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Abstract: Adult infiltrating gliomas are highly aggressive tumors of the central nervous system
with a dismal prognosis despite intensive multimodal therapy (chemotherapy and/or radiotherapy).
In this study, we studied the expression, methylation and interacting miRNA profiles of GABA-,
glutamate- and calcium-related genes in 661 adult infiltrating gliomas available through the TCGA
database. Neurotransmitter-based unsupervised clustering identified three established glioma molec-
ular subgroups that parallel major World Health Organization glioma subclasses (IDH-wildtype
astrocytomas, IDH-mutant astrocytomas, IDH-mutant oligodendroglioma). In addition, this anal-
ysis also defined a novel, neurotransmitter-related glioma subgroup (NT-1), mostly comprised of
IDH-mutated gliomas and characterized by the overexpression of neurotransmitter-related genes.
Lower expression of neurotransmission-related genes was correlated with increased aggressivity in
hypomethylated IDH-wildtype tumors. There were also significant differences in the composition of
the tumor inflammatory microenvironment between neurotransmission-based tumor categories, with
lower estimated pools of M2-phenotype macrophages in NT-1 gliomas. This multi-omics analysis of
the neurotransmission expression landscape of TCGA gliomas—which highlights the existence of
neurotransmission-based glioma categories with different expression, epigenetic and inflammatory
profiles—supports the existence of operational neurotransmitter signaling pathways in adult gliomas.
These findings could shed new light on potential vulnerabilities to exploit in future glioma-targeting
drug therapies.

Keywords: glioma; tumor immune microenvironment; transcriptomics; methylation; amino acid
neurotransmission; GABA; glutamate; calcium

1. Introduction

Infiltrating gliomas are the most common malignant tumors of the central nervous
system in adults. They represent nearly 45–50% of malignant primary brain neoplasms [1]
and are associated with relatively short survivals [2]. The infiltrative nature, intratu-
moral heterogeneity [3] and cellular signaling complexities of these aggressive tumors
make them a major challenge to overcome in terms of therapy and personalized patient
management [4,5]. Pathological and adaptative interactions with the surrounding microen-
vironment (non-neoplastic glia, neurons and immune cells) further contribute to tumor
aggressivity and progression [6].
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Current World Health Organization diagnostic classification schemes for adult in-
filtrating gliomas are based on the presence of molecular alterations such as isocitrate
dehydrogenase 1/2 mutations (IDH1/2) and 1p/19q codeletion [1]. While IDH-wildtype
gliomas usually present with high-grade histology and correlate to short survival [7,8],
IDH-mutated, 1p/19q-non-codeleted astrocytomas and IDH-mutated 1p/19q-codeleted
oligodendrogliomas are usually first diagnosed as low-grade gliomas and associated with
longer survival [7,9].

IDH1/2 genes code for isocitrate dehydrogenase cytoplasmic enzymes that play a
crucial role in cellular energy metabolism7. One of their major functions is the catalysis of
citrate oxidative decarboxylation to alpha-ketoglutarate (α-KG), which is a well-known
intermediate of the TCA cycle [10]. Further, α-KG is involved in neurotransmission by
serving as a precursor of two important human brain neurotransmitters: glutamate and
gamma-aminobutyric acid (GABA) [11]. In glioma, mutations in IDH1/2 lead neoconver-
sion of α-KG into the oncometabolite D-2-hydroxyglutarate (D-2-HG) [12]. Consequently,
the IDH status of gliomas impacts not only their energetic metabolism but also their integra-
tion into surrounding neural circuits due to the potential dysregulation in neurotransmitter
metabolism, thereby affecting tumor progression [13].

Aside from their leading role in neuronal synaptic transmission, GABA and glutamate
can regulate many other brain biological processes. Several lines of evidence point to
an important modulatory role of GABA and glutamate systems on neuroinflammatory
processes [14] in the mature brain. This connection to signaling mechanisms of immunity
makes them important therapeutic targets to reverse the detrimental effects of chronic neu-
roinflammation, as it is pivotal to the pathophysiology of numerous diseases of the central
nervous system. In the developing brain, both molecules modulate neural precursor cell
proliferation, differentiation and neuron migration through a reciprocal relationship with
neurotransmitter-sensitive immune cells such as microglia [15,16]. Signaling mechanisms
involved in these processes are thought to be operational in glioma [17].

Starting with the postulate that neurotransmission signaling activity is of importance
to glioma biology, we initially interrogated the transcriptome of 661 gliomas available
through the TCGA database for GABA-, glutamate- and calcium-related gene expression
patterns. Four glioma clusters were generated by unsupervised clustering and compared to
established glioma molecular diagnostic subgroups, as per the World Health Organization
glioma classification. We subsequently used theses analyses as a starting point in decipher-
ing ties to epigenetic (DNA methylation and microRNA) and immune mechanisms to find
novel vulnerabilities.

