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Abstract: Type 2 diabetes mellitus (T2DM) often results in high morbidity and mortality. In addition,
T2DM presents a substantial financial burden for individuals and their families, health systems, and
societies. According to studies and reports, globally, the incidence and prevalence of T2DM are
increasing rapidly. Several models have been built to predict T2DM onset in the future or detect
undiagnosed T2DM in patients. Additional to the performance of such models, their interpretability
is crucial for health experts, especially in personalized clinical prediction models. Data collected
over 42 months from health check-up examinations and prescribed drugs data repositories of four
primary healthcare providers were used in this study. We propose a framework consisting of
LogicRegression based feature extraction and Least Absolute Shrinkage and Selection operator
based prediction modeling for undiagnosed T2DM prediction. Performance of the models was
measured using Area under the ROC curve (AUC) with corresponding confidence intervals. Results
show that using LogicRegression based feature extraction resulted in simpler models, which are
easier for healthcare experts to interpret, especially in cases with many binary features. Models
developed using the proposed framework resulted in an AUC of 0.818 (95% Confidence Interval
(CI): 0.812−0.823) that was comparable to more complex models (i.e., models with a larger number
of features), where all features were included in prediction model development with the AUC of
0.816 (95% CI: 0.810−0.822). However, the difference in the number of used features was significant.
This study proposes a framework for building interpretable models in healthcare that can contribute
to higher trust in prediction models from healthcare experts.

Keywords: diabetes mellitus type 2; prediction model; LogicRegression; interpretability

1. Introduction

Morbidity and mortality are often results of Type 2 diabetes mellitus (T2DM). In
addition, T2DM presents a substantial financial drain for individuals and families, health
systems, and societies. Globally, the incidence and prevalence of T2DM are increasing
rapidly [1]. In 2017, it was estimated that 425 million people had any diabetes (approx.
5.5% of the worldwide population), of which 90% had T2DM. According to projection esti-
mations, the prevalence is going to increase substantially in the coming years; by 2045, for
example, a 48% increase of prevalence from the above numbers is expected, or in absolute
numbers, an estimated 629 million people (approx. 6.6% of the worldwide population) are
expected to be suffering from any diabetes [2]. T2DM can also lead to a substantially in-
creased risk of macrovascular and microvascular disease, especially in inadequate glycemic
control [3]. Impaired fasting glucose typically leads to slow progression of T2DM and,
more importantly, its symptoms may remain undetected for many years.
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Electronic Health Records (EHR) enable researchers to perform predictive modeling
by providing a large amount of data [4] and many links have been found between patient
health, the environment, and clinical decisions [5]. Nowadays, data mining techniques
are applied to various fields of science, including healthcare and medicine [6]. Usually,
techniques such as pattern recognition, disease prediction, and classification are used.
Although multiple methods are available to build prediction models, prediction accuracy
and data validity are often not realistic for model application in practice. Models usually
perform well in specific datasets used to build the prediction models but are frequently not
adapted sufficiently well when used on other datasets [7].

There is growing interest in clinical prediction, but models’ interpretation is rarely
based on end-user needs [8], and there is a lack of model interpretability techniques [9].
Interpretability of results based on predictive models is crucial in critical areas such as
healthcare and is essential for adopting models. People often do not understand predictive
models and therefore do not trust them [10]. LogicRegression can be used to improve the
interpretability of predictive models.

LogicRegression is an adaptive classification and regression procedure which searches
for Boolean (logic) combinations of binary variables that best explain the variability in the
outcome [11,12]. LogicRegression looks for logical combinations of binary features. We can
explain the variability of the outcome feature and thus reveal the features and interactions
related to the response and whether they have predictive capabilities [11].

The purpose of this paper is to use LogicRegression to make final models less complex
(i.e., with less features) and the features that appear in the interpretation of predictive
models much more understandable. This is also important for health professionals, as
they do not have the necessary knowledge to apply prediction models or interpret the
results obtained. This is also important from the patient’s point of view and the provision
of personalized healthcare. Simple interpretation will make it easier for the patient to
understand the operation of the predictive model and outcome. The paper presents an
example of using extracted features using Logic Regression to improve the personalized
interpretability of the prediction models to the end-users.

