summarize the phenotypic architecture of the enrolled participants, and use body mass index
(BMI) as a proof-of-concept quantitative phenotype for PheWAS, LabWAS, and GWAS. The major
representation of African-American participants in the PMBB addresses the essential need to expand
the diversity in genetic and translational research. There is a critical need for a “medical biobank
consortium” to facilitate replication, increase power for rare phenotypes and variants, and promote
harmonized collaboration to optimize the potential for biological discovery and precision medicine.

Keywords: genomics; electronic health records; biobank; PMBB; precision medicine; learning
health system

1. Introduction

Precision medicine incorporates clinical, environmental, lifestyle, family, and genomic
data to tailor disease management and optimize disease prevention and health mainte-
nance. Since the completion of the human genome project, large-scale genomic information
linked to individual-level phenotype data has fueled biomedical discovery and has become
an integral component of precision medicine. Large amounts of clinical data are generated
daily in clinical care and stored in the electronic health record (EHR). Linking the phenomic
data encompassed in the EHR with biospecimens and genomic data from appropriately con-
sented individuals at scale represents a tremendous opportunity for biomedical discovery
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and precision medicine. Penn Medicine, part of the University of Pennsylvania, is a large
integrated academic health system with six hospitals and ten multispecialty centers that
serve south-central Pennsylvania, south-central New Jersey, and northern Delaware. The
Penn Medicine BioBank (PMBB) was launched with the intent of harnessing clinical data
for discovery, creating a genomics-enabled learning healthcare system [1], and facilitating
precision medicine for disease prevention and personalized therapy. Patients are enrolled
under a single IRB-approved protocol that enables the acquisition of biospecimens, genera-
tion of genomic and multi-omic data, linkage to clinical information included in the EHR,
and permission to recontact participants for future studies and/or the return of clinically
relevant results. The scientific goal of the PMBB is to promote the integration of clinical and
genomic data to power biomedical discovery and precision medicine. This report describes
the operations and architecture of the PMBB and summarizes the information on the first
~170,000 participants recruited.

2. Materials and Methods
2.1. Planning and Development of PMBB

Recognizing the need for access to large numbers of appropriately consented and
well-characterized human biospecimens to conduct translational research, in 2008, Penn
Medicine established an IRB protocol and process for consenting patients and obtaining
blood for genomic and biomarker research. In 2013, after a strategic planning process
identified a pressing institutional mandate for an expanded biobank resource, the Penn
Medicine BioBank (PMBB) was formally constituted, funded, and launched under the
Institute of Translational Medicine and Therapeutics (ITMAT) in order to ensure it was
integrated with critical infrastructure relevant to clinical and translational research and
precision medicine.

The PMBB protocol was established as an institutional umbrella protocol under which
any registered patient of Penn Medicine aged 18 or older was eligible, with no exclusions
except an inability to provide informed consent. The core features of the consent include:
(1) provision of a blood sample for biobanking and broad use for data generation, including
genomic data and permission to bank any other residual tissues obtained in the context of
clinical care; (2) permission to access data from the EHR for the purpose of research; and
(3) permission to recontact participants for potential future studies or to return results.

2.2. Patient-Participant Recruitment

Initially, PMBB enrollment was accomplished through face-to-face encounters with
clinical research coordinators (CRCs) in outpatient clinical areas, prioritizing locations
where procedures that involved access to blood samples (phlebotomy labs, imaging pro-
cedures involving IV placement, cardiac catheterization labs, etc.) were being performed.
After the onset of the COVID-19 pandemic, in August 2020, the PMBB transitioned to
remote recruitment efforts to prioritize patient-participant and staff safety by initiating
an electronic consent and enrollment process through REDCap, a secure web platform
for building and managing online databases and surveys. Simultaneously, a process for
consent utilizing the EHR (PennChart, Epic) was developed, which was initially done
in person at the time of patient check-in, and then also expanded to include consent at
the time of pre-check-in through their myPennMedicine online patient portal, available
through web browsers and mobile devices. Eligible patients scheduled for an upcoming
outpatient office visit at one of the UPHS clinic sites actively recruiting (Figure 1E) receive
the PMBB consent form as part of their electronic pre-visit check-in process and have
the option to complete the form online through this portal. The three-page consent form
includes a link to the PMBB website, the PMBB email address, and the PMBB enrollment
telephone number, which is staffed by CRCs on weekdays from 7:30 a.m. to 5 p.m. local
time to answer questions potential participants may have as they are completing the con-
sent procedure. A small percentage (~5%) of patients who either are not eligible to receive
the online pre-check-in (e.g., certain surgical patients), or patients who skip the consent
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form during their online pre-check-in, are consented in person by registration desk staff
when the patient physically reports for their appointment. PMBB brochures, with basic
information about the PMBB, the PMBB website link, and contact information, are also
available for registration desk staff to distribute to patients during the consent process.
The website also contains a short video for patients explaining how PMBB participants
contribute to scientific research.

1 

 

 

 

Figure 1. Recruitment and Demographics. (A) Distribution of enrollment through paper and elec-
tronic consent. (B) Cumulative numbers of participants consented and biospecimen sample collection.
(C) Distribution of participants by age group and self-reported sex. (D) Distribution of participants
by self-reported race. (E) Density of recruitment around the six clinical sites of UPHS in Pennsylvania
and New Jersey: Hospital of the University of Pennsylvania, Penn Presbyterian Medical Center,
Pennsylvania Hospital, Chester County Hospital, Lancaster General Health, Princeton Health.