2. Materials and Methods
2.1. Sample Extraction

Data from the low-grade glioma [18] (LGG) and glioblastoma multiforme [19] (GBM)
projects were extracted from the TCGA (The Cancer Genome Atlas, https://portal.gdc.
cancer.gov/, accessed on 1 September 2020). These datasets include clinical and epidemi-
ological data, gene and miRNA expression, methylation quantification, copy number
variation and simple nucleotide variation. Biomolecular information (TERT promoter,
ATRX, MGMT promoter status) extracted from the Ceccarelli study [20] was also added to
our analysis.

Two RNA-seq datasets were extracted from the Chinese Glioma Genome Atlas [21–23]
(CGGA, http://cgga.org.cn/, accessed on 1 September 2020) and were merged into one
dataset to simplify the analysis. Clinical data (sex, age or overall survival) associated with
these samples were also extracted.

Glioma samples from both databases (TCGA and CGGA) were annotated according to
the IDH mutation and 1p/19q codeletion status: IDH-mutated with the 1p/19q co-deletion
gliomas (IDH-MUT codel), IDH-mutated without the 1p/19q codeletion (IDH-MUT non-
codel) and IDH-wildtype (IDH-WT). The TCGA dataset was used for gene expression, miRNA
expression and DNA methylation profiling. CGGA was used for validation purposes.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://cgga.org.cn/
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2.2. GABA, Glutamate and Calcium Pathway Gene Extraction

The KEGG pathway database was the source to identify genes associated with GABA,
glutamate and calcium metabolic pathways [24] (https://www.genome.jp/kegg/pathway.
html, accessed on 1 September 2020). The following KEGG identifiers were used for
extraction: 04727 (GABAergic synapse pathway); 04724 (glutamatergic synapse); 00250 (ala-
nine, aspartate and glutamate metabolism), 04020 (calcium signaling) and 04961 (other
factor-regulated calcium reabsorption pathways).

2.3. Gene Expression Normalization

Expression normalization was performed to enable comparisons between glioma
samples. TCGA raw-count expression data were normalized using the Variance Stabilizing
Transformation function available in the DESeq2 [25] v1.26.0 R package. Low-expression
genes whose maximum did not pass 10 counts were excluded.

2.4. Unsupervised Clustering

Unsupervised clustering was performed to reveal hidden patterns of neurotransmission-
related gene expression. Entropy values were calculated, varying the cluster number
in order to select the optimal number of clusters that minimized the heterogeneity of
IDH mutation and 1p19q codeletion within a cluster. Both unsupervised clustering and
heatmaps were generated using the Complex Heatmap [26] v2.4.2 R package, based on the
Ward method and Spearman correlation as distance.

2.5. Differential Gene Expression Analysis

The DESeq2 [25] R package v1.26.0 was used to retrieve differentially expressed genes
between clusters. Bonferroni-corrected p-values below 0.05 were considered significant.
Volcano plots of differential gene expression were generated using the EnhancedVolcano
v1.8.0 R package.

2.6. miRNAs Interactome Profiling

MiRNAs interacting with the neurotransmission-related gene set were extracted from
the RNA Interactome database [27]. Using the TCGA miRNA dataset, differential gene
expression analysis was performed to filter differentially expressed miRNAs between
identified glioma clusters (DESeq2 Bonferroni-adjusted p < 0.001 and absolute log2 fold
change superior to 1). MiRNAs with an average expression lower than 1 RPKM were not
included in the analysis.

2.7. Statistical Analysis

Statistical analyses were performed using R v4.0.3. Ggplot2 v3.3.5 and UpsetR v1.4.0
R packages were used for figure generation. We executed survival and Cox regression
analyses using “survminer” v0.4.8 and “survival” v3.2.7 R packages.

2.8. Snakemake Pipepeline Creation

The study pipeline was built using snakemake [28] workflow manager v5.32.0. The
software and packages used in the pipeline were downloaded from the bioconda chan-
nel via the package manager conda, and steps with high computational cost were ex-
ecuted using Compute Canada structures. This pipeline is available in GitHub at this
address: https://github.com/hoang31/gaba_glutamatate_TCGA_profiling.git (accessed
on 1 September 2020).

3. Results
3.1. Unsupervised Clustering Based on GABA, Glutamate and Calcium Gene Expression
Distinguishes Four Clusters with Distinct Neurotransmission Profiles

A total of 421 neurotransmission-related genes were extracted from the KEGG metabolic
database, more specifically from four metabolic pathways: GABAergic neuron (kegg id:

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://github.com/hoang31/gaba_glutamatate_TCGA_profiling.git
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04727), glutamatergic neuron (kegg id: 04724), glutamate metabolism (kegg id: 00250)
and calcium signaling and endocrine (kegg ids: 04020 and 04961) pathways. Of these,
351 minimally expressed genes were kept (Supplementary Data Table S1), and there was
limited overlap between the different gene sets (Supplementary Data Figure S1). Unsuper-
vised clustering of 661 TCGA glioma samples was then performed in order to evaluate the
expression pattern of these genes (Figure 1). IDH and 1p/19q codeletion-based entropy anal-
ysis showed an optimal number of clusters equal to four (Supplementary Data Figure S2).
We thus generated four clusters, which were renamed NT-1 (n = 168), NT-2 (n = 188),
NT-3 (n = 81) and NT-4 (n = 224) for neurotransmission-related clusters
(Supplementary Data Table S2). This clustering analysis identified four main clusters
that differ greatly in their neurotransmission-related gene expression profiles.