2. Materials and Methods
2.1. Data

EHR data consisted of health check-ups and prescribed drugs data from four Slovenian
primary healthcare providers for a period of approximately 3.5 years from 12 December
2014 to 27 July 2018. Data for 21,138 medical records and 114 potential useful features
were exported from the healthcare information systems after the on-site anonymization
process. Our first step was the removal of features with more than 20% of missing data
(73 potential features remain). Since our focus when building prediction models was on
the fasting plasma glucose level (FPGL) measurement (mmol/L) and results of Finnish
Diabetes Risk Score (FINDRISC) features, which included Age, Gender, BMI, Waist cir-
cumference, Active_30_min, Medication, High_BS, Grocer, and Diab_fam we selected
cases with all those values present (4086 such cases remained). We next removed (a) cases
with more than 50% of the features were not available (4067 cases left), (b) removed all
duplicate entries (in cases of multiple patient visits only the most recent visit was included)
(3535 cases left), (c) cases not having a previous diabetes diagnosis (3176 cases left) and
entries where: (d) FPGL was not reported giving us a total of 3120 records of patient visits
were left for development of a prediction model to estimate the risk of undiagnosed T2DM.
Data included demographics, questionnaire answers for lifestyle choices, physiological
measurements, and prescribed medications for two time periods.

Binary features were created for prescribed drugs and questionnaire responses, which
resulted in nine numeric and 161 binary features where specific drug related feature was
coded as positive in cases where a patient was prescribed with the specific drug during
the last 4 months prior to the visit. The target feature was binary, where positive cases
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were defined as having FPGL higher than 6.1 mmol/L consisting of 24.71% (n = 771) of
patient visits.

We imputed the remaining missing values using the MissForest based approach [7],
which on average meant features with 12.25% missing values as we initially already
removed features with 20% or more missing values. MissForest is used to impute missing
values particularly in the case of mixed-type data. It can be used to impute continuous
and/or categorical data including complex interactions and nonlinear relations. The
summary information of the basic predictive and target features can be seen in Table 1.
Please see Table A1 for list of all features used in the experiments.

Table 1. Summary table basic predictive and target features for healthcare centers.

Original Feature Name Description FPGL ≤ 6.1 mmol/L
[75.29% [n = 2349]]

FPGL > 6.1 mmol/L
[24.71% [n = 771]]

Age [mean (standard deviation − SD)] Age in years 56.07 (SD = 13.2) 61.77 (SD = 10.98)
Gender_M [%(n)] Percentage of males 37.16 (n = 873) 54.47 (n = 420)
BMI [mean (SD)] Body mass index 28.89 (SD = 5.39) 32.16 (SD = 13.21)
WC [mean (SD)] Waist circumference in cm 96.25 (SD = 13.89) 103.48 (SD = 13.8)

Active_30_min (Q2) [%(n)] Active at least 30 minutes a day? 64.88 (n = 1524) 52.27 (n = 403)
Medication (Q3) [%(n)] Blood pressure medication? 40.19 (n = 944) 60.18 (n = 464)

High_BS [%(n)] (Q4) Ever measured high blood sugar? 7.32 (n = 172) 47.47 (n = 366)
Grocer [%(n)] (Q18) Eat vegetable/fruit daily? 90.59 (n = 2128) 78.99 (n = 609)

Diab_fam [%(n)] (Q6) Diabetes in family? 69.65 (n = 1636) 61.74 (n = 476)
FPGL [mean (SD)] Fasting plasma glucose level 5.26 (SD = 0.44) 6.74 (SD = 0.8)

2.2. Experimental Setup

The data were split into 80% to derive five extracted features using Logic Regres-
sion [13] and 20% to build and evaluate the final prediction models.

Finally, we created three datasets with the following features: all numeric and binary
(170), all numeric and logic (14), and all numeric, binary, and logic features (175). On each
dataset, we built a predictive model separately using the same training data.

The Least Absolute Shrinkage and Selection Operator (LASSO) [13] was used to
build prediction models. We repeated each 10-fold cross-validation ten times to estimate
the variance in Area under the ROC curve (AUC) that was used as our classification
performance metric.

3. Results

We split the results in this section into two parts. First, we present selected logic
attributes extracted from the dataset for the undiagnosed T2DM prediction use case. Next,
we present the performance evaluation of the model.