2.3. Sample Collection

The PMBB patient participants consent to the collection of identifying information
(e.g., name, date of birth, medical record number, and contact information), information
from medical records (e.g., test results, medical procedures, medical diagnosis and proce-
dure codes, lab values, images such as X-rays, and medicines), blood samples (up to four
tablespoons), urine, saliva and/or respiratory specimens, and residual samples from clini-
cal pathology. There is no limit on the length of time samples may be kept in the biobank.
All blood samples are banked as whole blood, plasma, serum, buffy coat, and DNA for
future studies following stringent standard operating procedures. Samples are collected in
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sterile vacutainer tubes barcoded with an identification number and scanned into a sys-
tem for sample tracking. Using the institution’s adopted laboratory information system,
LabVantage (LabVantage Solutions, Inc., Somerset, NJ, USA), biospecimens are processed
and tracked with time-date stamps to document processing and freezing times throughout
the laboratory workflow. Sample inventory is robustly supported with real-time, adaptive
sample pull lists and images of sample pull locations, as well as simultaneous creation of
distribution boxes and decrement of sample aliquots.

Prior to the COVID-19 pandemic, blood samples were collected from patients at the
point of enrollment by CRCs cross-trained as certified phlebotomists. With the transition to
electronic consenting, the consenting and sample collection processes have been decoupled.
For sample collection, an automated weekly report is generated containing a list of con-
sented patients for whom a blood sample is absent who have an upcoming phlebotomy
appointment the following week at select Penn Medicine sites. Every Friday, three PMBB
physicians place the electronic lab order for PMBB blood draws in the EHR of these patients.
When they report to their phlebotomy appointment, the phlebotomist adds on the PMBB
blood order to the patient’s existing orders and collects the blood sample. One 6 mL EDTA
tube is collected per patient. All blood samples are transported to the centralized clinical
laboratory and logged in prior to being transferred to the PMBB core laboratory, where the
blood is processed and stored following standard operating procedures.

Additionally, the PMBB banks residual biospecimens and tissues (for example, blood,
urine, cerebrospinal fluid, or tissue collected as part of clinical care) when available as
fresh, frozen or fixed dependent upon the tissue histology, following standard procedures.
Residual tissues are released by the Department of Pathology after examination if the
specimen or tissue is determined to be in excess of that required for patient care, or for
tissue or bodily fluid that would otherwise be waste material.

2.4. Genomic Data Generation
2.4.1. Genotyping and Imputation

DNA samples on approximately 44,000 PMBB participants have been genotyped to
date on an Illumina Global Screening Array v.2.0 (GSAv2) by the Regeneron Genomics
Center (RGC). The genotyping array chip has a backbone of 654,027 genetic markers as
well as additional ancestry informative markers. In addition, approximately 8595 of the
44,000 PMBB participants were also genotyped in the Center for Applied Genomics (CAG)
at the Children’s Hospital of Philadelphia on the GSAv1 and GSAv2 genotyping array.
After performing sample-level quality control (QC), genotype imputation was performed
using Eagle v2.4.1 [2] and Minimac4 version 1.0.0 [3] software on the TOPMed Imputation
Server [3]. Imputation was performed for all autosomes, with TOPMed version R2 on
a GRCh38 reference panel. Cosmopolitan post-imputation QC included imputation score
filtering (R2 > 0.7), removal of palindromic variants, biallelic variant check, sex check,
genotype call rate (>99%) and sample call rate (>99%) filtering, minor allele frequency
filtering (MAF > 1%), and a Hardy–Weinberg equilibrium test (p-value > 1 × 10−8). We
generated PCAs to adjust for population structure and to identify genetically informed
ancestry (GIA) from EIGENSOFT version 7.2.0 [4].

2.4.2. Whole Exome Sequencing

Whole exome sequencing (WES) has been performed on approximately 44,000 par-
ticipants to date by the RGC. DNA samples were processed with the custom IDT xGen
v1 exome capture platform and sequenced on the Illumina NovaSeq 6000 (Albany, NY,
USA) system on S4 flow cells. Sequence alignment, variant identification, and genotype
assignment were performed using a WeCall variant caller. Sample level QC steps were then
applied and sample sex errors, high rates of heterozygosity/contamination (D-stat > 0.4),
low sequence coverage (less than 85% of targeted bases achieving 20X coverage), or geneti-
cally identified sample duplicates, were excluded. Additional filters were applied to pVCFs.
Any SNV genotype with a read depth of less than seven reads (DP < 7) was changed to
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a no-call. After the application of the DP genotype filter, only the SNV variant sites that met
at least one of the following two criteria were retained: (1) at least one heterozygous variant
genotype with an allele balance ratio greater than or equal to 15% (AB ≥ 0.15); (2) at least
one homozygous variant genotype. The same filtering was applied to INDEL variants but
with an INDEL depth filter of DP < 10 and an INDEL allele balance cutoff of AB >= 0.20.
Multi-allelic variant sites in the PVCF file were normalized by left-alignment and repre-
sented as bi-allelic. The variant frequency data for exome sequences and imputed data are
available here: https://pmbb.med.upenn.edu/allele-frequency (accessed on 18 November
2022). The PMBB has a return of actionable results program for genomic findings that
have a potential impact on participant health; this program is beyond the scope of this
manuscript and will be described in a separate manuscript.

2.5. Clinical Data and Clinical Informatics Core

Clinical data are obtained through multiple sources, including a questionnaire com-
pleted at the time of recruitment and the Penn Medicine Clinical Data Warehouse and
PennG&P (Penn Genotype & Phenotype) platform. PennG&P contains over 5.6 million
patient records and other discrete clinical information amalgamated from 12 different
source systems throughout the enterprise. PennG&P is based on a standard research data
model called the Observational Medical Outcomes Partnership (OMOP), Common Data
Model (CDM) [5], which is used worldwide by the Observational Health Data Sciences and
Informatics (OHDSI) research consortium. It uses standardized language from national
coding systems, such as SNOMED, LOINC [6], and RxNorm [7], for consistent terms
and the labeling of information. Additionally, the PMBB maps International Classifica-
tion of Diseases (ICD)-9 and ICD-10 codes to 1866 discrete disease traits using Phecode
groupings [8].

