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Abstract: (1) Background: With the resurgence of brucellosis epidemics in China in recent years, the
chances of a brucella coinfection with other common respiratory pathogens, such as the influenza
virus, have increased dramatically. However, little is known about the pathogenicity or the mecha-
nisms of brucella and influenza coinfections. (2) Methods: To clarify the interventions in the early
stages of lung damage due to brucella and influenza coinfections, we evaluated the effect of the coin-
fection on disease progression and mortality using a coinfection model in WT mice and NLRP6−/−

mice, and we verified the function of NLRP6 in infection and proinflammation. (3) Results: The
coinfection induced significant respiratory symptoms, weight loss, and a high mortality rate in WT
mice. Influenza in the coinfection group significantly increased brucella proliferation in a synergistic
manner. Meanwhile, a histological examination showed severe lung tissue destruction and excessive
inflammatory responses in coinfected WT animals, and the expression of NLRP6 and IL-18 was
dramatically increased in the lung tissues. Furthermore, NLRP6 deletion attenuated lung injuries and
inflammation, a reduced bacterial load, and decreased IL-18 protein expression. (4) Conclusions: Our
findings indicated that NLRP6 plays a critical role and might be a promising potential therapeutic
target for brucella–influenza coinfections.

Keywords: coinfection; Brucella; Influenza A virus; NLRP6; IL-18

1. Introduction

Brucellosis is a zoonotic disease caused by the Brucella spp., a Gram-negative fac-
ultative intracellular bacterium which is transmissible via multiple routes [1], and the
inhalation of contaminated aerosols is a common route of transmission [2]. With more
than 500,000 new cases each year, human brucellosis is still the most widespread zoonotic
disease in the world [3,4]. It is also a major contributor to travel-related morbidity and is
linked with significant residual impairments. Due to its heterogeneous and poorly specific
symptoms [5], brucellosis is often under-diagnosed or misdiagnosed [6,7]. Brucellosis
without treatment progresses to a disabling chronic disease with severe complications, such
as central nervous system (CNS) affectations, osteomyelitis, keratitis, and endocarditis, and
once the brucellosis progresses to a chronic phase, it is difficult to cure [8,9]. There is still no
safe and effective vaccination or specific medicine available for humans [10]. Brucellosis is
the most prevalent laboratory-acquired infection in the world, and its airborne transmission
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has been linked to the majority of cases [11,12]. Although brucella frequently infects the
host through the respiratory, the majority of the investigations on brucella’s pathogenesis
and immunity have been performed using intraperitoneal infection models in animals and,
to a lesser extent, oral infection models.

Influenza creates annual epidemics that infect up to twenty percent of the population
and that result in substantial morbidity and mortality [13]. Influenza–bacterial coinfections,
which are associated with both pandemic and seasonal influenza virus illnesses, are a
major cause of morbidity and mortality [14–17]. According to lung tissue samples from
the 1918 influenza pandemic, the bulk of the estimated 20–60 million fatalities were from
bacterial infections rather than the virus itself [18]. During seasonal epidemics, Influenza–
bacterial coinfections are connected with increasing hospital admissions, symptom severity,
and mortality [19–22]. Clinically, the identification of coinfected pathogens enables clini-
cians to commence an appropriate antibiotic therapy and to enhance patient outcomes [23].
However, a previous study has cast doubt on the efficacy of antibiotics in treating coinfec-
tions [24,25]. Meanwhile, there is still no effective target for Influenza–bacterial coinfections,
and the potential molecular mechanism underpinning the synergistic pathogenic operations
of the two pathogens remains unclear.

NLRP6, a member of the NLR family, regulates the host’s defense against pathogens,
such as bacteria, viruses, and parasites [26–30]. During the infection of the lungs and
intestines with different microbes, NLRP6 exhibits a dissimilar effect. In the defense against
Streptococcus pneumoniae and Staphylococcus aureus infections, NLRP6 has a negative
effect on the resistance to the infection [27,28] in which the expression of NLRP6 can
cause inflammation and tissue damage. However, NLRP6 plays a protective role during
Klebsiella pneumoniae lung infections [26]. As previously reported by Rungue et al.,
NLRP6 plays a damaging role in the intestinal phase of brucella infections [29]. However,
the role of NLRP6 in brucella abortus lung infections has not been reported. In addition,
given that NLRP6 has an antiviral role in the intestines, it would be interesting to see if
NLRP6 plays a protective or negative role in pulmonary host defense during Influenza
infections [30]. In addition, no experimental evidence is available concerning Influenza A
virus and brucella coinfections.

