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Abstract: With the development of big data and cloud computing technologies, the importance of
pseudonym information has grown. However, the tools for verifying whether the de-identification
methodology is correctly applied to ensure data confidentiality and usability are insufficient. This
paper proposes a verification of de-identification techniques for personal healthcare information by
considering data confidentiality and usability. Data are generated and preprocessed by considering
the actual statistical data, personal information datasets, and de-identification datasets based on
medical data to represent the de-identification technique as a numeric dataset. Five tree-based
regression models (i.e., decision tree, random forest, gradient boosting machine, extreme gradient
boosting, and light gradient boosting machine) are constructed using the de-identification dataset
to effectively discover nonlinear relationships between dependent and independent variables in
numerical datasets. Then, the most effective model is selected from personal information data in
which pseudonym processing is essential for data utilization. The Shapley additive explanation,
an explainable artificial intelligence technique, is applied to the most effective model to establish
pseudonym processing policies and machine learning to present a machine-learning process that
selects an appropriate de-identification methodology.

Keywords: de-identification; medical data; machine learning; tree-based method; explainable
artificial intelligence

1. Introduction

With the recent development of big data and cloud computing technologies, numerous
data, including personal information, have been generated in digital environments [1].
Hence, many organizations have been striving to efficiently protect their personal infor-
mation [2,3]. For instance, pseudonym information in South Korea is defined as personal
information that cannot be recognized without additional information by processing part
of the personal information under an alias, such as deletion or replacement [4], and can be
used freely without the need for separate consent [5,6]. However, the failure to conduct the
proper procedures for converting personal information into pseudonym information could
cause serious privacy problems [5,7,8]. Therefore, an appropriate de-identification process
is required to convert personal information into pseudonym information [3,9].

Various studies have been conducted to effectively perform de-identification or de-
velop open-source tools for de-identifying personal information, such as automatic retrans-
mission exchange [10,11]. Nevertheless, few methods evaluate whether de-identified data
(including alias processing) can be properly identified. For instance, technology for produc-
ing pseudonym information must be transformed for the intended purposes. However,
if personal information is too aliased at an unspecified level, although the confidentiality
of the data could be increased, the usability could be reduced [12,13]. Hence, excellent
de-identification indicates that the data have both confidentiality and usability. Therefore,
studies are essential for proposing an appropriate de-identification methodology, consider-
ing personal data analysis through independent variables processed in the de-identification
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methodology in numerical form and dependent variables derived by properly considering
the values of data confidentiality and usability [14,15].

Recently, machine-learning techniques have been used for data analysis in a va-
riety of fields, including the education [16,17], energy [18,19], environmental [20,21],
medical [22–24], and security [25–27] fields, to assist professionals in saving time and
effort because machine learning can effectively discover nonlinear relationships between
dependent and independent variables in numerical datasets. To address classification
problems in the medical field, Shailaja et al. [28] presented various machine-learning tech-
niques, such as the support vector machine, naive Bayes classification, k-nearest neighbors,
and others, to predict various diseases, such as heart disease, breast cancer, diabetes, and
thyroid disease. To address regression problems in the medical field, Kwon et al. [29]
used the electronic medical records of patients with heart failure and cataract symptoms to
develop a recurrent neural-network-based visual analytical tool for obtaining insight into
how individual medical codes contribute to risk projections.

However, because the decision-making process within these models is opaque (i.e.,
a black box), forecasting findings generated by these models cannot be fully trusted
and exploited [30]. Therefore, explainable artificial intelligence (XAI) technology has
recently garnered increased attention in developing reliable and interpretable forecasting
models [31,32]. The XAI technology can change the artificial intelligence (AI) decision-
making process, secure reliability, provide stability, and improve model performance. A
representative example of XAI technology, the decision tree (DT)-based ensemble learning
models with Shapley additive explanation (SHAP) values have achieved excellent per-
formance in various domains and could confirm which independent variables affect the
model construction through the Shapley values [33,34]. However, no previous work has
employed a de-identification methodology that includes data confidentiality and usability
for appropriate personal healthcare data utilization based on XAI techniques.

This paper proposes a verification approach for de-identification methodologies based
on the DT-based ensemble learning methods with SHAP values. First, a de-identification
dataset is configured for model training. The dataset contains the number of samples and
labels of usability and confidentiality for personal information as independent variables,
including the final score as a dependent variable via labeling weights considering the
confidentiality and usability of the personal information. Several simulation models are
constructed to verify the effectiveness of this approach using DT-based methods, exhibiting
model interpretability and superior performance in the tabular datasets: DT, random forest
(RF), gradient boosting machine (GBM), extreme gradient boosting (XGB), and light GBM
(LightGBM). Finally, the performance of the simulation model is compared using a new
de-identification dataset, and the interpretability of the best simulation model is presented.

The main contributions of this paper are as follows:

• A generated dataset based on medical data for model training is configured, exhibiting
a distribution similar to the actual personal information dataset by considering the
actual statistical results for South Korea, including the name, residential area, and age.