2.6. Access to Data and Biospecimens

In keeping with the expansive mission of the PMBB, data and biospecimens are avail-
able to investigators throughout the Perelman School of Medicine and Penn Medicine for
a broad range of research. External collaborations, including those with other academic
institutions as well as biopharma, are encouraged and proceed through scientific collabora-
tion with identified local Penn investigators. All research studies must have study specific
IRB approval because the umbrella PMBB IRB protocol covers only sample and data ac-
quisition, processing, storage, and dissemination. Researchers request access to data and
biospecimens using a simple REDCap project proposal intake form which is then reviewed
by the PMBB Steering Committee. Proposals are evaluated for scientific merit and priority,
as well as the efficient use of data and biospecimens, as well as the ability to impact the care
provided by Penn Medicine clinicians. The PMBB Steering Committee provides feedback
to the investigator with either approval to move forward or with concerns to be addressed.
This REDCap project also includes a Data Access Agreement form that must be signed by
investigators prior to gaining access to any PMBB data. Per the terms of this agreement, the
sharing of PMBB data with additional collaborators, whether they are internal or external
to Penn, must be handled by the PMBB and not the investigators themselves, to maintain
the confidentiality and integrity of any protected health information (PHI) included within
PMBB datasets.

Standardized EHR clinical data are deidentified and provided to approved inves-
tigators in a secure computing environment. For assistance with the creation of more
complicated phenotypes, researchers have access to the Clinical Informatics Core (CIC),
a shared resource that is managed by the Institute for Biomedical Informatics in collabo-
ration with the PMBB. The CIC is staffed by clinical data scientists with expertise in data
extraction, natural language processing (NLP), and data analysis.

https://pmbb.med.upenn.edu/allele-frequency


J. Pers. Med. 2022, 12, 1974 6 of 16

3. Results
3.1. Enrollment

During the initial phase of recruitment from 2008 to 2013, 13,366 Penn Medicine
patients were enrolled (Figure 1A,B). In 2013, recruitment was expanded, resulting in
a steady increase in enrollment to ~71,000 participants by the end of 2019 (Figure 1A,B). In
2020, the transition to electronic consenting triggered a rapid expansion in PMBB enroll-
ment, with the total number of participants more than doubling between 2020 and 2022.
There were 174,712 total participants enrolled in the PMBB as of September 2022 (Table 1,
Figure 1A,B). Presently, nearly 3500 new participants are being enrolled weekly across two
Penn Medicine hospitals that are actively recruiting through all their ambulatory sites, and
recruitment at the other four Penn Medicine hospitals is targeted to begin in 2023. The
PMBB currently has obtained and processed blood biospecimens from approximately 50%
of enrolled participants; the recent shift to an electronic consent process has resulted in en-
rollment outpacing sample collection (Figure 1B). Active processes are underway to obtain
biospecimens on the remainder of enrolled individuals. The goal is to enroll > 1 million
Penn Medicine patient participants, with >90% providing a blood sample for DNA and
biomarker studies.

The PMBB participant population currently represents approximately 2.5% of active
Penn Medicine patients. Similar to the general Penn Medicine patient population, a slightly
higher percentage of PMBB participants are female (55.9%) as compared to male (44.1%)
(Table 1, Figure 1C). The age distribution of PMBB participants also tracks with that of Penn
Medicine patients, with participants ranging in age from 18 years to >100 years (Table 1 and
Figure 1C). The age distributions differ slightly between sex, with males trending towards
an older age (Figure 1C). The PMBB cohort is diverse: 17% of enrolled PMBB participants
(and 25% of genotyped/sequenced participants) are identified as African American, 4%
as Asian, and 3.3% as Hispanic (Table 1; Figure 1D). With nearly 30,000 African-American
patient participants currently enrolled, the PMBB has, to our knowledge, the largest number
of African-American participants of any single-institutional medical biobank in the US. As
shown in Figure 1E, most biobank participants reside within the Philadelphia metropolitan
area including New Jersey and Delaware (53.6%); there is also a total of 3.3% of participants
from other states across the US.

3.2. Clinical Data Availability

There are over 66.7 million data points collected in the form of encounters, diagno-
sis codes, procedure codes, and medication orders (Table 2). Across the PMBB cohort,
over 46.7 million encounters, 10 million diagnosis codes, 3.6 million procedure codes, and
6.3 million medication orders have been recorded, averaging 268 encounters, 57 diagno-
sis codes, 21 procedure codes, and 36 medication orders per individual (Table 2). The
most common diagnoses codes include hypertension, hypercholesterolemia, obesity, and
insomnia (Figure 2).
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Table 1. Comparison of PMBB Participant Characteristics with UPHS Patient Characteristics.