3.1. Feature Extraction Using LogicRegression Approach

To demonstrate the practical example of using LogicRegression based extraction of
new features to improve interpretability of the prediction models, we provide the results of
the first cross-validation run.

The selected use case resulted in five logic features (Table 2) extracted from the com-
plete set of features.

In Table 3, we list all features that were selected in at least 50% of runs in our exper-
iments with LASSO on the dataset with numeric and logic features, while Table 4 lists
features for the dataset with numeric, binary and logic features. Frequency (freq) shows in
how many experiment runs each feature appeared in the final set of features.
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Table 2. Extracted logic features with corresponding LogicRegression rules and descriptions.

Feature Rule Description

L1 (ATC_J01EE01 or (not Q41)) Prescribed sulfadiazine and trimethoprim, or
never measured high blood sugar.

L2 Q51 Seldom eat fruit and vegetable.

L3 ((ATC_M01AE02 and
ATC_J01CE10) or (not SE))

Prescribed naproxen and benzathine
phenoxymethylpenicillin or not

socially endangered.

L4 Q494 Daily consumption of alcohol in the last
12 months.

L5 (MSE or ATC_D01AE15) Medium socially endangered or prescribed
antifungals for dermatological use.

Table 3. Selected features with the Least Absolute Shrinkage and Selection Operator (LASSO) on the
dataset with numeric and logic features.

Feature Freq Description

−Gender 100 Gender
+Blood_pressure 100 Blood pressure

+Heart_beat 100 Heart_beat
+Age 100 Age
+BMI 100 Body mass index
+WC 100 Waist circumference
−L1 100 Logic feature 1
−L2 100 Logic feature 2
−L3 100 Logic feature 3

−Body_height 99 Body height
+Body_weight 83 Body weight

Table 4. Selected features with LASSO on the dataset with binary, numeric, and logic features.

Feature Freq Description

−L3 100 Logic feature 3
−L4 100 Logic feature 4
+L5 100 Logic feature 5

+Blood_pressure 100 Blood pressure
+WC 100 Waist circumference in cm

+Heart_beat 100 Heart_beat
+Age 100 Age in years
+Q45 100 Ever measured high blood sugar? Yes

−Gender 100 Gender
+Q32 93 Using drug(s) for lowering blood pressure

+Body_weight 87 Body weight
−Non_smoker 87 Non-smoker

+L2 79 Logic attribute 2
−Q321 78 Most often used oil is vegetable oil

−Non_drinker 77 No alcohol consumption
−Q583 75 Handle stress with hardship
+Q62 74 Parent, brother, or sister have diabetes
+BMI 69 Body Mass Index
−Q161 63 2 meals per day on average
−Q301 51 No habit of using salt at the table

It can be observed that L1, L2, and L3 were used by prediction models derived from
the data in all folds of all evaluation runs. Thus, confirming a high contribution of extracted
logic features.
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In the case of results from a much wider set of features (Table 4), we can see a higher
variance in selection by the final prediction models. Four (L2, L3, L4, L5) logic features can
be found among the varaibles that were selected in at least 50% of evaluation runs.

3.2. Performance Evaluation

In Figure 1, we summarize AUC and a selected number of features for all three datasets:
no_logic (numeric and binary features), all_logic (numeric, binary, and logic features), and
num_logic (numeric and logic features).

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 5 of 10 
 

 

+Heart_beat 100 Heart_beat 
+Age 100 Age in years 

+Q45 100 
Ever measured high blood 

sugar? Yes 
−Gender 100 Gender 

+Q32 93 
Using drug(s) for lowering 

blood pressure 
+Body_weight 87 Body weight 
−Non_smoker 87 Non-smoker 

+L2 79 Logic attribute 2 

−Q321 78 
Most often used oil is vegetable 

oil 
−Non_drinker 77 No alcohol consumption 

−Q583 75 Handle stress with hardship 

+Q62 74 
Parent, brother, or sister have 

diabetes 
+BMI 69 Body Mass Index 
−Q161 63 2 meals per day on average 

−Q301 51 
No habit of using salt at the ta-

ble 

3.2. Performance Evaluation  
In Figure 1, we summarize AUC and a selected number of features for all three da-

tasets: no_logic (numeric and binary features), all_logic (numeric, binary, and logic fea-
tures), and num_logic (numeric and logic features).  