• Data preprocessing is performed for the self-de-identification dataset and simulation
models using DT-based methods constructed for training various de-identification
datasets, and their performance is compared to confirm superior models in terms
of privacy.

• An XAI technique is used to interpret the process of model training to present the
process for determining an appropriate de-identification methodology that can assist
in developing a de-identification methodology or modifying policies in the future.

The remainder of this paper is structured as follows: Section 2 briefly reviews the
previous work on data usability and confidentiality. Next, Section 3 summarizes the
framework for the proposed approach. Then, Section 4 validates the approach through
experiments and interprets the best simulation model using the XAI technique. Finally,
Section 5 concludes this paper and suggests directions for future work.
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2. Related Work
2.1. Data Usability

Bloland and MacNeil [35] provided a definitional framework to untangle many of the
variables that have previously confounded conversations about the quality of vaccination
data. The framework classifies immunization data into three categories: data quality,
usability, and utilization. The framework also provides tangible recommendations for a
specific set of indicators that could better identify the important qualities of immunization,
such as trueness, concurrence, relevancy, completeness, timeliness, integrity, consistency,
and utilization. Silsand et al. [36] conducted a formative review of an empirical project
in North Norway using a qualitative trailing research approach paired with information
infrastructure theory. Parts of the clinical information in the electronic health record (EHR)
were formatted as openEHR archetypes in this project to enable automatic data to be reused
from the EHR system in a national medical quality registry. They investigated the design
problems that arise from organizing clinical information for various uses. As a result, they
identified three critical concerns to fix: (1) the need for context when reusing variables,
(2) how to verify reusing the correct data, and (3) the difficulties of granulating the variables.
The most critical prerequisites for increasing data usability through clinical information
structuring were governance and competency. Wait [37] assisted in developing attainable
data quality objectives and insight into obtaining reliable results that adequately support
the findings when reviewed by others.

Adnan et al. [38] undertook a rigorous systematic review of the literature using the
preferred reporting item for systematic reviews and meta-analyses (PRISMA) framework
to construct a model to improve the usability of unstructured data and bridge the research
gap. The most recent methodologies and solutions for text analytics were thoroughly
studied. Concerns regarding the unstructured text data usability and their implications
for data preparation for analytics were discovered. The usability enhancement method-
ology incorporates the definition of usability dimensions for unstructured big data, the
discovery of usability determinants, and the development of a relationship between us-
ability dimensions and determinants to produce usability rules. Their proposed model
contributes to the usability of unstructured data and simplifies data preparation operations
with more valuable data, which ultimately improves the analytical process. They also
discovered unstructured big data usability difficulties for the analytical process to bridge
the identified gap [39]. The usability enhancement approach for unstructured big data
has been presented to improve the subjective and objective efficacy of unstructured big
data for data preparation and manipulation operations. Furthermore, idea mapping was a
crucial component for improving the usability of unstructured big data in the suggested
model with usability principles. These principles bridged the usability gap between the
availability of data and their usefulness for the intended purpose. The proposed study
methodology could help improve unstructured big data analytics efficiency.

2.2. Data Confidentiality

Javid et al. [40] underlined the difficulties of cyber security and data privacy and
developing solutions in adopting Industry 4.0 in the healthcare industry. For example, a
reduction in the attack surface is required to seamlessly integrate complex computational
algorithms, such as those used in cryptography. This issue can be solved by employing
Cloudlet technology, which employs virtual machines near the mobile device to assist with
preliminary big data analysis for wireless body area networks. Furthermore, the authors
suggested several possibilities from Cloudlet technology for future research, such as sup-
ported remote robotic surgery. Domingo-Ferrer et al. [41] used the utility in the traditional
sense of retaining the statistical properties of the original data. They specifically used
the unified perspective of anonymization of the permutation model to create constrained
confidentiality metrics for microdata anonymization based on the relative quantities of
permutations by the different attributes of a dataset. They presented experimental results
demonstrating that their proposed metrics produce outcomes consistent with intuition
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for several anonymization approaches in the literature, including privacy models and
statistical disclosure control methods based on the noise and generated data.

Yuan et al. [42] proposed a comprehensive scheme that simultaneously achieves
data privacy protection, data dynamics, and batch auditing in a public cloud storage
environment. This scheme can safeguard data blocks during audits and effectively support
data dynamics. Furthermore, third-party auditors can do batch audits for many users.
Finally, the security analysis demonstrated that the scheme is risk-free. Gai et al. [43]
focused on privacy and proposed a revolutionary data encryption strategy called the
dynamic data encryption strategy (D2ES). They recommended selective data encryption
and using privacy categorization methods under time restrictions. This approach was
designed to maximize the extent of privacy protection by employing a selective encryption
mechanism within the execution time constraints. In their experiments, the performance of
D2ES was examined, verifying the privacy enhancement. Bakir [44] developed a model
that includes three key characteristics: data confidentiality, integrity, and consistency
of information security for massive datasets. A more practical and adaptable structure
was realized with the single labeling model for all database operations (reading, writing,
updating, and deleting) on actual data. Therefore, all processes were given with the three
key features. The outcomes of the proposed single-label model were compared to the
application and experimental investigation that the author conducted, and the findings are
encouraging for further research.