Figure 1. GABA, glutamate and calcium pathway-related gene expression signatures of 661 TCGA
gliomas samples. Four clusters were generated by hierarchical unsupervised clustering using Pearson
correlation (glioma samples in column) and Minkowski distance (genes in rows). Ward.D2 clustering
method was selected for this clustering. Colors in rows represent different KEGG metabolic pathways
of the included neurotransmission genes.

3.2. Neurotransmission-Based Glioma Clustering Recapitulates Current Existing Glioma
Molecular Subgroups and Identifies a Novel Subgroup with a Distinct Expression Profile

We evaluated the presence of the most frequent adult glioma molecular alterations in
neurotransmission-based glioma subgroups in accordance with the latest WHO classifica-
tion of tumors of the central nervous system [1]. We also tracked “normal-like” IDH-wt
gliomas that had been identified in our previous study and were associated with a longer
survival [29] (Figure 2 and Supplementary Data Table S3).



J. Pers. Med. 2022, 12, 633 5 of 22

Figure 2. Distribution of frequent glioma molecular alterations within the four subgroups identified
by GABA, glutamate and calcium gene expression-based unsupervised clustering. The molecular
information for NT-1-4 gliomas was in accordance with the latest recommendations of the WHO
classification of tumors of the central nervous system.

The different histopathological entities (as per the 2007 WHO classification of CNS
tumors [30], i.e., oligodendroglioma, glioblastoma, astrocytoma and oligoastrocytoma)
were heterogeneously distributed in the four NT clusters, with NT-2 gliomas being mainly
comprised of glioblastomas (115/188 samples, 61.2%). NT-2, NT-3 and NT-4 gliomas were
essentially composed of IDH-wt gliomas (180/188 samples, 95.7%), IDH-mutated gliomas
with the 1p/19q co-deletion (75/81 samples, 92.6%) and IDH-mutated gliomas without
the 1p/19q co-deletion (176/224 samples, 78.6%), respectively. As for the NT-1 glioma
cluster, it was composed of a majority of IDH-mutated gliomas: 80/168 samples, 47.6%
for IDH-mutated gliomas with the 1p/19q co-deletion; 67/168 samples, 39.9% for IDH-
mutated gliomas without the 1p/19q co-deletion; and 21/168 samples, 12.5% for IDH-wt
gliomas. The percentage of IDH-wt gliomas in NT-1 and NT-4 was similar (12.5% and 16.5%,
respectively). The ATRX mutation was principally found in NT-4 (133/224 samples, 59.4%)
and NT-1 glioma clusters (46/168 samples, 27.4%), as expected. According to available
data, EGFR amplifications and combined Chr7 gain/Chr10 loss were essentially present
in NT-2 gliomas (89/188 samples, 47.3% and 129/188 samples, 68.6%, respectively). The
TERT promoter mutation was more prevalent in NT-2 (54/188, 28.7% versus 10/188, 5.3%
for wildtype) and NT-3 clusters (32/81, 39.5% versus 5/81, 6.2%). NT-2 gliomas were also
enriched with CDKN2A/B-deleted gliomas (105/188 samples, 55.9% and 103/188 samples,
54.8%, respectively). Interestingly, all the identified IDH-wt “normal-like” gliomas [29]
were ascribed to the NT-1 glioma cluster. When specifically examining IDH-wt gliomas
ascribed to NT-1-4 clusters, we found a higher proportion of IDH-wt gliomas bearing
an EGFR amplification observed when comparing NT-2 vs. NT-1 gliomas but not NT-4
(49.44%, 23.81% and 40.54% for NT-1, NT-2 and NT-4, respectively; p = 1.88 × 10−2 and
p = 0.25). Chr 7 gain/Chr 10 loss was also less prevalent in IDH-wt gliomas ascribed to
the NT-1 cluster when compared to NT-2 (28.57% for NT-1 vs 71.66% and 45.94% for NT-2
and NT-4, respectively; p = 3.15 × 10−4 and p = 0.36). We conclude that the expression



J. Pers. Med. 2022, 12, 633 6 of 22

levels of GABA, glutamate and calcium signaling elements segregate with known glioma
molecular alterations (IDH mutation and 1p/19q chromosomic status) for NT-1, NT-2, NT-3
and NT-4 clusters.