 We can observe a slowly increasing average AUC from 0.816 (Standard Deviation 
(SD)) = 0.03) in no_logic to 0.819 (SD = 0.03) in all_logic and finally 0.829 (SD = 0.03) in the 
num_logic dataset. When looking at the number of selected feature averages and its vari-
ation, we can observe that it slowly increases from 21.7 (SD = 11.18) in no _logic to 23.7 
(SD = 10.09) in all_logic but it then almost halves to 13.35 (SD = 0.63) in the num_logic 
dataset. The SD is steadily increasing in the first two cases, but then it decreases sharply 
to below 1 (SD = 0.63), which means that out of the 100 repetitions in 92 cases 13 or 14 
features were selected in the num_logic dataset. This indicates a very stable final predic-
tion models when comparing num_logic based solutions to no_logic or all_logic. 

 
Figure 1. Selected features with the Least Absolute Shrinkage and Selection Operator (LASSO) on 
the dataset with numeric and logic features. 

AUC Nr. of features

No_logic All_logic Num_logic No_logic All_logic Num_logic

20

40

60

0.75

0.80

0.85

Dataset name

Va
lu

e

Figure 1. Selected features with the Least Absolute Shrinkage and Selection Operator (LASSO) on
the dataset with numeric and logic features.

We can observe a slowly increasing average AUC from 0.816 (Standard Deviation
(SD)) = 0.03) in no_logic to 0.819 (SD = 0.03) in all_logic and finally 0.829 (SD = 0.03) in
the num_logic dataset. When looking at the number of selected feature averages and its
variation, we can observe that it slowly increases from 21.7 (SD = 11.18) in no _logic to
23.7 (SD = 10.09) in all_logic but it then almost halves to 13.35 (SD = 0.63) in the num_logic
dataset. The SD is steadily increasing in the first two cases, but then it decreases sharply to
below 1 (SD = 0.63), which means that out of the 100 repetitions in 92 cases 13 or 14 features
were selected in the num_logic dataset. This indicates a very stable final prediction models
when comparing num_logic based solutions to no_logic or all_logic.

4. Discussion and Conclusions

In this paper, we compared three dimensionality reduction approaches to improve the
interpretability of undiagnosed T2DM prediction models (Please note that the calibration
of a prediction models was not the scope of this paper and presents a limitation). A simple
LASSO regression approach is compared to two variants where a pre-selection of predictive
features is conducted on the training set using LogicRegression to consequently simplify a
final set of features obtained by the LASSO regression. We kept all original features with
added logic features in the first variant, while in the second variant, we kept only numeric
and logic features.

Results showed that logic features resulted in simpler models with lower number of
features, which are potentially easier to interpret by healthcare experts. This is especially
important in the field of personalized medicine. Measured AUC was similar to more
complex models, where all features were included. It should be noted that although our
method resulted in a lower number of features, some of the logic features may not be
straightforward to interpret (e.g., the feature L3 in this paper). To address this issue, we
plan to include an interactive system in our future work, where the user would specify the
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maximum number of original features included in generated logic features in cases where
the final model would include many complex logic features. As a result of the current work,
in cases when some of the final features are hard to interpret, we recommend that the user
uses LogicRegression settings to adjust the complexity of final logic features for achieving
satisfactory results.

When healthcare professionals and patients know which features are important in
obtaining the outcome of a prediction model and how they can be combined, it helps
to understand and increase the level of trust in the decision-making systems [10]. With
greater interpretability of the model, we better understand and interpret the forecast for
end-users and improve the support in decision-making for health professionals based on
data [14]. More complex models such as deep neural networks [15] allow high accuracy
but are difficult to explain. Simple models (e.g., decision trees) are less accurate but allow
for more straightforward explanations [16]. Therefore, sophisticated machine learning
models usually offer better performance than traditional simple models but are difficult for
health professionals to understand. However, in many cases simple models also provide
good classification performance, which is not significantly different from more complex
models [17]. Our results confirm this hypothesis. Comprehensible models are known for
their contribution to higher trust in prediction models from the end-users in healthcare.