However, no previous work on personal health information has been conducted that
assesses whether alias processing was successfully performed using a de-identification
methodology that considers data confidentiality and usability for appropriate data utiliza-
tion. In addition, which variables had an effect when verifying data de-identification were
not easily determined in the existing studies.

3. Materials and Methods

This paper generates a de-identification dataset focusing on EHRs, which were actively
conducted for an experimental evaluation of de-identification tools. First, personal infor-
mation was collected from the statistical results of government institutions in South Korea,
such as the Korean Statistical Information Service (KOSIS) and the Ministry of Health and
Welfare (MOHW). Various de-identification methodologies were applied to determine the
labels for the usability and confidentiality of personal information.

The total number of samples and labels applied to each de-identification dataset was
configured into one tuple for independent variables in the sample dataset. Figure 1 illus-
trates the overall architecture of the proposed approach. In the case of data confidentiality
in this paper, the masking tape technique, the most commonly used data de-identification
technique, was used to cover part of the characters to prevent privacy exposure [45,46].
The de-identification methodology was treated as a number and used as the value of the
independent variables.

Afterward, the de-identification methodology was applied to the sample dataset to
calculate the confidentiality and usability of the labeling data to determine scores for
the de-identification methodology. The DT-based methods that demonstrate excellent
performance and model explanatory properties for AI techniques were applied to construct
a model that predicts the value of the dependent variable by learning the independent
variable expressed numerically.

Thus, a de-identification dataset was generated and guided by collecting personal
information, creating itemized rules, and applying the de-identification methodology. In
addition, this approach can be employed for medical data and application and verification
in other areas by considering various items.
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Figure 1. Overall architecture of the proposed approach. An asterisk (*) indicates a de-identified
character from personal information.

3.1. Data Generation

The data considered in this paper consist of personal information that, without de-
identification processing, cannot be used directly under the current privacy law in South
Korea. Therefore, virtual data, such as the actual statistical percentage from the KOSIS,
were generated by referring to the statistical results of the Family Relationship System, the
Population and Housing Census, and public medical data. The virtual data area was set
as medical data, and the items of the virtual data consist of the name, age, phone number,
residential area, illness, blood type, and smoking status.

3.1.1. Name

Various virtual names were generated by considering the family and given names.
Both names were generated based on the statistical results from the Family Relationship Sys-
tem [47,48]. According to the distribution of family names in South Korea, the leading fam-
ily names and their percentages are as follows: Kim (21.56%), Lee (14.74%), Park (8.46%),
Jung (4.86%), Choi (4.72%), Jo (2.93%), Kang (2.56%), Yoon (2.06%), Jang (2.06%), Im (2.05%),
Shin (1.99%), Yoo (1.94%), Han (1.56%), Oh (1.54%), Seo (1.52%), Jeon (1.51%), Kwon (1.42%),
Hwang (1.41%), An (1.38%), Song (1.38%), and 98 other family names (18.35%). Figure 2
presents a TreeMap of the leading family names and their percentages.

Figure 2. TreeMap of leading family names and their percentages.
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3.1.2. Age

Age values were generated by considering the statistical results from the Population and
Housing Census. Although the Population and Housing Census presents five age intervals
(i.e., 19–29, 30–39, 40–49, 50–59, and 60–75), 11 intervals were determined to be appropriate for
dataset configuration to effectively reflect the characteristics of the age group in the medical
data. Thus, 10-year age intervals between 0 and more than 100 were set by calculating and
reflecting on the population of South Korea in 2015 (Figure 3). The percentages for each
age interval are as follows [49]: 0–9 (8.03%), 10–19 (9.40%), 20–29 (13.56%), 30–39 (14.10%),
40–49 (16.03%), 50–59 (16.62%), 60–69 (11.93%), 70–79 (6.80%), 80–89 (3.06%), 90–99 (0.4%),
and >100 (0.07%).

Figure 3. Pie chart of the percentage of each age group in the South Korean population.

3.1.3. Phone Number

For phone numbers, because no rules or overlapping values apply for numbering
in South Korea, the statistical results for their distribution do not exist. Hence, all values
except for 010 were randomly generated with the first three numbers in common.

3.1.4. Residential Area

The Population and Housing Census was used to describe the urban residential area
dataset [50]. The population distribution was considered for all provinces and metropolitan
cities in South Korea, as listed in Table 1.
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Table 1. Province and metropolitan city information for South Korea.