In this study, we determined the effect of NLRP6 and its downstream molecules using
an aerosol coinfection model with two mouse strains derived from WT (C57BL/6N) and
NLRP6−/− mice. Our findings indicated that NLRP6−/− mice were more resistant to
Brucella Suis and Influenza coinfections since there was a lower systemic inflammation and
bacterial load in the lung tissue after coinfection. Moreover, the decreased GSDMD and
IL-18 expression in NLRP6-deficient mice may partly explain their reduced inflammatory
response. We hypothesized that NLRP6 participates in the pathogenesis of the Influenza–
bacterial coinfection and may be a useful therapeutic target.

2. Materials and Methods
2.1. Mice

The wild-type mice were purchased from vital river, Beijing. Four-week-old female
C57BL/6N mice were used. NLRP6-deficient (NLRP6−/−) mice were purchased from
Cyagen Biosciences, Suzhou, and were backcrossed for at least six generations of C57BL/6
mice in the animal facility of the Institute of Microbiology. Mice were kept in special
pathogen-free (SPF) environments. The Beijing Laboratory Animal Welfare and Ethical
Guidelines of the Beijing Administration Committee of Laboratory Animals were followed
in all animal experiments, which were authorized by the Research Ethics Committee of
the Chinese Academy of Sciences. All mice were kept in a barrier-free environment with
unrestricted access to food and water.

2.2. Bacterial and Virus Strains

Brucella Suis strain S2 (CVCC70502) was purchased from Chongqing AoLong. S2
freeze-dried powder was maintained at −20 ◦C. The bacterial counts were enumerated
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on TSA media (5% CO2 at 37 ◦C for 72–96 h). The number of bacteria was counted with
standard bacterial colony count protocol.

At the Beijing Institute of Microbiology and Epidemiology in Beijing, influenza
A/PR/8/1934 (H1N1) was rescued from the State Key Laboratory of Pathogen and Biose-
curity. It was then cultured in the allantoic cavities of 9-day-old specific-pathogen-free
embryonic eggs and incubated for 48–72 h at 37 ◦C. After being collected, processed, and
kept at −80 ◦C, the allantoic fluid.

It was recommended that work with S2 and H1N1 should be conducted in a biosafety
level 2 plus facility following level 2 plus safety measures.

2.3. Virus Titration

Utilizing the median tissue culture infective dosage, IAV was titrated in MDCK cells.
After being planted in 96-well plates for 18 h, MDCK cells were removed, and the mono-
layers of cells were then washed with PBS and injected with five replicates of each 10-fold
serially diluted virus for two hours at 37 ◦C with 5% CO2. The cells were then washed
three times with PBS after the supernatant was removed, and DMEM containing 0.6% low-
melting-point agarose and 1 mg/mL of L-(tosylamide-2-phenyl) ethyl chloromethyl ketone
(TPCK)-treated trypsin was then added. IAV titers (108.4 TCID50/mL) were measured
after incubation for 72 h at 37 ◦C with 5% CO2.

2.4. IAV and Brucella Coinfection In Vivo

Female, 4-week-old C57BL/6 mice of both the wild-type and NLRP6−/− genotypes
were anesthetized before receiving an intranasal injection of 107 Brucella Suis strain S2 in
50 mL of PBS. Mice in the coinfection group were sedated and given an intranasal IAV
injection 12 h later (103 TCID50). Body weights and any deaths in mice were determined
daily for 14 consecutive days after inoculation. In the case of the number of surviving
animals being less than 3 in any group (statistical analysis could not be performed), the
weight measurement was stopped.

2.5. Plate Colony Counting

The mice were sacrificed 72 h post coinfection, and the lungs were homogenized in
1 mL of PBS. Lung tissues were ground by a homogenizer at 120 Hz for 4 min. Brucella
loads were determined with serial dilutions of the samples on TSA plates.