3.3. Clinical and Epidemiological Characterization of Neurotransmission-Based Glioma Clusters

We evaluated the clinical and histopathological characteristics of the four glioma
subgroups identified based on their expression patterns of glutamate, GABA and calcium
genes. Comparison analysis (Table 1) did not show significant age differences between the
NT-1, NT-3 and NT-4 gliomas (average of 42.69 yo, p = 0.08 and 0.18). On the other hand,
NT-2 gliomas affected significantly older patients (average of 58.12 yo, p = 1.06 × 10−21;
p = 4.29 × 10−12; p = 9.95 × 10−29). Gliomas were more frequent in males than females,
with no significant gender distribution differences between the different clusters.

Table 1. Age at diagnosis and gender for NT-1-4 gliomas.

Variable Category NT-1 (n = 168) NT-2 (n = 188) NT-3 (n = 81) NT-4 (n = 224)

Gender
Female 77 (45.8%) 75 (39.9%) 39 (48.1%) 88 (39.3%)
Male 90 (53.6%) 113 (60.1%) 42 (51.9%) 135 (60.3%)

Unknown 1 (0.6%) 0 (0.0%) 0 (0.0%) 1 (0.4%)

Age at Diagnosis

Min. 14 24 22 18
1st Qu. 32.5 51 36 31
Median 40 59 46 38
Mean 42.69 58.12 45.59 41.03

3rd Qu. 53 66.25 53 49
Max. 87 85 75 89

Survival analysis showed similar survival for NT-1 and NT-3 (log-rank test p = 0.44,
Figure 3A). However, survival was shorter for NT-2 gliomas (log-rank test, p = 7.10 × 10−32,
p = 1.06 × 10−20 and 1.09 × 10−33 compared to NT-1, NT-3 and NT-4, respectively). The
same pattern was observed with regard to the Karnofsky’s performance scores associ-
ated with the different glioma NT clusters; NT-2 glioma patients were associated with
significantly lower performance scores (Fisher’s exact test, p = 5.00 × 10−4 Figure 3B).

Figure 3. Cont.
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Figure 3. (A) Kaplan–Meier survival curves associated with NT-1-4 gliomas. Red, blue, green and
purple represent the various NT-1-4 glioma clusters, respectively. Cluster-to-cluster significance
was calculated using the log-rank test. (B) Karnofsky performance score distribution among NT-
1-4 gliomas. These scores reflect the patient’s ability to perform ordinary tasks and range from
100 (patient without disabilities) to 0 (patient death).

We performed a univariate and multivariate cox regression analysis to validate the
prognosis associated with each glioma cluster (Table 2). As expected from the literature,
univariate regression suggested that higher age at diagnosis, clustering within the NT-2
cluster or higher grade had significant negative impact on patient survival (beta = 0.066 with
p = 9.31 × 10−42; beta = 2.216 with p = 6.62 × 10−28; beta = 2.976 with p = 6.38 × 10−43 for
NT-2 cluster, G4 glioma and age at diagnosis, respectively). The multivariate cox regression
model confirmed that clustering within the NT-2 glioma cluster is an independent factor
impacting patient survival (beta = 0.901; p = 1.93 × 10−4) regardless of gender, age or grade.
As expected, age at diagnosis and grade were also found to be independent, significant
prognostic factors for gliomas. NT-2 gliomas, which are mostly comprised of IDH-wt
gliomas, bear the worst prognosis out of the neurotransmission-related clusters. NT-1
gliomas had similar prognosis compared to NT-3 and NT-4 gliomas.

3.4. Lower Expression of Neurotransmission Genes Correlates with Increased Aggressivity in the
NT-1, NT-2, NT-3 and NT-4 Gliomas

Following the identification of four glioma clusters with distinct GABA, glutamate and
calcium-related gene expression patterns, we searched for specific genes expressed by can-
cer cells or their microenvironment that may impact gliomagenesis by performing differen-
tial gene cluster-to-cluster expression analysis. We retrieved 232 unique neurotransmission-
associated genes that were significantly expressed (Bonferroni-adjusted p < 0.001 and
absolute value of log2foldchange greater than 1). In this analysis, the highest number of sig-
nificantly differentially expressed genes (43 genes) belonged to the NT-1 cluster comparison
(Figure 4A).