Name Provincial Level Percentage

Seoul Special city 18.5
Busan Metropolitan city 6.5
Daegu Metropolitan city 4.7

Incheon Metropolitan city 5.7
Gwangju Metropolitan city 2.9
Daejeon Metropolitan city 2.9

Ulsan Metropolitan city 2.2
Sejong Special self-governing city 0.7

North Chungcheong Province 3.1
South Chungcheong Province 4.2

Gangwon Province 2.9
Gyeonggi Province 26.1

North Gyeongsang Province 5.1
South Gyeongsang Province 6.4

North Jeolla Province 3.5
South Jeolla Province 3.5

Jeju Special self-governing province 1.3

3.1.5. Illness

The five considered illnesses were randomly distributed in EHRs: colds, headaches,
gastritis, body aches, and bruises without any other statistical distribution. Unlike other
characteristics, as this data item is directly used after de-identification processing, it does not
have a specific generation probability; therefore, it can have a completely random distribution.

3.1.6. Blood Type

According to the Korean Red Cross Blood Information Statistics [51], Rh+ comprises
99.7% of blood types in the South Korean population. The distribution of each blood type
is A (34%), B (26.6%), O (27.5%), and AB (11.4%). Hence, only Rh+ was considered because
Rh− does not cause any significant difference in proportion.

3.1.7. Smoking Rate

According to the MOHW and the Korean Centers for Disease Control and Prevention,
the smoking rate in South Korea is 21.5% (men: 35.7%, women: 6.7%) [52]. A virtual dataset
for the smoking rate was generated considering the actual statistical distribution.

3.2. Data Preprocessing

As mentioned, a de-identification dataset was configured for the independent variables.
A dependent variable must be provided for model training based on the de-identification
dataset with masking. Hence, a masking methodology to apply de-identification was
proposed for the specified items via rules. The de-identification methodology for each
sample and characteristic was expressed numerically, and then these values were adopted
as each tuple of the dependent variable.

Good de-identification data are defined as having high confidentiality and usability to
estimate the dependent variables, called score values, corresponding to the exact data before
generating the masking methodology. Data confidentiality represents the probability that an
individual can be specified within a de-identification dataset. Within a de-identified dataset,
the specific personal information sought (a line from the de-identification dataset) may be
specified, meaning that de-identification processing has not been properly performed in
terms of privacy.

Data usability refers to how de-identified data can be used as pseudonym information
in the future. If the de-identification is excessive, the value may significantly decrease when
using the data as pseudonym information later. Thus, “well de-identified” means that data
confidentiality and usability are properly considered. Data confidentiality and usability
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tend to be inversely proportional to the degree of application of the de-identification
methodology; therefore, they should be unidentified to protect personal information while
finding an appropriate intermediate form to make information meaningful when used.
Data confidentiality and usability were incorporated into the evaluation to reflect the
computation of the score values corresponding to the correct answer data for tree-based
model training.

Data confidentiality is expressed as a percentage by dividing the number of groups
deduplicated after de-identification by the number of original data in a de-identification
dataset, multiplied by 100, as presented in Equation (1). The term “number of deduplicated
groups” means the number of data remaining when one completely redundant column is
left and excluded (smaller values indicate that the individual is less likely to be identified
in that dataset):

Data confidentiality = (no. of deduplicated groups after de-identification/no. of original data) × 100. (1)

Data usability is calculated using labeled values via Equation (2). Labeling means
converting the de-identification methodology applied to each characteristic of the feature
data into integer values for model training. When performing this labeling, the labeling
value is determined to consider the data usability. Subsequently, the characteristics of the
feature data are multiplied by a single digit and a decimal digit for each labeled value, and
then all these values are added to calculate the data usability. The labeling rules applied to
each data characteristic are introduced below:

Data usability = ∑ (decimal digit × single digit of labeled value). (2)

3.2.1. Name

For the names, three-character names (Korean characters), accounting for most of the
names in South Korea, were labeled 03, 12, 21, and 30. For two-character names, which
character was masked was not considered, as it was concluded that there was no distinction
because the data usability does not differ depending on which character was masked.
Therefore, the same labeling value was reflected in the input data regardless of the value or
location if the characters were masked. Figure 4 presents the final set of rules considered in
this paper.

Figure 4. Labeling rules for the family name. An asterisk (*) indicates a de-identified character from
personal information.

3.2.2. Age

The age category, like the name category, was set to **% from 0 to 99 years of age. The
content of the age data was categorized as 0–9, and, unlike decimals, the number of digits
is not significant in terms of data usability; therefore, the number of cases in which only the
decimals were masked was excluded, as listed in Table 2. If the original is masked with
nothing, only the one is masked, or both numbers are masked, the labeled values are 02, 11,
and 20, respectively.
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Table 2. Labeling rule for age. An asterisk (*) indicates a de-identified character from personal
information.

De-Identification Methodology Example Labeled Value

Original (identification) 12, 25 02
De-identification for one character 1 *, 2 * 11

De-identification for two characters **, ** 20

Specifically, for the labeled value, the first digit is the number of masked digits, and
the next digit is the number of digits exposed without masking. In the original data, both
digits are exposed; thus, the first digit in the value is 0, and the last digit is 2, resulting
in 02. For the de-identification of one digit, one digit is exposed, and one is masked, and
therefore the first and second digits are both 1, and the resulting labeled value is 11. For the
de-identification of two digits, as both are masked, there are no exposed digits; thus, the
first digit is labeled 2, and the last digit is labeled 0, resulting in 20.