PMBB
Participants

n (%)

Genotyped
Participants

n (%)

UPHS
Patients
n (%) †

Total 174,712 43,884 3,688,610

Gender

Female 97,674 (55.9%) 21,965 (50.1%) 2,042,868 (55.4%)

Male 77,055 (44.1%) 21,918 (49.9%) 1,604,210 (43.5%)

Other 17 (<1%) 1 (<1%) 107 (<1%)

Age Range (Years) 18–103 18–103 0–121

Age Groups

18–29 17,815 (10.2%) 4302 (9.8%) 392,532 (10.5%)

30–39 27,355 (15.7%) 5406 (12.3%) 518,679 (14.1%)

40–49 25,819 (14.8%) 5688 (13.0%) 430,489 (11.7%)

50–59 33,827 (19.4%) 9519 (21.7%) 458,952 (12.4%)

60–69 40,268 (23.0%) 10,839 (24.7%) 507,397 (13.8%)

70–79 28,582 (16.4%) 5941 (13.5%) 400,016 (10.8%)

80+ 8811 (5.0%) 2189 (5.0%) 333,781 (9.0%)

Self-reported Race

African American 29,372 (16.8%) 10,815 (24.6%) 672,461 (18.2%)

White 124,406 (71.2%) 29,329 (66.8%) 2,029,684 (55.0%)

Asian 7156 (4.1%) 979 (2.2%) 152,615 (4.1%)

Other 9386 (5.4%) 1372 (3.1%) 370,313 (10.0%)

Unknown 7499 (4.3%) 1761 (4.0%) 463,537 (12.6%)

Self-reported Ethnicity

Hispanic 5715 (3.3%) 1112 (2.5%) 174,179 (4.7%)

Non-Hispanic 165,713 (94.8%) 42,425 (96.7%) 3,290,018 (89.2%)

Unknown 3284 (1.9%) 347 (0.8%) 183,723 (5.0%)

Genetically-Inferred
Ancestry

African N/A 11,300 (25.7%) N/A

European N/A 30,360 (69.2%) N/A

East Asian N/A 680 (1.5%) N/A

South Asian N/A 573 (1.3%) N/A

Admixed American N/A 711 (1.6%) N/A

Other N/A 301 (0.7%) N/A

Median period of EHR
follow-up since
enrollment

7 years 5.7 years N/A

† Demographics based on EHR data on UPHS patients who have been seen at least once from 2008 to present.
Data from following UPHS sites were included: Hospital of the University of Pennsylvania, Penn Presbyterian
Medical Center, Pennsylvania Hospital, Chester County Hospital, Princeton Health.
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Table 2. Clinical Data Availability for PMBB Participants.

Event Type Total Number of Events Mean Number of Events (SD) *

Encounter 46,738,773 268 (321)

Diagnosis Code (number of
condition-related visits) 10,023,922 57.4 (58.7)

Procedure Code 3,621,056 20.7 (26.7)

Medication Order 27,914,486 159.8 (271.8)
* Average number of events each patient has for each event type.
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3.3. Phenome-Wide Association Study (PheWAS) of BMI

To evaluate the validity of the PMBB clinical data, a phenome-wide association study
(PheWAS) was conducted using mean body mass index (BMI) as the exposure and 1856 disease
traits derived from grouping encounter diagnoses using phecodes as the outcome. All
the models were adjusted with age, sex, and self-reported race in the EHR. A total of
662 associations of BMI with at least one disease trait across the 18 disease categories
passed Bonferroni correction for multiple hypothesis testing (p < 2.6 × 10−5). The strongest
associations with BMI were with type 2 diabetes, hyperlipidemia, overweight, obesity,
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sleep apnea, and osteoarthritis (all p < 1 × 10−331, Figure 3, Supplementary Table S1). The
associations with mean BMI show evidence of its effect on all organ systems, covering
associations with the spectrum of disease categories (Figure 3). Additional associations
include hypertension, heart failure, endometrial hyperplasia, bone fracture, depression,
pregnancy complications, and respiratory failure (Figure 3).
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3.4. Laboratory-Wide Association Study (LabWAS) of BMI

We extracted 24 clinical laboratory measurements from the EHR for all the PMBB
participants. These lab measurements were selected based on a common lab test in the
health system and contained at least 1000 individuals within each lab which was measured.
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We computed median values for each individual within each lab and, as a proof-of-concept,
evaluated their association with BMI. Linear regression was performed to test for associa-
tion and all the models were adjusted with age, sex and self-reported race. We replicated
many known associations between BMI and lab values (Figure 4, Table S2). For example,
blood glucose measures were significantly associated with increased BMI. Triglyceride
levels were significantly positively associated and high-density lipoprotein cholesterol
(HDL-C) levels were significantly inversely associated with BMI, as expected. Markers of
inflammation were also significantly associated with BMI. In this proof-of-concept analysis
of the lab measurements, the associations with BMI support the association with the disease
outcomes reported in the PheWAS.
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ments derived from the electronic health records.

3.5. Genome-Wide Association (GWAS) with BMI

As a proof-of-concept, we conducted a GWAS for median BMI within five genetically
inferred ancestry groups. These included 30,360 EUR, 11,300 AFR, 711 AMR, 680 EAS,
and 573 SAS individuals in the PMBB (Table 1). The analysis tested the association of
~7.6 million SNPs with MAF > 1%, imputation R2 > 0.3, using a linear mixed model
implemented in REGNIE. All the models were adjusted with age, sex, and the first six
ancestry specific principal components to account for population stratification. We then
conducted cross-ancestry meta-analysis by integrating GWAS summary statistics from each
ancestry group using PLINK. Our meta-analysis identified 201 genome-wide significant
SNP associations with BMI (p < 5 × 10−08, Figure 5), replicating several previously reported
associations in published GWAS of BMI. The strongest association in our PMBB analysis
was with FTO variant rs55872725 (p = 4.7 × 10−28, beta = 0.271), which has been previously
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reported. Other known associations included rs7559547 (p = 3.92 × 10−14, beta = 0.41,
TMEM18) and rs539515 (p = 9.02 × 10−11, beta = 0.36, SEC16B), among others. Summary
statistics of results with p < 1 × 10−04 are available in Supplementary Table S3.
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4. Discussion

The Penn Medicine BioBank was created to harness clinical data and biospecimens for
biomedical research within Penn Medicine, a large academic healthcare system. Within
a decade, it has emerged as a critical resource for translational medicine that has fueled
discovery science and facilitated precision medicine, empowering a genomics-enabled learning
healthcare system. As of September 2022, the PMBB had enrolled over 174,000 participants,
obtained biospecimens on >70,000 participants, and generated genomic data on ~44,000 of
its participants. The PMBB intends to enroll >1 million participants, obtain biospecimens on
>90% of participants, and generate genomic data on all participants for whom biospecimens
have been obtained.