Cluster-to-cluster expression profile analyses for calcium endocrine, calcium signaling,
GABA synapse, glutamate metabolism and glutamate synapse metabolic pathways are
presented in Figure 4B and Supplementary Data Table S4. Amongst all samples (glioma
and healthy patients), we observed that neurotransmission-related genes were the most
highly expressed in healthy samples when compared to NT glioma clusters. (18/23, 82/132,
43/55, 6/15 and 49/65 genes for calcium endocrine, calcium signaling, GABA synapse,
glutamate metabolism and glutamate synapse metabolic pathways, respectively). With
regard to the comparisons between NT glioma clusters, we found that NT-1 gliomas were
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associated with the largest number of overexpressed genes (15/23, 70/132, 41/55, 8/15
and 43/65 genes for calcium endocrine, calcium signaling, GABA synapse, glutamate
metabolism and glutamate synapse metabolic pathways, respectively). Conversely, NT-2
gliomas were associated with the largest number of underexpressed genes ascribed to these
pathways (14/23, 60/132, 36/55, 7/15 and 48/65 for calcium endocrine, calcium signal-
ing, GABA synapse, glutamate metabolism and glutamate synapse metabolic pathways,
respectively). These observations were more significant for GABA synapse, glutamate
metabolism and glutamate synapse pathways. NT-3 and NT-4 cluster expression profiles
showed intermediate levels of expression for all pathways. We also identified three genes
that were significantly differentially expressed amongst all six cluster-to-cluster analy-
ses: the cholinergic receptor muscarinic 1 (CHRM1), the cholinergic receptor muscarinic
3 (CHRM3) and the glutamate ionotropic receptor NMDA type subunit 1 (GRIN1) genes.
These three genes were significantly overexpressed in healthy samples and NT-1 gliomas
(Figure 4C). Overall, we found that NT-1 gliomas are characterized by the overexpression
of neurotransmission-related genes when compared to other glioma clusters.

Table 2. Univariate and multivariate Cox regression analysis. Cluster (NT-1, NT-2, NT-3 and NT-4),
gender (male and female), age at diagnosis and glioma grade (G1, G2, G3 and G4) information were
integrated into this analysis as covariates.

Univariate Cox Regression Multivariate Cox Regression
Covariate Category Beta HR (95% CI for HR) p-value Beta HR (95% CI for HR) p-value

Cluster

NT-1 Reference Reference
NT-2 2.216 9.169 (6.167–13.633) 6.62 × 10−28 0.901 2.461 (1.533–3.952) 1.93 × 10−4

NT-3 −0.262 0.769 (0.398–1.485) 4.35 × 10−1 −0.456 0.634 (0.327–1.229) 1.77 × 10−1

NT-4 0.433 1.543 (1.020–2.333) 4.00 × 10−2 0.31 1.363 (0.894–2.079) 1.51 × 10−1

Gender
Female Reference Reference
Male 0.202 1.224 (0.947–1.582) 1.22 × 10−1 0.029 1.029 (0.794–1.334) 8.29 × 10−1

Age at Diagnosis 0.066 1.068 (1.058–1.079) 9.31 × 10−42 0.039 1.040 (1.028–1.052) 4.32 × 10−11

Grade

G2 Reference Reference
G3 1.148 3.153 (2.054–4.841) 1.53 × 10−7 0.972 2.644 (1.717–4.074) 1.03 × 10−5

G4 2.976 19.605 (12.821–29.978) 6.38 × 10−43 1.772 5.883 (3.534–9.791) 9.30 × 10−12

Unknown 1.092 2.979 (1.652–5.370) 2.83 × 10−4 0.92 2.510 (1.381–4.565) 2.55 × 10−3

3.5. Correlation between DNA Hypermethylation and Gene Expression Is Preserved in
NT-1 Gliomas

We then sought to evaluate the role of DNA methylation, which is an important
epigenetic mechanism involved in gliomagenesis, in modulating neurotransmission gene
expression in NT gliomas. Using the TCGA methylation quantification dataset, we first ex-
amined the DNA methylation levels of GABA-, glutamate- and calcium-related genes used
for NT-1-4 glioma unsupervised clustering. For this, we extracted the methylation beta val-
ues of the differentially expressed neurotransmission-related genes between NT-1-4 gliomas
(Wilcoxon rank sum test Bonferroni-corrected p-value less than 0.001 and absolute log2
fold change superior to 1). Methylation beta values equal to 0 and equal to 1 reflect DNA
hypomethylation and hypermethylation, respectively. We found that NT-2 gliomas were
associated with lower average beta values than NT-1, NT-3 and NT-4 gliomas (Figure 5A,
Wilcoxon rank sum test adjusted by Bonferroni correction; p = 4.9 × 10−10; p = 5.8 × 10−14;
p = 1.1 × 10−5, respectively). The average beta values of NT-2 were also significantly higher
than in healthy samples albeit with lower statistical significance because of the number of
healthy samples in the analysis (n = 2) (Wilcoxon rank sum test p = 1.2 × 10−9). We further
investigated DNA methylation levels for individual genes ascribed to calcium endocrine,
calcium signaling, GABA synapse, glutamate metabolism and glutamate synapse signaling
pathways by generating methylation profiles (Figure 5B). Again, NT-2 gliomas and healthy
samples were associated with overall DNA hypomethylation. Interestingly, a significant
negative correlation between DNA methylation and expression levels was only maintained
for NT-1 gliomas (r = −0.53; p = 3.02 × 10−13; Figure 4D). However, DNA methylation
levels in NT-2, NT-3 and NT-4 gliomas correlated weakly with gene expression levels
(r = −0.23; p = 1.21 × 10−5; Figure 5C).
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Figure 4. Cont.
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Figure 4. (A) Upset plot representing the differential gene cluster-to-cluster expression analysis. A
total of 232 genes were differentially expressed in NT-1-4 gliomas (up- or downregulated). Each row
represents a specific cluster comparison; columns represent the number of common genes. Each
linked black point represents intersecting genes between glioma clusters. (B) GABA-, glutamate- and
calcium-related gene expression profiles for NT-1-4 gliomas. Average normalized expression was
performed with the DESeq2 v1.26.0 R package. Healthy samples (n = 5) were also included in this
analysis. Genes were ordered by descending expression levels of the healthy samples. (C) CHRM1,
CHRM3 and GRIN1 gene expression levels in NT-1-4 gliomas. Expression levels are presented in log2
FPKM for 3 intersecting genes from all 6 cluster-to-cluster expression analyses (* p < 0.05, ** p < 0.001
and *** p < 0.0001).