3.2.3. Phone Number

Phone numbers have properties similar to unique identification numbers in that they
are generated randomly and without duplication, and knowing the value within the dataset
can specify the data. Thus, more released digits result in a less distinctive number of groups,
and the more effective use of phone numbers results in a more significant number of digits
to be identified regarding the data usability value.

Concerning the data usability, the effect on the number of unique groups was more
significant than the value of the phone numbers, which needed to be adjusted. Therefore,
all four digits were masked, front and back, and one out of eight digits was masked.
Previously, the South Korean phone number system used 011, 017, and so on as the first
digits, a system that contained a region or other characteristics. However, South Koreans
can now choose any number without cost. In this regard, 08, 17, and 80 were all labeled
values, as listed in Table 3.

Table 3. Labeling rule for phone number. An asterisk (*) indicates a de-identified character from
personal information.

De-Identification Methodology Example Labeled Value

Original (identification) 010-1234-5678 08
De-identification for one character 010-1***-**** 17
De-identification for all characters ***-****-**** 80

3.2.4. Other

Additionally, four blood types, 17 addresses, five illnesses, and two smoking con-
ditions were divided into the training data. We judged that masking only a part of the
information, such as one or two letters, is meaningless. Even if part of the information
is masked, the information is eventually categorized into groups according to the given
number unless all the information is masked, and thus this method distinguishes whether
to mask the information, as presented in Table 4. The characteristics corresponding to the
categorized data are blood type, address, illness, and smoking status.

Table 4. Labeling rule for other items. An asterisk (*) indicates a de-identified character from
personal information.

De-Identification Methodology Example Labeled Value

Original (identification) bruise 1
De-identification for all characters * 0
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3.2.5. Data Usability

For dataset configuration, data generation was performed considering only seven
items: name, age, phone number, blood type, address, illness, and smoking status. However,
using a simple ruleset makes it difficult to demonstrate the need for AI techniques and does
not guarantee a fundamental purpose. Therefore, a novel value called the data usability was
automatically formulated and calculated for all labeling values as listed in Table 5. The data
usability was calculated using this determined data labeling rule. As mentioned, the values
were obtained by adding digits from each category. Each digit was multiplied and added
in the categories of name, age, and telephone number. Each digit was simply added in
other cases of blood type, address, illness, and smoking status. Thus, data de-identification
methods were obtained that consider the data usability.

Table 5. Example of calculation for data usability. An asterisk (*) indicates a de-identified character
from personal information.

Independent Variables Example Labeling Rule

Name Lee, ***-Hak 12
Age 2 * 11

Phone number 010-7 ***-**** 17
Blood type A 1

Address Seoul 1
Name of illness * 0
Smoking status X 1
Data usability (1 × 2) + (1 × 1) + (1 × 7) + (1) + (1) + (0) + (1) 13

3.2.6. Data Confidentiality

As mentioned, data confidentiality items were created to reflect the effect of privacy
through de-identification processing and data usability. A smaller number of distinct
groups within a de-identification dataset makes specifying individuals less likely. However,
the amount of data for each de-identification dataset could vary greatly; therefore, the
number of identical groups for the number of original data groups was calculated as a
percentage. The values were calibrated by scoring them in intervals. As reflecting the
percentage in the final score value calculation can lead to abnormally high data confiden-
tiality scores compared to the calculated data usability, the data confidentiality values were
divided by intervals according to the percentage value, and the appropriate data confiden-
tiality values were set. For data usability, the maximum value of the scores reflected by the
interval is 15, and the minimum value was 0.

Therefore, the data confidentiality was adjusted by three to maintain the same interval,
as presented in Table 6. The intervals were initially divided by 20%, but if the number of
groups after de-identification and the number of groups of original data were the same, the
de-identification was not properly performed, and then one point was added to reflect the
interval between 99 and 100.

Table 6. Example of the calculation of data confidentiality.

Percentage Confidentiality Value

0–20% 15
21–40% 12
41–60% 9
61–80% 6
81–99% 3

99–100% 1
100% 0

3.2.7. Final Score

When data preprocessing, including data labeling, usability, and confidentiality for all
items, was completed, a final score value (sum of data confidentiality and usability) was
calculated to determine the dependent variable. Consequently, several simulation models
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using tree-based methods were constructed with the name, age, phone number, residential
area, illness, blood type, smoking status, and subsequent labeling values as independent
variables and the final score value as the dependent variable.

3.3. Model Construction

Tree-based methods are the most robust supervised learning techniques for classifi-
cation and regression [53–55]. These methods construct forecasting models that provide
satisfactory performance, high accuracy, and easy-to-understand interpretation [53]. Unlike
linear models, tree-based methods can fit nonlinear relationships and cover many kinds of
problems in machine learning [55,56]. Five tree-based methods were used: DT, RF, GBM,
XGB, and LightGBM.