Interpretability techniques are often categorized according to the time period used
to develop the machine learning model [14]. Pre-model approaches are independent of
the model and may be employed prior to making a choice on which model to use. Our
approach presented in this study belongs in this group of interpretability approaches along
with techniques such as Principal Component Analysis (PCA), t-Distributed Stochastic
Neighbor Embedding (t-SNE), and some clustering techniques. While Molnar [18] classifies
PCA, t-SNE, and clustering methods as interpretable methods, it is worth noting that
the interpretability of attributes transformed using PCA, embeddings, or clusters cannot
provide comprehensible medical interpretation, but can be used to visualize the results and
highlight patterns of interest from an interpretability standpoint. The proposed approach is
much more interpretable, despite the possible complex combinations of features that might
occur as a result of LogicRegression.

During the experiments, we also observed the unstable behavior of logic regression,
where different logic features were selected with each run of the cross-validation. Although
this did not influence the average number of selected features it resulted in instability of
the interpretability of the model. Another limitation are the combinations of the features
used in extracted features. For example, the first extracted feature (L1) suggested that
checking whether a person did not experience elevated blood sugar in the past should
be accompanied by checking for sulfadiazine and trimethoprim use in the last 4 months
– this extracted feature works as a protective factor as seen from Table 3. We see this as a
disadvantage of logic regression since different conclusions can be made based on selected
features. This could be resolved to some extent by using exhaustive search methods
to extract logic features resulting in extremely long running times, presenting another
drawback, especially in cases where personalized models would be built. To personalize
the solution even further, it would be worth exploring the prediction model development
for each specific patient at the time of the examination using the subset of the data where
patients similar to the examined patient would be assigned a higher weight in comparison
to other patients (boosting principle).

Although our work is the field of healthcare, we believe that our results can also be
applied in other emerging fields of applied prediction modeling where interpretability of
results is important such as security [19] or ecology [20]. In future work, we will explore ef-
fectiveness of our methods in the broader field of security, specifically, to help us understand
how misinformation (e.g., intentionally misleading information) is being spread.
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Appendix A

Table A1. List of original features with description and their possible values. Please note that Nominal
features were processed in such a way that for each possible value a new feature was generated. For
example, the feature Q43 resulted in three features for each possible value (new features were named
Q431, Q432 and Q433). Drug features are marked with the Anatomical Therapeutic Chemical (ATC)
classification. The final set contained 170 features.

Name Description Value

Age Age of the patient Numeric

Gender Gender of the patient Male, Female

BMI Body Mass Index of the patient Numeric

Blood_pressure Blood pressure of the patient Numeric

WC Waist circumference of the patient Numeric

Heart_beat Heart beat of the patient Numeric

Body_weight Body weight of the patient Numeric

Body_height Body height of the patient Numeric

Smoking_status Smoking status of the patient Non-smoker, Smoker, Ex-smoker,
Passive smoker

Eating_habits Assessment of eating habits Adequate, Satisfactory, Inadequate

Drinking_status Drinking status Abstinent, Less risky drinking, Risky,
Harmful, Addictive

SDH Social determinants of health Not threatened, Medium
threatened, Threatened

PAS Physical activity status Sufficient, Borderline, Insufficient

Stress Level of stress Not threatened, Threatened

RD Risk of depression No significant risk of depression, Risk
of depression

Q18 How often do you usually
eat vegetables?

Never Points, 4-6 times a week, 1x a day,
More than 1x a day

Q16 How many meals do you eat on
average per day? 2 or less, 3 to 5, 6 or more

Q2 Are you physically active for at
least 30 min/day? Yes, No
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Table A1. Cont.

Name Description Value

Q3 Do you take medication to lower
your blood pressure? Yes, No

Q30 Do you have a habit of salting
dishes at the table? Yes, No

Q32
On average, which type of fat do
you use most in food preparation

or as a spread?

Vegetable oils, Cream, Butter, Lard, Hard
margarines, Soft margarines, High-fat
spreads, Low-fat spreads, Chocolate
spread, Peanut butter, Pate, Cream

Spread, Mayonnaise

Q4 Have you ever had your blood
sugar measured? Yes, No

Q43

How many times in a typical
week do you engage in vigorous

physical activity for at least
25 minutes each time to the point

where you are breathing
and sweating?