2.6. RNA Extraction, cDNA Synthesis, and qPCR Analysis

Total RNA was extracted from lung tissue homogenate with the RNAprep Pure Tissue
Kit (Tiangen) according to the manufacturer’s instructions. cDNA was synthesized from
10 mg of total RNA using First-strand cDNA Synthesis Supermix (Transcript) according
to the manufacturer’s instructions. Relative gene expression was analyzed with qPCR
using PowerUp™ SYBR™ Green Master Mix (Thermo Fisher). The primers are listed in
Table S1. The Ct values were generated from an ABI 7500. The expression of target genes
was normalized to that of GAPDH to calculate ∆CT. The ∆CT was used to find the relative
expression of target genes according to the following formula:

relative expression = 2−∆∆CT, where ∆∆CT = ∆CT of target genes in experimental
condition − ∆CT of target gene under control condition.

2.7. Lung Injury Severity Scoring

The severity of the lung injury was analyzed in a blinded manner with the grader
unaware of the study group being reviewed. The lung histopathological changes were
assessed by the four identifiable pathologic processes: (1) alveolar wall fracture, (2) alveolar
fusion, (3) inflammatory cell infiltration and alveolar hemorrhage, and (4) thickness of the
alveolar wall. The scores of 0 to 4 were defined as lower than 25%, 25–50%, 50–75%, and
higher than 75% lung involvement, respectively, to represent normal lungs.
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2.8. Western-Blot

The lung tissue homogenate was collected then freeze-thawed repeatedly 3–5 times
using liquid nitrogen. After being centrifuged at 5000× g for 7 min, the supernatant was
protein extracts. Sample protein concentration was determined with the BCA Protein
Assay Kit (Genstar). The supernatants were then divided according to the sample protein
concentration. Sample loading buffer was added to the supernatants and boiled for 5 min.
Samples were then centrifuged, and the supernatant was removed. Approximately 20 µg
of sample supernatant was loaded per lane, separated on a precast polyacrylamide Bis-Tris
gel with a 4–12% gradient (Solarbio), and transferred onto a nitrocellulose membrane.
The membranes were blocked in 10% milk/TBS-T buffer for 1 h at RT and incubated
overnight with the following antibodies: rabbit anti-NLRP6 polyclonal antibody (1:2000,
Immunoway), rabbit anti-GSDMD polyclonal antibody (1:5000, Proteintech), and mouse
anti-GAPDH monoclonal antibody (1:10,000, Proteintech). Membranes were incubated with
fluorescently labeled secondary antibodies (1:10,000, Proteintech) at RT for 1 h. The protein
bands were detected with the Odyssey® infrared imaging system (LI-COR Biosciences).
The relative expression of each target gene was obtained using the following formula:

relative expression of gene = (density of the gene band)/(density of β-actin band).

2.9. ELISA

Sample supernatant was extracted and determined from lung tissue homogenate with
the Mouse TNF-α, IL-1β, and IL-18 Cytokine ELISA Kit (elabscience) according to the
manufacturer’s instructions. Details are described in the Supplementary Materials.

2.10. Quantification and Statistical Analysis

Statistical analyses were performed using Prism 9.0. Data were presented as the mean
values ± SD or SEM. Comparisons between two groups were performed using the two-
tailed Student’s t-test. One-way ANOVA (analysis of variance) was used to compare three
or more groups. p < 0.05 was considered significant, and Kaplan–Meier survival curves
were analyzed to determine statistical significance with the log-rank test. All scripts of
statistical analyses were uploaded and included in the Supplementary Materials (Original
data. pzfx).