The DT [53,57] exhibits two features: tree structure modeling and rule-based search.
First, the DT splits the dataset multiple times according to specific boundary points in the
variable. Splitting generates different subsets of the dataset. The final and intermediate
subsets are terminal or leaf nodes and internal or split nodes, respectively. Second, because
the DT could represent a classification or regression process based on an inference rule, it is
easier to understand compared with other AI techniques. However, the DT recognizes con-
tinuous variables as noncontinuous variables; thus, it could derive a significant prediction
error near the boundary point [57]. Therefore, ensemble learning methods using multiple
DTs, such as bagging and boosting, have been developed to address this issue. The bagging
method [58] generates several weak learners (e.g., DTs) using the dataset extracted from
random sampling and then aggregates the results by considering voting (classification) or
averaging (regression), thus, reducing the variance and noise. The most popular bagging
method, RF [57,58], has two primary hyperparameters: the number of trees and features.
The former parameter determines the number of randomly generated DTs, whereas the
latter specifies the number of independent variables reflected in generating the DT. A larger
number of features results in a more similar generated tree form. Moreover, fewer features
reduce the overfitting due to different DT forms.

The GBM [53,59], a typical boosting method that trains iteratively by estimating using
one weak learner (e.g., DT) and passing the remaining residuals back to other weak learners,
uses the stochastic gradient descent algorithm to minimize the loss function. However,
building the GBM is time-consuming due to repetitive training. Chen and Guestrin [60]
developed XGB to address the problem by enabling parallel processing that classifies each
bucket via the split-finding process. The XGB could be selected as two opportunities for a
weak learner (i.e., tree and linear functions). The tree function that uses the regression tree
as a weak learner was considered because this paper proposes the prediction performance
comparison of tree-based methods. The LightGBM [61,62] is a boosting-based algorithm
with faster speed and higher forecasting accuracy compared with other boosting and
bagging algorithms. It is based on a gradient boosting DT with gradient-based one-sided
sampling and exclusive feature bundling technologies [62]. Unlike the level method, the
leaf method creates complex models to achieve higher accuracy. Therefore, it is useful for
time series forecasting, and due to the gradient boosting DT and leaf method, LightGBM
has reduced memory usage and a faster training speed. In addition, the LightGBM contains
many hyperparameters closely related to the forecasting accuracy, such as the learning rate,
number of iterations, and number of leaves.

4. Results
4.1. Experimental Design

Training and testing of the machine-learning model were conducted in the following
environment: an LG Electronics laptop with an Intel(R) core (TM) i3-6100U CPU at 2.30 GHz
with RAM 8 GB with Python 3.8.8 (Python Software Foundation, Delaware, MD, USA)
and scikit-learn 0.23.2. First, it was necessary to perform data preprocessing before tree-
based model training. After reading the original data using Pandas, the independent
variables (sample number, phone number, age, etc.) and the dependent variable (final
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score) were configured. Then, these two datasets were divided into the training (80%) and
testing (20%) sets.

4.2. Performance Indicator

Two popular metrics were employed, the root mean square error (RMSE) and R-
squared (R2), to compare the prediction performance of the tree-based models using
Equations (3)–(5). The RMSE value is the sum of the squares of the predicted value (Pt) and
the actual value (At) divided by the number of samples (n). This metric is equivalent to the
concept of the sum of the square error for the analysis of variance, and the sum of square
error values divided by the number of data is the mean square error (MSE). Thus, the root
of this value is RMSE. Therefore, the learned linear machine-learning model represents the
difference between the predicted and actual values; a smaller RMSE value indicates that
better actual data are predicted:

MSE = ∑ (Pt − At)2/n, (3)

RMSE =
√

MSE. (4)

Furthermore, R2 measures the fit of the regression models. After a regression model
has been proposed, R2 is one of the goodness-of-fit statistical methods to determine how
well the model fits the actual value. The R2 value is between 0 and 1, and a higher value
indicates a better regression model. The value of R2 can also be interpreted as the variance
of the predicted value relative to the variance of the actual value, indicating how strongly
the regression model correlates with the actual value:

R2 = 1 − (∑ (Pt − At)2/(∑ (At − Aavg)2), (5)

where Aavg is the mean of the actual values.

4.3. Hyperparameter Tuning

Most DT-based methods contain hyperparameters that significantly affect the model
performance. The optimal hyperparameters for each tree-based method were determined
through five-fold cross-validation in the training set. Table 7 lists the hyperparameters for
the tree-based methods and their ranges.

Table 7. Hyperparameters and ranges of decision-tree-based methods.