3.6. NT-1 and NT-2 Gliomas Are Regulated by More Complex Epigenetic Mechanisms Involving
Differential Expression of microRNA

MicroRNAs (miRNAs) are small, single-stranded, non-coding RNA molecules
(21–25 nucleotides in length) that play an important role in tumorigenesis through RNA
silencing and post-transcriptional regulation of gene expression [31]. We explored their
potential regulatory roles on GABA-, glutamate- and calcium-associated gene expression in
gliomas by extracting from the RNA Interactome database [27] the miRNAs that interacted
directly with our 351 neurotransmission-related genes. We identified 73 differentially
expressed miRNAs (DE-miRNAs) in this analysis. The largest counts of highest-expressed
DE-miRNAs were found in NT-1 and NT-2 gliomas (26, 25, 14 and 8 DE-miRNAs for NT-1,
NT-2, NT-3 and NT-4, respectively; Figure 6A) and the largest counts of lowest-expressed
DE-miRNAs were found in NT-2 and NT-3 gliomas (31, 25, 9 and 8 for NT-2, NT-3, NT-1
and NT-4, respectively).

Figure 5. Cont.
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Figure 5. (A) DNA methylation levels associated with neurotransmission-related genes used for
NT1-4 glioma unsupervised clustering. Average methylation beta values of 351 neurotransmission-
related genes reflect DNA hypomethylation (beta = 0) and hypermethylation (beta = 1). Healthy
samples (n = 2) were also added to the analysis. (B) DNA methylation profiles associated
with neurotransmission-related genes used for NT1-4 glioma unsupervised clustering. A total of
351 individual gene methylation beta-values are sorted in descending order and rated between 0 and 1.
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Healthy samples (n = 2) were also added to the analysis. (C) Correlation between average
neurotransmission-related gene DNA hypermethylation and expression in NT-1-4 gliomas (n = 661).
Each point represents a glioma sample, and the color is specifically related to the NT glioma cluster
(*** p < 0.001).

Figure 6. Cont.
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Figure 6. (A). Number of differentially highly or lowly expressed miRNAs identified in NT-1-4
gliomas. The differential analysis was performed using DESeq2 R packages without taking into
account healthy samples (n = 5). High or low expression of miRNAs in an NT cluster indicates the
miRNAs having the highest/lowest expression in one of the four NT clusters. (B) Average expression
levels for hsa-mir-100, hsa-mir-183, hsa-mir-128 and hsa-mir-23a in NT-1-4 gliomas. Stars represent
the significance of the glioma cluster compared to the others (healthy samples are excluded in the
comparison: * p < 0.05; *** p < 0.001).

A total of 29 DE-miRNAs were found to be associated with higher expression com-
pared to the average expression of all DE-miRNAs (average of 4.3 DESeq2 normalized counts;
Supplementary Data Table S5). Amongst these 29, the top 4 were the miRNAs hsa-mir-100,
hsa-mir-183, hsa-mir-128-2 and hsa-mir-23a (Figure 6B and Supplementary Data Table S5). The
hsa-mir-100 and hsa-mir-23a mirRNAs were significantly overexpressed in NT-2 gliomas
when compared to NT-1, NT-3, and NT-4 clusters (Bonferroni-adjusted p < 0.05 for all
cluster pairwise comparison). The hsa-mir-128-2 was overexpressed in NT-1 (Bonferroni-
adjusted p < 10 × 10−5 for all cluster pairwise comparison). Expression of hsa-mir-183
was lower in NT-2 gliomas (Bonferroni-adjusted p < 10 × 10−5 for all cluster pairwise
comparison). Overall, neurotransmitter-related miRNAs appeared to be more deregulated
in NT-2 gliomas when compared to other glioma subgroups.

3.7. Neurotransmission-Related Gene Expression Correlates with the Immune Response Signaling
Pathways in NT-1-4 Glioma Clusters

To look into the regulation of specific cellular signaling pathways by neurotransmitter-
related genes in glioma, we performed a correlation analysis of the TCGA glioma dataset
between previously-identified NT1-4 discriminatory genes (CHRM1, CHRM3 and GRIN1) and
non-neurotransmission-related genes. We retrieved 7758 and 7346 genes with negative and
positive correlation, respectively (Bonferroni-adjusted p < 0.05, Supplementary Data Table S6).