3. Results
3.1. Coinfection Caused Acute Lung Injury, which Can Lead to Fatal Conditions

To construct the animal model of coinfections with brucella and influenza, mice were
infected with the sublethal doses of the brucella S2 strain and the influenza H1N1 PR8
strain through the respiratory tract. As showcased in Figure 1b, there was a progressive
decrease in the body weight of the coinfection groups after the challenge. The single
infection mice showed obvious body weight loss and then gradually recovered over 1 week.
The percentage of the weight changes was significantly different between the groups
(p < 0.0001). As showcased in Figure 1c, the mortality rate of the coinfection group was
found to be the highest on day 10 post challenge. The difference between the groups
of infected mice’s survival curves was statistically significant. The brucella count in the
S2 + PR8 group was considerably greater than that in the S2 group, demonstrating that
Influenza virus A can promote brucella proliferation in the lungs (Figure 1d). In contrast,
the lung viral burden of the S2 + PR8 group was considerably lower than that of the PR8
group, suggesting that Brucella can impede Influenza virus replication (Figure 1e). There
were extensive alveolar wall fractures, alveolar fusion, and thickened alveolar walls as well
as a large amount of inflammatory cell infiltration (Figure 1f). Corresponding to this, the S2
and PR8 group’s mice tended to have milder symptoms. The results of the pathological
scoring could be corroborated with the above results (Figure 1g). In addition, as shown in
Figure 1H, the coinfection led to a significant increase in TNF in the lung tissue.
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Figure 1. Coinfection caused massive Brucella proliferation and lethal lung tissue damage.
(A) Experimental flow chart. Mice were infected with Brucella and Influenza through the respi-
ratory tract. Mice were sacrificed, and lungs were collected via sterile dissection 3 days after infection.
Lung pathology, viral/bacterial load, and inflammation-associated molecules and cytokines were
detected for analysis of the proinflammatory mechanism of coinfection. Finally, the function of
NLRP6 using NLRP6−/− mice was validated. (B) Weight changes in mice. Results expressed as mean
± standard deviation. The data were analyzed using repeated measures ANOVA. (C) Coinfection
mice mortality rate increased: comparison of survival curve analysis. (D,E) The Brucella load (log10)
increased in the coinfected group, while the viral load decreased when compared to single infection.
Two-tailed unpaired Student’s t-test for two groups was performed. (F) Coinfection caused massive
inflammation and severe tissue damage. Pathological sections of lung tissue were observed under a
light microscope at 3 days post infection. (With magnification of 10× and 40×). (G) Graph showing
pathology score of the lung tissues after the infection. Two-tailed unpaired Student’s t-test for two
groups. (H) The TNF-α cytokine was measured with ELISA. Results expressed as mean ± standard;
* p < 0.05; *** p < 0.001; and **** p < 0.0001.
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3.2. Coinfection Caused an Increase in NLRP6 Expression

The development of ALI may be aided by excessive S2 growth as a result of the
coinfection. Thus, our following experiments focused on the mechanisms of bacterial
growth and proliferation. A previous study showed that NLRP6 is associated with some
common respiratory pathogenic bacteria [26–28]. In our study, the relative mRNA expres-
sion of NLRP6 was found to be significantly upregulated in the S2 group (Figure 2a). In
the PR8 group, there was a small but not statistically significant upregulation in NLRP6
(Figure 2a). However, NLRP6 was dramatically upregulated in the S2 + PR8 group, and
the upregulation was greater than the sum of the other two groups (Figure 2a). Moreover,
NLRP6 protein expression showed a similar trend (Figure 2c). Therefore, the combination
deployment was thought to have a synergistic impact, generating a significantly greater
NLRP6 expression than either pathogen alone.

3.3. Coinfection Caused an Increase in IL-18 Expression

We further detected the GSDMD mRNA and protein expression. In the S2 group, there
was a small but not statistically significant increase in the GSDMD mRNA (Figure 2b). In
the PR8 group, its expression was not significantly altered (Figure 2b). However, GSDMD
was dramatically upregulated in the S2 + PR8 group, and the upregulation was greater
than the sum of the other two groups (Figure 2b). Moreover, GSDMD protein expression
showed a similar trend (Figure 2d). This indicated that the coinfection with S2 and PR8
could significantly boost GSDMD expression, which consisted in robust inflammation in
the lungs of the coinfection mice. Furthermore, GSDMD’s overall trend was equivalent to
that of NLRP6. As a result, we hypothesized that NLRP6 might be involved in regulating
GSDMD expression during coinfection, and, through augmenting GSDMD, NLRP6 induced
strong inflammation and lung damage.