The 2015 Institute of Medicine (now National Academy of Medicine) report on Trans-
lating Genomic-Based Research for Health [1] advocated for the development of ‘genomics-
enabled learning healthcare systems’ based on the systematic summarized collection and
use of genomic data, integrated with phenotypic data, to make discoveries and enhance
healthcare in large healthcare systems. More recently, in its strategic vision for genomics re-
search and application of genomics to clinical care, the National Human Genome Research
Institute (NHGRI) emphasized the design and implementation of genomics-enabled learn-
ing healthcare systems to include infrastructure, resources, and technology development
for genomics; the inclusion of underrepresented and minority groups to make genomic
research more equitable; the development of multi-omics studies to get a comprehensive
view of disease biology and the progression of diseases; and building tools to implement
the knowledge back into the EHR to improve healthcare [9]. Large disease-agnostic and
diverse medical biobanks at academic medical centers, such as the PMBB, are a critical
component of fulfilling this vision.

Despite recapitulating health and disease traits from structured diagnosis codes, and
the successful integration of this with genomic data [10–16], it must be acknowledged
that diagnosis codes are crude approximations of underlying biological traits. As such,
the future of EHR-empowered genomics research lies in ‘advanced phenotyping’ beyond
diagnosis codes. These approaches include laboratory data, medication data, and other
forms of structured data, all of which are relatively straightforward to access and use
for research. Laboratory data, procedure codes, family history, and billing codes are all
being mapped to concepts from various vocabularies (MONDO [17], SNOMED) to develop
phenotypic algorithms that characterize the outcome of interest. Even more exciting and
informative is the extraction of meaningful quantitative information from unstructured
data (e.g., clinical notes, procedure reports, imaging reports, and pathology reports) using
natural language processing (NLP) methods. To this end, the PMBB has deployed NLP
software (Linguamatics, Cambridge, UK) to extract phenotypes from clinical notes and
other unstructured data in PMBB participants. Furthermore, there is an immense amount
of clinical imaging performed in medical centers and these images are another potential
source of phenotypic data, sometimes referred to as ‘imaging-derived phenotypes’ (IDPs).
In several ongoing PMBB efforts, deep learning and machine learning techniques are being
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used to translate imaging data, such as CT, MRI, and fMRI, into quantitative IDPs to fuel
new discovery.

Another approach to collecting additional phenotype and exposure data that are
absent in the EHR is using participant questionnaires. During the COVID-19 pandemic, an
initial COVID-19 survey [18] was deployed to PMBB participants to collect information
on symptoms, co-morbidities, and outcomes related to COVID-19. As the pandemic has
progressed, we now administer an active longitudinal survey to follow participants for
up to 18 months from their first COVID-19 diagnosis, yielding insights into long COVID.
Combining survey results with biospecimen and EHR-derived phenotypes can shed light
on factors that predict the onset of disease, refine preventative care, and optimize the
clinical trial design. Current efforts are focused on extending active data acquisition
through integrating mobile devices for both real-time data collection from survey questions
and biometric activity data.

A major focus of biobank research is the use of genomics to understand the genetic
architecture of health and disease and its implications for clinical care by linking phenomic
efforts with genomic data obtained from biospecimens. Leveraging these approaches, the
PMBB has developed a robust and diverse genomics research enterprise. Studies using
PMBB data have highlighted the utility of the ‘genome-first’ approach’s utility in studying
rare variants at scale and identifying new associations between genes and disease [10,11],
as well as refined the range of the phenotypic presentation of individuals carrying rare
impactful variants in known disease genes [12,19].

To support equitable genomic research, a commitment to participant diversity has been
a hallmark feature of the PMBB since its inception. Seventeen percent of PMBB participants
(and 24% of those for whom biospecimens are currently available) are African Americans
or immigrants of African ancestry. This diversity has led to novel genomic and biological
insights that directly impact the health of underrepresented groups. For example, recent
work in the PMBB highlighted that hereditary amyloid transthyretin cardiomyopathy was
a common yet markedly underdiagnosed cause of heart failure among African-American
individuals [20], with many cases of the disease remaining undiagnosed even at a tertiary
medical center such as Penn Medicine. Given the availability of targeted therapy, this
finding advocates for the aggressive utilization of genomic and precision medicine to
diagnose transthyretin cardiomyopathy in this population. This ‘genome-first’ approach is
revealing an under-diagnosis of other genetic conditions. A ‘return of actionable results’
program is underway, and the implications for the greater utilization of genetic testing in
clinical practice are clear.

The integration of genomic data into clinical practice is essential for the next generation
of healthcare. Penn Medicine is at the forefront of developing techniques to provide
high-quality patient care based on real-world evidence and genomic discoveries [21,22].
An analysis of pharmacogenetic (PGx) variants in the PMBB concluded that anticipatory
genotyping can efficiently lead to the effective communication of PGx results to patients [23].
Polygenic risk scores (PRS) have been posited as a novel approach to leverage common-
variant genetics for clinical care to predict the genetic risk for complex diseases, although
the clinical utility of this approach has yet to be fully determined [24,25]. Researchers
utilizing PMBB data reported that PRS for psychiatric disorders [26] and substance use
disorders [27] has shown cross-trait associations beyond traditional diagnostic boundaries,
suggesting broad effects of genetic liability for these disorders. Furthermore, PRS in PMBB
participants significantly increased the ability to identify the cancer status of European
individuals but not African Americans, underscoring the need for large-scale genomic
studies on non-white populations [13].