Analyses of negatively-correlated genes revealed enrichment for genes pertaining to
15 specific cellular pathways such as cell activation, immune effector process, cell pop-
ulation proliferation, response to biotic stimulus, primary metabolic process, symbiotic
process, movement of cell or subcellular component, response to external stimulus, etc.
(Supplementary Data Figure S3). Amongst these pathways, 10 out of 15, such as cell
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activation, cell population proliferation and movement of cell and/or subcellular com-
ponent process groups, were mainly composed of immune cellular processes such as
positive regulation of leukocyte activation, T cell activation and leukocyte proliferation
(Supplementary Data Figure S4).

Positively-correlated genes were significantly associated with signaling pathways such
as system process, macromolecule localization, establishment of localization, regulation of
biological quality, cellular component organization or biogenesis and cell communication
(Supplementary data Figure S5). In summary, neurotransmission gene expression in
gliomas correlates with various cellular pathways related to immunity.

3.8. Immune Cell Characterization Reveals Different Tumor Immune
Microenvironment Composition

The identification of a high number of immune processes with the CHRM1, CHRM3
and GRIN-1 neurotransmission-related gene signature may suggest that NT-related gliomas
possess distinct tumor immune microenvironments. We first performed an ESTIMATE R
tumor purity calculation on NT-1-4 gliomas, as this tool evaluates immune and stromal
gene expression signatures. We found that the NT-1 gliomas were associated with signifi-
cantly higher tumor purity scores when compared to the NT-2 (Wilcoxon rank sum test
p = 3.01 × 10−45) and NT-4 (Wilcoxon rank sum test p = 5.2 × 10−26, Figure 7A) gliomas,
reflecting lower levels of immune cells in the NT-1 gliomas. There were no significant
differences observed between NT-1 and NT-3 gliomas.

Figure 7. Cont.
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Figure 7. (A) ESTIMATE R tumor purity for the NT-1, NT-2, NT-3 and NT-4 gliomas. Purity scores
were inferred from the presence of infiltrating immune/stromal cells (*** p < 0.001). (B) Immune
cell type inference for NT-1, NT-2, NT-3 and NT-4 gliomas using CIBERSORT and CIBERSORT-ABS
tools. CIBERSORT generates an immune cell fraction relative to the total immune cell content;
CIBERSORTx generates an absolute proportion of each cell type. (C) Variable contributions within
the first and second principal components. The PCA was performed on the CIBERSORTx immune
cell composition inference data.

To further substantiate this observation, we also inferred the immune cell type
composition of each glioma cluster using CIBERSORT [32] and CIBERSORTx [33] tools
(Figure 7B). The CIBERSORTx analysis showed similar absolute immune cell quantifi-
cation between the NT-1 and NT-4 gliomas (Wilcoxon rank sum test p = 0.28). NT-2
gliomas were associated with a higher number of immune cells (Wilcoxon rank sum test
p = 6.42 × 10−32, p = 1.94 × 10−27 and p = 1.70 × 10−26 compared to NT-1, NT-3 and NT4,
respectively). When analyzing the CIBERSORT results, NT-2, NT-3 and NT-4 gliomas
were significantly associated with a higher fraction of M2-phenotype macrophages when
compared to NT-1 gliomas (Wilcoxon rank sum test p = 3.90 × 10−30, p = 2.01 × 10−8 and
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p = 1.49 × 10−17, respectively). In addition, NT-1 gliomas had a higher fraction of plasma
B cells (Wilcoxon rank sum test p = 1.73 × 10−42, p = 2.42 × 10−9 and p = 2.33 × 10−35,
respectively) when compared to the three other groups. NT-1 gliomas also had a higher
fraction of monocytes when compared to NT-2 and NT-3 gliomas (Wilcoxon rank sum test
p = 7.45 × 10−10, p = 1.23 × 10−5 and p = 8.36 × 10−1, respectively). Other immune cell
types were identified to be significantly enriched in NT-1 gliomas and are described in the
Supplementary Data Table S7.

Principal component analysis (PCA) on the CIBERSORTx immune data showed that
the first and second components explained 82.3% of the total variability (75.1% and 7.2%
for the first and second component, respectively, Figure 7C). The first principal component
mainly consists of the M2 macrophage variable (93.87%). Monocytes were the main contrib-
utors to the second principal component (59.89%), with macrophages M0 (14.06%), mast
cells resting (12.15%) and B cells plasma (8.01%) also contributing.