0 or 1 times per week, 2 times per week,
3 or more times per week

Q44

How many times in a typical
week do you engage in moderate

physical activity for at least
30 minutes each time, to the

extent that you breathe a little
faster and warm up?

0 or 1 times per week, 2 to 4 times per
week, 5 or more times per week

Q47
How often have you drunk drinks

containing alcohol in the last
12 months?

Never, Once a month or less, 2 to 4 times
a month, 2 to 3 times a week, 4 or more

times a week

Q48

In the last 12 months, how many
measures of a drink containing
alcohol did you usually have

when you were drinking?

Zero to 1 measure, 2 measures, 3 or
4 measures, 5 or 6 measures, 7 or more

Q49

In the last 12 months, how often
have you had 6 or more sips on
one occasion for men and 4 or

more sips on one occasion
for women?

Never, Less than once a month, 1 to
3 times a month, 1 to 3 times a week,

Daily or almost daily

Q51

In the last 12 months, how often
have you needed an alcoholic

drink in the morning to recover
from excessive drinking the

day before?

Never, Less than once a month, 1 to
3 times a month, 1 to 3 times a week,

Daily or almost daily

Q57
How often do you feel tense,

stressed or under a lot
of pressure?

Never, Rarely, Occasionally, Often,
Every day

Q58
How do you manage the tensions,

stresses and pressures you
experience in your life?

Easily, Able to, Able to with more efforts,
Very difficult, Can’t

Q59
How often in the past 2 weeks
have you felt little interest and

satisfaction in the things you do?

Not at all, A few days, More than half the
days, Almost every day

Q6 Does family have diabetes? No, Outer family, Inner family

Q60
How often have you felt

depressed, depressed, despairing
in the past 2 weeks?

Not at all, A few days, More than half the
days, Almost every day
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Table A1. Cont.

Name Description Value

Q69 Please indicate the last school
you attended.

Primary school incomplete, Primary
school, 2 or 3-year vocational school,

4-year secondary school or gymnasium,
Graduate, Postgraduate

Q70 What is your current
employment status?

Employed, Self-employed, Unemployed,
Student, Retired, Disabled pensioner,

Permanently disabled, Housewife

Q71 How do you get through the
month based in income?

Good, Occasional problems,
I have problems

ATC_A02BC01 Omeprazole Binary (0,1)

ATC_A02BC02 Pantoprazole Binary (0,1)

ATC_A11CC05 Colecalciferol Binary (0,1)

ATC_B01AC06 Acetylsalicylic acid Binary (0,1)

ATC_C03BA11 Indapamide Binary (0,1)

ATC_C07AB07 Bisoprolol Binary (0,1)

ATC_C09AA04 Perindopril Binary (0,1)

ATC_D01AC01 Clotrimazole Binary (0,1)

ATC_D01AE15 Terbinafine Binary (0,1)

ATC_D07AC13 Mometasone Binary (0,1)

ATC_G04BD09 Trospium Binary (0,1)

ATC_J01CA04 Amoxicillin Binary (0,1)

ATC_J01CE10 Benzathine
phenoxymethylpenicillin Binary (0,1)

ATC_J01CR02 Amoxicillin and
beta-lactamase inhibitor Binary (0,1)

ATC_J01EE01 Sulfadiazine /trimethoprim Binary (0,1)

ATC_J01FA10 Azithromycin Binary (0,1)

ATC_M01AB05 Diclofenac Binary (0,1)

ATC_M01AE01 Ibuprofen Binary (0,1)

ATC_M01AE02 Naproxen Binary (0,1)

ATC_N02AJ13 Tramadol and paracetamol Binary (0,1)

ATC_N02BB02 Metamizole sodium Binary (0,1)

ATC_N02BE01 Paracetamol Binary (0,1)

ATC_N05BA08 Bromazepam Binary (0,1)

ATC_N05BA12 Alprazolam Binary (0,1)

ATC_N05CF02 Zolpidem Binary (0,1)

ATC_R01AD09 Mometasone Binary (0,1)

ATC_R03AC02 Salbutamol Binary (0,1)

ATC_R03AL01 Fenoterol and
ipratropium bromide Binary (0,1)

ATC_R06AE07 Cetirizine Binary (0,1)

ATC_R06AX13 Loratadine Binary (0,1)

ATC_S01AA12 Tobramycin Binary (0,1)
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