Compared with the control group, the relative mRNA expression of IL-1β was found to
have a slight but not statistically significant upregulation in the three infection groups, and
no differences were observed between these groups (Figure 2e). Similarly, although there
was a considerable increase in these groups compared to the control group, the cytokine
content of IL-1β did not change between the infection and coinfection groups (Figure 2f).
On the contrary, IL-18 mRNA expression was shown to be considerably increased in the
three infection groups (Figure 2g), with statistically significant differences between the
groups. In addition, the IL-18 cytokine content followed a similar pattern (Figure 2h). It was
suggested that IL-18 played an essential role in B. Suis and IAV coinfections. Furthermore,
the overall trend of IL-18 matched that of NLRP6 and GSDMD. Therefore, we speculated
that NLRP6 may potentially be involved in regulating GSDMD and IL-18 expression during
B. Suis and IAV coinfections.

3.4. The Involvement of NLRP6 in Brucella and/or Influenza Virus Infections

To confirm the function of NLRP6 in B. Suis and IAV coinfections in the lung, we
established a NLRP6−/− coinfection mouse model with the same set-ups and acquisition
conditions as the previous study. Compared with the WT groups, the bacterial load of
the NLRP6−/− mice decreased significantly in the S2 + PR8 group and the S2 group, re-
spectively (Figure 3a). Thus, it was believed that NLRP6 promoted B. Suis proliferation.
Moreover, in NLRP6−/− mice, the bacterial count of the S2 + PR8 group was still higher
than that of the S2 group. Even in the absence of NLRP6, PR8 was thought to enhance S2
proliferation. Therefore, there must be other causes for IAV-induced S2 proliferation. The
NLRP6−/− mice showed a less severe inflammatory reaction and tissue injury (Figure 3c,d)
when compared to the WT mice. This indicated that an infection with B. Suis and/or IAV
could cause NLRP6 to be activated in the lungs of mice, which could exert a proinflamma-
tory effect.
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Figure 2. The expression levels of NLRP6, GSDMD, IL-1β, and IL-18 in WT mice. (A–D) The
overexpression of NLRP6 and GSDMD was caused by coinfection in the lungs. The mRNA expression
was measured with qPCR, and the protein expression was detected with Western blot. Two-tailed
unpaired Student’s t-test was used to compare two groups, and one-way ANOVA was used to
compare three groups or more. (E–H) The expression of IL-1β and the overexpression of IL-18
were caused by coinfection in the lungs. The mRNA expression was measured with qPCR, and the
cytokines were measured with ELISA. Two-tailed unpaired Student’s t-test were used to compare
two groups, and one-way ANOVA was used to compare three groups or more. Results expressed as
mean ± standard; * p < 0.05; ** p < 0.01; *** p < 0.001; and **** p < 0.0001.
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Figure 3. NLRP6−/− mice were more resistant to coinfection than WT mice. (A) The Brucella count
(log10) of NLRP6−/− was more significantly decreased than that of WT mice. Two-tailed unpaired
Student’s t-test was used to compare two groups. (B) The levels of inflammation and tissue damage
in NLRP6−/− mice were milder than those in WT mice. Pathological sections of lung tissue were
observed under a light microscope 3 days post infection. (With magnification of 10× and 40×).
(C) Graph showing pathology score of the lung tissues after the infection. Two-tailed unpaired
Student’s t-test was used to compare two groups. Results expressed as mean ± standard; * p < 0.05;
*** p < 0.001.
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3.5. NLRP6 Mediated the Upregulation of IL-18 and IL-1β

Compared with the WT groups, the RT-qPCR and ELISA showed a significantly re-
duction in IL-18 expression in the NLRP6−/− groups (Figure 4c,d). It was suggested that
NLRP6 mediated the elevation of IL-18 in B. Suis and/or IAV-infected lung tissues. In
addition, the differences between the WT groups were highly significant (Figure 2f,g);
however, in the NLRP6−/− mice, these differences were absent. In conclusion, with the
coinfection with B. Suis and IAV, NLRP6 can increase IL-18, resulting in potent proinflam-
matory effects that can harm the mouse lung tissue. Moreover, there was no difference
in IL-1β mRNA expression in the WT and NLRP6−/− groups (Figure 4a). But an ELISA
showed a significantly reduction in the expression of IL-1β cytokines in the NLRP6−/−

groups (Figure 4b). This was concordant with prior studies [28]. NLRP6 was involved in
IL-1β maturation and secretion but not in IL-1β transcription induction.
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Figure 4. The expression levels of IL-1β and IL-18 in NLRP6 deleted mice. (A,B) The mRNA of
IL-1β was not differentially expressed. The cytokine IL-1β was downregulated in NLRP6−/− mice.
Two-tailed unpaired Student’s t-test was used to compare two groups. (C,D) The mRNA and protein
of IL-18 were differentially expressed. Two-tailed unpaired Student’s t-test was used to compare two
groups. Results expressed as mean ± standard; * p < 0.05; ** p < 0.01; *** p < 0.001.