A critical feature of the PMBB is the availability of stored plasma and serum for
biomarker analyses and integration with clinical and genomic data. Although the effort
and expense of generating and storing plasma/serum aliquots are substantial, the benefit
of this approach is rapidly becoming apparent. Multiple investigators have utilized the
genomic data to identify PMBB participants with genotypes of interest to then use stored
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samples in cases and controls to measure biomarkers of interest. During the COVID-19
pandemic, access to stored samples from PMBB participants enrolled pre-pandemic who
subsequently developed COVID-19 permitted investigators to address a number of impor-
tant research questions [28–31]. Now, with over seven years of median follow-up data since
the recruitment of PMBB patient participants, the stored samples are increasingly precious
for their use in assaying biomarkers that may be predictive of incident disease. As meth-
ods for large-scale proteomics and metabolomics improve and the costs come down, the
opportunity to generate plasma-based large-scale omics and integrate with genomics and
clinical data is increasingly feasible and promises to further enhance biological discovery
and precision medicine.

All PMBB participants consent to be recontacted, a critical feature of the protocol that
is useful for several purposes. Patient-reported surveys represent an important addition
to the EHR data for certain phenotypes as well as lifestyle and exposure data. Permission
to recontact facilitates ‘recall-by-genotype’ deep phenotyping studies, which represents
a tremendous opportunity for ‘genome-first’ discovery. Several investigators are actively
performing studies in which the genomic data are used to identify individuals that carry
rare variants in genes of interest or have a high polygenic risk for certain conditions, and
participants are contacted to consider participation in hypothesis-driven deep phenotyp-
ing studies. Deep phenotyping can include targeted imaging, immunological profiling,
provocative testing (e.g., oral glucose or fat tolerance test), creation of induced pluripotent
stem cells (iPSCs), or any number of other clinical phenotyping approaches driven by the
specific scientific question. Finally, the era of precision medicine will certainly include many
clinical trials that are targeted to individuals of a specific inherited genotype; large medical
biobanks with pre-existing genomic data, such as the PMBB, offer a fertile opportunity for
the recruitment of individuals for such genotype-directed clinical trials.

5. Conclusions

The PMBB is a disease-agnostic institutional biobank under a single umbrella protocol
based at a large academic health system with the purpose of promoting a genomics-enabled
learning healthcare system to fuel scientific discovery, translational science, and precision
medicine. A comprehensive biobank of DNA, plasma, and serum on all participants
with selected other specimens and tissues on a subset of participants is linked to rich
EHR clinical data, imaging, and survey data. The clinical database is standardized to
OMOP and contains demographic, diagnoses (e.g., ICD-9/ICD-10 codes), procedures
(e.g., Current Procedure Terminology—CPT codes), laboratory data, medication data,
encounter types, socioeconomic factors, and survey data. The initiation of e-consenting has
led to a substantial increase in the rate of enrollment. As of September 2022, genome-wide
genomic data have been generated on ~44,000 participants and plasma multi-omics data on
several thousand participants. The substantial representation of African-American patient
participants in the PMBB addresses the urgent need to increase diversity in human genetic
studies. Researchers with approved IRB protocols can request access to biobank samples
and data through a data access portal. Publications supported by PMBB data and specimens
can be found here: https://pmbb.med.upenn.edu/pmbb/publications.html (accessed on
18 November 2022). The PMBB is one of several large medical biobanks at academic
medical centers in the US and is strongly supportive of the creation of a ‘medical biobank
consortium’ to facilitate replication, increase power for rare phenotypes and variants,
and promote harmonized collaboration around genotype-directed deep phenotyping and
recruitment into clinical trials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12121974/s1, Table S1: Phenome-wide association study be-
tween body mass index (mean values) and EHR-derived phecodes. Table S2: Laboratory-wide associa-
tion study between body mass index (mean values) and clinical labs from the EHR.
Table S3: Summary statistics for genome-wide association study for BMI. Supplemental document:
A full list of PMBB author contributions.

https://pmbb.med.upenn.edu/pmbb/publications.html
https://www.mdpi.com/article/10.3390/jpm12121974/s1
https://www.mdpi.com/article/10.3390/jpm12121974/s1


J. Pers. Med. 2022, 12, 1974 14 of 16

Author Contributions: Conceptualization, D.J.R., M.D.R., A.V., N.N., S.M.D. (Scott M. Damrauer),
M.F. and K.L.N.; methodology, A.V., N.N., D.J.R., J.W., M.F., K.L.N. and M.D.R.; validation: A.V.,
C.M.K. and L.G.; software A.V. and S.M.D. (Scott M. Dudek); formal analysis, A.V., N.N., C.M.K. and
L.G.; data curation, N.N., C.M.K., L.G. and A.L.; writing—original draft preparation, J.W., A.V., N.N.,
D.J.R. and M.D.R.; writing—review and editing, S.M.D. (Scott M. Damrauer), S.S.V., G.S., R.L.K.,
T.G.D., S.M.D. (Scott M. Dudek), A.L., Y.B., R.J., E.M., K.L.N. and M.F.; visualization, N.N., C.M.K.
and L.G.; supervision, D.J.R. and M.D.R.; project administration, J.W.; funding acquisition, D.J.R. All
authors have read and agreed to the published version of the manuscript.