Method Hyperparameters and Ranges

DT
min_samples_split (minimum number of samples required to split an internal node): 2, 7

min_samples_leaf (minimum number of samples required to be a leaf node): 2, 7
max_depth (maximum depth of the tree): 4, 8, 10, 11, 12, 15

RF
n_estimators (number of trees in the forest): 10, 20, 30, 100, 200, 300, 400

max_depth: 3, 15
min_samples_leaf: 10

GBM n_estimators: 10, 20, 30, 100, 200, 300, 400, 500, 600, 700
learning_rate (learning rate): 0.02, 0.1

XGBoost

objective (learning task and corresponding learning objective): reg:squarederror (regression with
squared loss)

learning_rate = 0.01, 0.05, 0.1
n_estimators: 20, 100, 200, 300, 400, 500

min_child_weight (minimum sum of instance weight needed in a leaf): 5
max_depth: 3, 5, 6, 7, 10

LightGBM

num_estimators: 20, 100, 200, 400, 600, 700, 800, 900, 1000, 1100
learning_rate: 0.01, 0.05

max_depth: 3, 7, 15
min_child_samples (minimum number of samples needed in a leaf): 5

DT, decision tree; RF, random forest; GBM, gradient boosting machine; XGBoost, extreme gradient boosting; and
LightGBM, light gradient boosting machine.
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4.4. Performance Comparison

The most appropriate tree-based model was selected through optimal hyperparameter
tuning. Table 8 displays the five methods, the selected hyperparameter values with the
lowest RMSE and highest R2 values for each algorithm, and the training time. With the
lowest RMSE value, LightGBM scored the highest at 0.986, and thus it was chosen as the
best algorithm model for de-identification methodology.

Table 8. Root Mean Square Error (RMSE) and R-square comparison.

Methods Hyperparameter Values RMSE R2 Time (s)

DT
min_samples_split: 7
min_samples_leaf: 7

max_depth: 15
0.666 0.985 0.926

RF
n_estimators: 250

max_depth: 15
min_samples_leaf: 10

0.633 0.982 15.066

GBM n_estimators: 100
learning_rate: 0.1 1.079 0.924 191.734

XGBoost

random_state: 0
objective: reg:squarederror

learning_rate: 0.01
n_estimators: 500

min_child_weight: 10
max_depth: 8

0.642 0.986 65.578

LightGBM

num_estimators: 500
learning_rate: 0.05

max_depth: 15
min_child_samples: 10

0.625 0.986 21.336

DT, decision tree; RF, random forest; GBM, gradient boosting machine; XGBoost, extreme gradient boosting; and
LightGBM, light gradient boosting machine.

The LightGBM model has the best R2 and RMSE values in the testing set. This model’s
learning and prediction times and memory usage are less than the other tree-based methods.
Through the application of AI and XAI (explained in the Model Interpretation section later),
this model also has great strength in that it can perform analyses on machine-learning mod-
els, which can be used to further understand machine learning and predictive performance.

4.5. Model Interpretation

Recently, with the legal basis for data utilization, AI-based models have become more
sophisticated and developed. However, when AI achieves a result, it is challenging to
track the validity of the process and the rationale for achieving the result. Even developers
who have participated in developing AI models cannot understand why these results were
derived and on what basis, and they cannot rely entirely on black-box AI. Thus, XAI is
emerging, which can explain and present decisions or answers derived from AI in a way
that people can understand.

The SHAP is a method for analyzing the influence of input variables by calculating the
SHAP value for each input variable. The SHAP value is the Shapley value for the machine-
learning model’s conditionally anticipated value function. When comparing the results for
the input instance with the expected value for the model without a given input variable,
the relevance of the Shapley value indicates the input variable relevance. Consequently,
examining the model based on SHAP can interpret which input variables are important
and study the change in the output as the input variable values vary.

The SHAP determines the Shapley value of the learning model using the conditional
expected value function and includes the kernel SHAP, which applies to all machine-
learning models, deep SHAP, which applies to neural network models, and tree SHAP,
which applies to the DT-based ensemble-learning model. This paper employs the tree
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SHAP to interpret the LightGBM process [33,34]. Thus, how much influence each attribute
has and how each property affects the LightGBM model were analyzed as illustrated in
Figures 5 and 6.

Figure 5. Sample Shapley additive explanation force plot for final score prediction.

Figure 6. Summary plot of selected Shapley additive explanation (SHAP) values.

First, the SHAP value demonstrates how each attribute visually affects the LightGBM
model trained earlier. Above is a summary of the SHAP values for all variables. Red and
blue variables indicate positive and negative influences on the target, respectively. The
interpretations of the variables are as follows:

• Phone number: The lower the value, the higher the expected score.
• Blood type: The higher the value, the higher the expected score.
• Illness: The higher the value, the higher the expected score.
• Age: The higher the value, the higher the expected score.
• Name: The higher the value, the higher the expected score.
• Smoking status: The higher the value, the higher the expected score.
• Number of samples: The higher the value, the higher the expected score.
• Residence: The higher the value, the higher the expected score.

Before creating the input data, labeling was performed on each property, and the
larger the labeled value, the less useful the data are overall, which lowers the data usability
value in the final score. In contrast, because of the larger labeled values, the data are more
confidential, and the number of groups is smaller, increasing the data confidentiality values
in the final score.