4. Discussion

Brucellosis is crippling but is rarely deadly. Acute sickness in people is characterized by
nonpathognomonic clinical symptoms, such as sadness, myalgia, arthralgia, splenomegaly,
and undulant fever [31]. Most patients are easily misdiagnosed as having a cold during their
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first visit in the Department of Respiration [32]. In China, brucellosis has been reported in
all of its provinces and is endemic in 25 provinces (or autonomous regions) [33]. Although
the risk posed by bacterial coinfections in influenza patients is well understood [14], there
are no effective strategies to reduce the severity and mortality of these coinfections. Recent
observations in China indicate a recurrence of brucellosis. Although comparatively fewer
reports have been published on brucella and Influenza coinfections, our data exists to
support their damage role in accelerating lung injuries. Therefore, it is essential to clarify
the characteristics of these coinfections and to explore coping mechanisms.

Firstly, taking into consideration that severe pneumonia is a common respiratory
disease in children and that it is also one of the main causes of death in hospitalized
children under 5 years of age, 4-week-old C57BL/6 mice were used as animal models in
our study. Previous studies showed that Influenza-infected mice exhibit peak susceptibility
for bacterial coinfection at the peak of lung injury, roughly 7 days post Influenza [34,35].
However, the direct synergistic pathogenic effects of the bacteria and virus were a major
concern for our study. Thus, we infected the mice twice in a short interval to reduce the
disturbances of lung injuries, which can result in heightened susceptibility.

In our study, we confirmed that respiratory and systemic symptoms, nonprotective
inflammation, lung tissue damage, and a high mortality rate were observed in the WT
mice during the early stages of the brucella and Influenza coinfection. This synergistic
effect was consistent with what happens when Influenza and S. pneumoniae or S. aureus
work together [36,37]. In the coinfection group, the increase in the brucella count was
30 times greater than that in the solo S2 group. This might be one of the causes of the higher
mortality rate and severity with the coinfection challenge. According to Bai’s research, an
H1N1 infection enhanced the proliferation and adherence of Gram-positive Streptococcus
pneumoniae, which is in line with our findings [38]. Therefore, coinfections with Brucella
and Influenza could result in significant adverse effects in humans. If a host is already
infected with brucella or IAV, it is necessary to prevent them from being exposed to the
other pathogen. Those working in animal husbandry in particular should be aware of the
importance of occupational exposure protection.

NLRP6 participates in the host defense against pathogens, such as bacteria, viruses,
and parasites. During the infection of the lungs and intestines with different microbes,
NLRP6 exhibited a dissimilar effect. Rungue et al. reported that NLRP6 plays a damaging
role in the intestinal phase of Brucella infections [29]. In comparison to the WT mice, the
NLRP6−/− mice were more resistant to the Brucella infection, with a lower CFU in the liver
and lower intestinal permeability [29]. However, the function of NLRP6 in Brucella lung
infections is unknown. Thus, we thought that too much S2 growth caused by IAV during
the coinfection would be linked to too much NLRP6 expression. Our data indicated that
the B. Suis and IAV solo infections generated a slight elevation in NLRP6 expression, but
the B. Suis and IAV coinfection generated the synergistic effect of NLRP6 overexpression.
In addition, the NLRP6−/− mice had a lower bacterial load in the lung tissue after the
coinfection. It was suggested that NLRP6 hurt the pulmonary host anti-Brucella defense
when the two infections occurred at the same time.