Funding: The PMBB is supported by Perelman School of Medicine at University of Pennsylvania,
a gift from the Smilow family, and the National Center for Advancing Translational Sciences of the
National Institutes of Health under CTSA award number UL1TR001878. KLN is supported by the
Basser Center for BRCA.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board (or Ethics Committee) of University
of Pennsylvania (protocol codes: 808346 approved 07/01/2008, 813913 approved 4/3/2013, and
817977 approved 6/6/2013” for studies involving humans.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All the data used to generate the figures were made available
in supplementary.

Acknowledgments: We thank the patient-participants of Penn Medicine who consented to participate
in this research program. We acknowledge the efforts of the PMBB staff (a full list of contributors is
provided in the supplement). We thank the outstanding Penn Medicine Corporate IS team (Jessica
Chen, Christine Vanzandbergen, Jeffrey Landgraf, Colin Wollack, Ned Haubein) for its major efforts
to implement e-consenting in the EHR as well as biospecimen acquisition and tracking. We thank
the Regeneron Genetics Center for partnership in generating genetic variant data and for scientific
interactions. We thank the Smilow family for their generous gift that made the launch of the
PMBB possible. Finally, we would like to thank Kevin Mahoney, Jon Epstein, Larry Jameson (Penn
Medicine leadership), Michael Parmacek (Department of Medicine), Garret FitzGerald (Institute for
Translational Medicine and Therapeutics), and David Roth (Penn Center for Precision Medicine) for
their vision and support.

Conflicts of Interest: SMD receives research funding from RenalytixAI, in-kind research support
from Novo Nordisk, and personal consulting fees from Calico Labs. DJR serves on scientific advisory
boards for Alnylam, Novartis, Pfizer, and Verve. Regeneron has generated genomic data in PMBB
participants. These entities had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of this manuscript; or in the decision to publish these results.

References
1. Institute of Medicine. Genomics-Enabled Learning Health Care Systems: Gathering and Using Genomic Information to Improve Patient

Care and Research: Workshop Summary; National Academies Press (US): Washington, DC, USA, 2015; ISBN 978-0-309-37112-4.
2. Loh, P.-R.; Danecek, P.; Palamara, P.F.; Fuchsberger, C.; AReshef, Y.; Finucane, H.K.; Schoenherr, S.; Forer, L.; McCarthy, S.;

Abecasis, G.R.; et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 2016, 48, 1443–1448.
[CrossRef] [PubMed]

3. Das, S.; Forer, L.; Schönherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.I.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-
generation genotype imputation service and methods. Nat Genet. 2016, 48, 1284–1287. [CrossRef]

4. Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for
stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [CrossRef] [PubMed]

5. Klann, J.G.; Joss, M.A.H.; Embree, K.; Murphy, S.N. Data model harmonization for the All Of Us Research Program: Transforming
i2b2 data into the OMOP common data model. PLoS ONE 2019, 14, e0212463. [CrossRef] [PubMed]

6. McDonald, C.J.; Huff, S.M.; Suico, J.G.; Hill, G.; Leavelle, D.; Aller, R.; Forrey, A.; Mercer, K.; DeMoor, G.; Hook, J.; et al. LOINC,
a Universal Standard for Identifying Laboratory Observations: A 5-Year Update. Clin. Chem. 2003, 49, 624–633. [CrossRef]

7. Nelson, S.J.; Zeng, K.; Kilbourne, J.; Powell, T.; Moore, R. Normalized names for clinical drugs: RxNorm at 6 years. J. Am. Med.
Inform. Assoc. 2011, 18, 441–448. [CrossRef]

8. Wu, P.; Gifford, A.; Meng, X.; Li, X.; Campbell, H.; Varley, T.; Zhao, J.; Carroll, R.; Bastarache, L.; Denny, J.C.; et al. Mapping
ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development and Initial Evaluation. JMIR Med. Inform. 2019, 7, e14325.
[CrossRef]

http://doi.org/10.1038/ng.3679
http://www.ncbi.nlm.nih.gov/pubmed/27694958
http://doi.org/10.1038/ng.3656
http://doi.org/10.1038/ng1847
http://www.ncbi.nlm.nih.gov/pubmed/16862161
http://doi.org/10.1371/journal.pone.0212463
http://www.ncbi.nlm.nih.gov/pubmed/30779778
http://doi.org/10.1373/49.4.624
http://doi.org/10.1136/amiajnl-2011-000116
http://doi.org/10.2196/14325


J. Pers. Med. 2022, 12, 1974 15 of 16

9. Green, E.D.; Gunter, C.; Biesecker, L.G.; Di Francesco, V.; Easter, C.L.; Feingold, E.A.; Felsenfeld, A.L.; Kaufman, D.J.; Ostrander,
E.A.; Pavan, W.J.; et al. Strategic vision for improving human health at The Forefront of Genomics. Nature 2020, 586, 683–692.
[CrossRef]

10. Park, J.; Levin, M.G.; Haggerty, C.M.; Hartzel, D.N.; Judy, R.; Kember, R.L.; Reza, N.; Ritchie, M.D.; Owens, A.T.;
Damrauer, S.M.; et al. A genome-first approach to aggregating rare genetic variants in LMNA for association with elec-
tronic health record phenotypes. Genet. Med. 2020, 22, 102–111. [CrossRef]

11. Park, J.; Packard, E.A.; Levin, M.G.; Judy, R.L.; Regeneron Genetics Center; Damrauer, S.M.; Day, S.M.; Ritchie, M.D.; Rader, D.J.
A genome-first approach to rare variants in hypertrophic cardiomyopathy genes MYBPC3 and MYH7 in a medical biobank. Hum.
Mol. Genet. 2022, 31, 827–837. [CrossRef]