The visualization results in Figure 7 indicate that the higher the value of a variable for
most properties, the higher the expected score, indicating that the degree of de-identification
had a greater effect on determining the final score values. Regarding the importance of
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each attribute, the phone number exhibits the greatest feature importance. Perhaps because
phone numbers appear as random numbers, they rarely belong to the same group, which
significantly affects the scores.

Figure 7. Feature importance based on Shapley additive explanation (SHAP) values.

4.6. Discussion

No matter how a LightGBM model could verify a de-identification technique accu-
rately and interpretably, it is challenging to adopt it in the industry if it does not yield a
better prediction performance than other famous regression models. According to [22],
multiple linear regression (MLR), Gaussian process regression, support vector regression
(SVR), and deep neural network (DNN) are considered as famous regression models in
the medical field along with DT and RF. The performance of the LightGBM model was
compared with that of the MLR, SVR, and DNN models to confirm the applicability to the
medical field. The Gaussian process regression model was not considered a benchmark
model in this study because of the memory limitation issue in the computer environment.
Grid search via five-fold cross-validation was used to optimize several hyperparameters of
the SVR and DNN models.

Figure 8 presents the values of some performance indicators (RMSE and R2) in Table 8.
The LightGBM model performed better than the MLR, SVR, and DNN models on the verifi-
cation of data de-identification. Hence, because the LightGBM model presents model inter-
pretability and excellent performance, it could be sufficiently applicable in the medical field.

Figure 8. Performance comparison of four famous regression models in the medical field. Multiple
linear regression (MLR); support vector regression (SVR); deep neural network (DNN); and Light
gradient boosting machine (LightGBM).
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The proposed scheme has the advantage of checking whether variables have influence
while delivering the best performance for the verification of data de-identification. Further-
more, by numerically describing how well data confidentiality and usability are handled
through labeling, the scheme may verify previously unknown data de-identification proce-
dures. In particular, the proposed technique derives a numeric value in consideration of
the confidentiality and usability of labeling, and when this numeric value is used, excellent
learning results are derived.

Although the proposed model has outstanding advantages, several limitations exist.
Other state-of-the-art methods may outperform the proposed model in the distant future.
However, if better ways of expressing data confidentiality and usability emerge, more
suitable AI models may emerge. Although SHAP increases the decision-making reliability,
the results and their reliability can be a problem if the data used to make decisions are
unreliable. In addition, even with XAI, it is impossible to interpret all logic trees used in
the machine-learning model and track associations. In other words, it means that XAI
must admit that there is a limit to fully explaining the causal relationship of learning.
Nevertheless, the SHAP method considers the likelihood that variables influence one other
and can quantify the negative influence. Hence, despite its disadvantage of being slow, it is
clear that it assesses influence more precisely than the variable importance method.

Many machine-learning algorithms have been developed for laptops or desktop com-
puters. As machine-learning algorithms have issues with performance, memory capacity,
and algorithm size [63–65], their use on mobile devices, such as smartphones and tablets,
is limited. The XGBoost and LightGBM algorithms emerged to alleviate the GBM’s ex-
cessive memory usage, and it is a significant challenge in machine learning to make the
methods lightweight. Further study on simplifying the algorithm model suggested in this
paper must be implemented in mobile devices in the future because the algorithm’s weight
reduction allows flexible use in many devices, which is directly related to user convenience.

5. Conclusions

Recently, as the legal grounds for using pseudonym information have been established
in various countries, research has been conducted regarding pseudonym information.
However, this requires the proper processing of aliases (de-identification). This study
proposed an AI framework to determine whether alias processing has been properly
performed through a de-identification methodology. As it yields scores that consider data
confidentiality and data usability for appropriate data utilization, data users can observe a
great effect in verifying de-identification methodologies.

Furthermore, the best methodology can be proposed in reverse when companies and
others process aliases. After applying various de-identification methodologies using sample
counts and privacy items, the scores for each methodology can be compared to determine
the de-identification methodology with the highest score value. This method allows data
users to determine appropriate de-identification methodologies that are superior for data
confidentiality and data usability as objective indicators.

A limitation of this study is that the original data used to design the AI framework
were not actual data but generated virtual data. These data were used because using factual
personal information is legally problematic, and it is meaningless to de-identify the data
again because pseudonym information has already been de-identified. Thus, the study
compromised by generating various items in the original dataset while considering the
actual statistical distribution.

In addition, whether the weight values for data confidentiality and usability scores
represent the confidentiality and usability of the data is another limitation of this study.
When labeling and calculating the score values of the data usability, a higher weight should
be assigned to meaningful data, and the definition of meaningful should be objective and
specific. In the future, more objective indicators will be continuously assessed to legally
use personal information from the real world to generate original data with more rigorous



J. Pers. Med. 2022, 12, 190 17 of 19

consideration of the statistical distribution and to label and calculate data confidentiality
and usability scores.
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