Moreover, the coinfection also caused nonprotective inflammation through NLRP6
overexpression. To explore the mechanism of NLRP6, we detected several proinflammatory
molecules induced by NLRP6. Previous studies showed that NLRP6 can form a com-
plete NLRP6 inflammasome when it recruits and binds with caspase-1 and/or caspase-11
through the classical or nonclassical pathway [39–41]. This inflammasome can cleave
GSDMD and can induce the maturation and secretion of IL-1 and IL-18 [42]. A large
number of GSDMD pores in the plasma membrane can result in an enormous leakage of
the cytosolic contents and inflammatory reactions [43,44]. IL-1β (4.5 nm) and IL-18 (5.0 nm)
can be released into the extracellular space through the GSDMD pores (10–15 nm) [40].
This also explains why, just prior to cell cleavage, IL-1 and IL-18 can be observed extracellu-
larly [45]. Some studies have demonstrated that IL-1β and IL-18 can exert proinflammatory
effects [46,47]. There is additional evidence that NLRP6 played a role in exacerbating the
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symptoms of systemic listeriosis by boosting the expression of IL-18. IL-18 treatment in the
NLRP6−/− mice restored the mutant mice’s sensitivity to L. monocytogenes infections [48].
Sandip et al. showed that mice with Citrobacter rodentium infections exhibited a high
amount of activated IL-18, which was triggered by NLRP6 and caused significant colonic
inflammation [49]. Therefore, it is possible that IL-1β and IL-18 production induced by
NLRP6 plays another key role in the pathogenic mechanisms of B. Suis and IAV coinfections.
However, whether NLRP6 signaling is involved in the transcription mechanism of IL-18
and IL-1β remains unclear. In our study, an increase in active IL-18 and IL-1β cytokines
was observed in the WT to NLRP6−/− groups (Figure 4b,d). It was suggested that NLRP6
could promote pro–IL-18 and pro-IL-1β into active IL-18 and IL-1β. Furthermore, we
found that NLRP6 was involved in the transcription of IL-18 but not in the induction of
IL-1β transcription during the coinfection (Figure 4a,c). The coinfection induced the potent
expression of IL-18, and the overall trend of IL-18 was equivalent to that of NLRP6. There-
fore, we speculated that, with the coinfection with B. Suis and IAV, NLRP6 could increase
IL-18, resulting in massive proinflammatory effects that could harm the mouse lung tissue.
Further validation experiments will be performed in anti-IL-18 mAb and IL-18−/− models.

Interestingly, the RNA expression of PR8 showed a statistically significant upregulation
in the NLRP6−/− coinfection group, suggesting that IAV increased due to S2 synergy (data
not shown). However, our previous data demonstrated that Brucella can impede IAV
replication in WT mice. Previously, Wang et al. reported that NLRP6 works with Dhx15 as
a viral RNA sensor to trigger ISGs and that this effect is particularly essential to antiviral
signaling in the intestine [50]. Therefore, we speculated that Brucella lung infections
could increase the Influenza load in the coinfected group. However, in vivo, B. Suis could
indirectly impede IAV replication through NLRP6 upregulation. This effect has not been
recorded, and further experimental verification is required.

This work expanded on the clinical spectrum of infections by examining coinfections
with the Influenza virus and Brucella in the lung tissue. Further research was done on
NLRP6 and IL-18, which are possible targets for intervention since they can negatively
impact ALI. There were also some limitations in this study. First, since this was a cross-
sectional study, it had the usual limitations of a cross-sectional analysis. Second, even in the
NLRP6 knockout mice, the bacteria count of the S2 + PR8 group was still greater than that
of the solo S2 group. It was suggested that there were definitely other possible mechanisms
for the conferment of B. Suis proliferation promoted by IAV. Further studies are warranted
to comprehensively understand the underlying mechanisms.

In conclusion, compared with the sole infections, a greater bacteria count, inflamma-
tory reaction, and high mortality were exhibited in the early stages of the coinfection with
brucella and influenza. Additionally, the coinfection caused NLRP6 overexpression, which
plays a role in proinflammation in the lung tissue of mice. IL-18, which is a powerful in-
flammatory molecule, could be increased by NLRP6 in the lungs because of the coinfection.
Thus, it looked like NLRP6 and IL-18 could be promising molecules to target early on in this
coinfection to stop an overactive inflammatory response and to stop damage to the tissues.
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