12. Damrauer, S.M.; Hardie, K.; Kember, R.L.; Judy, R.; Birtwell, D.; Williams, H.; Rader, D.J.; Pyeritz, R.E. FBN1 Coding Variants and
Nonsyndromic Aortic Disease. Circ. Genom. Precis. Med. 2019, 12, e002454. [CrossRef]

13. Wang, L.; Desai, H.; Verma, S.S.; Le, A.; Hausler, R.; Verma, A.; Judy, R.; Doucette, A.; Gabriel, P.E.; Nathanson, K.L.; et al.
Performance of polygenic risk scores for cancer prediction in a racially diverse academic biobank. Genet. Med. 2022, 24, 601–609.
[CrossRef]

14. Kember, R.L.; Levin, M.G.; Cousminer, D.L.; Tsao, N.; Judy, R.; Schur, G.M.; Lubitz, S.A.; Ellinor, P.T.; McCormack, S.E.;
Grant, S.F.A.; et al. Genetically Determined Birthweight Associates with Atrial Fibrillation: A Mendelian Randomization Study.
Circ. Genom. Precis. Med. 2020, 13, e002553. [CrossRef]

15. Zhang, C.; Verma, A.; Feng, Y.; Melo, M.C.R.; McQuillan, M.; Hansen, M.; Lucas, A.; Park, J.; Ranciaro, A.; Thompson, S.; et al.
Impact of natural selection on global patterns of genetic variation and association with clinical phenotypes at genes involved in
SARS-CoV-2 infection. Proc. Natl. Acad. Sci. USA 2022, 119, e2123000119. [CrossRef]

16. Bajaj, A.; Ihegword, A.; Qiu, C.; Small, A.M.; Wei, W.-Q.; Bastarache, L.; Feng, Q.; Kember, R.L.; Risman, M.; Bloom, R.D.; et al.
Phenome-wide association analysis suggests the APOL1 linked disease spectrum primarily drives kidney-specific pathways.
Kidney Int. 2020, 97, 1032–1041. [CrossRef]

17. Shefchek, K.A.; Harris, N.L.; Gargano, M.; Matentzoglu, N.; Unni, D.; Brush, M.; Keith, D.; Conlin, T.; Vasilevsky, N.;
Zhang, X.A.; et al. The Monarch Initiative in 2019: An integrative data and analytic platform connecting phenotypes to
genotypes across species. Nucleic Acids Res. 2020, 48, D704–D715. [CrossRef]

18. Verma, S.S.; Chung, W.K.; Dudek, S.; Williamson, J.L.; Verma, A.; Robinson, S.; Rader, D.J.; Reilly, M.P.; Sengupta, S.;
FitzGerald, G.A.; et al. Research on COVID-19 through patient-reported data: A survey for observational studies in the
COVID-19 pandemic. J. Clin. Transl. Sci. 2021, 5, e17. [CrossRef]

19. Drivas, T.G.; Lucas, A.; Zhang, X.; Ritchie, M.D. Mendelian pathway analysis of laboratory traits reveals distinct roles for ciliary
subcompartments in common disease pathogenesis. Am. J. Hum. Genet. 2021, 108, 482–501. [CrossRef]

20. Damrauer, S.M.; Chaudhary, K.; Cho, J.H.; Liang, L.W.; Argulian, E.; Chan, L.; Dobbyn, A.; Guerraty, M.A.; Judy, R.; Kay, J.; et al.
Association of the V122I Hereditary Transthyretin Amyloidosis Genetic Variant With Heart Failure Among Individuals of African
or Hispanic/Latino Ancestry. JAMA 2019, 322, 2191. [CrossRef]

21. Lau-Min, K.S.; Asher, S.B.; Chen, J.; Domchek, S.M.; Feldman, M.; Joffe, S.; Landgraf, J.; Speare, V.; Varughese, L.A.; Tuteja, S.; et al.
Real-world integration of genomic data into the electronic health record: The PennChart Genomics Initiative. Genet. Med. Off. J.
Am. Coll. Med. Genet. 2021, 23, 603–605. [CrossRef]

22. Lau-Min, K.S.; McKenna, D.; Asher, S.B.; Bardakjian, T.; Wollack, C.; Bleznuck, J.; Biros, D.; Anantharajah, A.; Clark, D.F.;
Condit, C.; et al. Impact of integrating genomic data into the electronic health record on genetics care delivery. Genet. Med. 2022,
24, 2338–2350. [CrossRef] [PubMed]

23. Verma, S.S.; Keat, K.; Li, B.; Hoffecker, G.; Risman, M.; Regeneron Genetics Center; Sangkuhl, K.; Whirl-Carrillo, M.; Dudek, S.;
Verma, A.; et al. Evaluating the frequency and the impact of pharmacogenetic alleles in an ancestrally diverse Biobank population.
medRxiv 2022, medRxiv:2022.08.26.22279261. [CrossRef]

24. Martin, A.R.; Kanai, M.; Kamatani, Y.; Okada, Y.; Neale, B.M.; Daly, M.J. Clinical use of current polygenic risk scores may
exacerbate health disparities. Nat. Genet. 2019, 51, 584–591. [CrossRef] [PubMed]

25. Sirugo, G.; Williams, S.M.; Tishkoff, S.A. The Missing Diversity in Human Genetic Studies. Cell 2019, 177, 26–31. [CrossRef]
26. Kember, R.L.; Merikangas, A.K.; Verma, S.S.; Verma, A.; Judy, R.; Regeneron Genetics Center; Damrauer, S.M.; Ritchie, M.D.;
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