3.9. Neurotransmission-Related Transcriptomic Profiling on the Chinese Glioma Genome
Atlas Cohort

We tested the reproducibility of our findings using 889 glioma samples from the
Chinese Glioma Genome Atlas cohort (CGGA) with the neurotransmission-related gene set
(351 genes) used in the analysis of the TCGA cohort. We performed unsupervised clustering
and generated four different clusters, which were identified as NT-1-like (n = 189), NT-
2-like (n = 259), NT-3-like (n = 166) and NT-4-like (n = 275) glioma clusters (Figure 8A).
Similar to the TCGA cohort, the NT-2-like cluster was mainly composed of IDH-wt gliomas
(222/259 or 85.71%) whereas IDH-mutated gliomas were predominant in the NT-3- and NT-
4-like clusters (122/166, 73.49% and 226/275, 82.18% for the NT-3- and NT-4-like clusters,
respectively; Supplementary Data Table S8). The NT-1-like glioma cluster was composed
of a mixture of IDH-mutated (112/189 or 59.26%) and IDH-wt gliomas (77/189 or 40.74%).
The 1p/19q chromosomal co-deletion did not predominate in any cluster.

Figure 8. Cont.
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Figure 8. (A) Distribution of glioma molecular alterations in CGGA neurotransmission-related glioma
clusters. The four clusters were generated by hierarchical unsupervised clustering using Pearson
correlation (glioma samples in column) and Minkowski distance (genes in rows). Ward.D2 clustering
method was selected for this clustering. (B) Kaplan–Meier survival curves associated with the CGGA
NT-1-4 like glioma clusters. Red, blue, green and purple represent the various CGGA NT-1-4-like
glioma clusters, respectively. Cluster-to-cluster significance was calculated using the log-rank test.
(C) Immune cell type inference for NT-1-4 like gliomas using CIBERSORT. CIBERSORT infers the
immune cell fraction relative to the total immune cell content.

Survival analysis showed a similar survival for NT-1-like, NT-3-like and NT-4-like
clusters (log-rank test p > 0.05 Figure 8B). NT-2-like gliomas had the shortest survival rate
when compared to the three other clusters (log-rank test, p = 8.76 × 10−19, p= 1.02 × 10−16

and p = 3.66 × 10−15 when compared with NT-1-like, NT-3-like and NT-4-like, respectively).
In terms of immune cell type composition, NT-2-like gliomas were associated with a

higher cell fraction of M2-phenotype macrophages, similar to the TCGA cohort analysis
findings. (Wilcoxon rank sum test p = 4.76 × 10−22, p = 1.03 × 10−29 and p = 2.09 × 10−17

compared to the NT-1-like, NT-3-like and NT4-like, respectively; Figure 8C). In general
terms and similar to the TCGA analyses, neurotransmission-based unsupervised clustering
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of the CGGA glioma expression dataset recapitulated four subgroups with similar survival
and inflammatory microenvironment characteristics.

4. Discussion

Current glioma therapies lead to limited improvement in median overall survival
in patients with high-grade infiltrating gliomas [34]. Beyond targeting tumor cells, there
is currently a shift of focus towards understanding components of the tumor microenvi-
ronment, such as surrounding neural cells (neurons and glia), hematopoietic cells (mono-
cyte/macrophage/microglia and T cells) or blood vessels, in an attempt to overcome redun-
dant compensatory mechanisms [35]. In this large-scale multi-omics analysis, IDH-wildtype
and IDH-mutated infiltrating gliomas were studied through the lens of neurotransmission-
related (GABA, glutamate and calcium) gene expression patterns with the aim of unraveling
specific vulnerabilities and cellular pathways.

Neurotransmission-based unsupervised clustering enabled the proper classification of
the majority of infiltrating gliomas into current WHO tumor categories (IDH-wt gliomas,
IDH-mutated, 1p/19q oligodendrogliomas and IDH-mutated astrocytomas), suggesting
that neurotransmission-related pathways are differentially regulated in tumor cells and/or
their microenvironment according to tumor subtype, and also reaffirming the importance
of IDH1/2 mutations and of 1p/19q-codeletion for glioma stratification. Interestingly, this
strategy also identified a novel NT-1 glioma subgroup mostly comprised of IDH-mutated
gliomas, which also included “normal-like” IDH-wt gliomas associated with a longer
survival [1,29].

The NT-1 subgroup primarily distinguishes itself by its overexpression of GABA,
glutamate and calcium genes. Conversely, the NT-2 cluster, which is principally comprised
of more-aggressive IDH-wildtype glioblastomas, is associated with a lower expression of
neurotransmission-related genes. IDH-mutated gliomas with (NT-3) or without (NT-4) the
1p/19q codeletion show intermediate levels of expression. This supports the importance of
the IDH mutation in regulating neurotransmission-related gene programs in glioma [36,37].

The role of the IDH mutation as a trigger of the CpG island methylator phenotype in
IDH-mutated gliomas via the production of 2-hydroxyglutarate (2-HG) oncometabolite
is well-established [38,39]. It is interesting to note that—while the average methylation
of neurotransmission genes in NT-1 gliomas is high, as expected from a group mainly
composed of IDH-mutated tumors—these tumors are distinct from other IDH-mutated
gliomas by the partial preservation of their capacity to silence neurotransmission genes
through methylation. We can speculate that epigenetic DNA methylation events that
follow IDH mutation in early gliomagenesis target neurotransmission genes randomly,
thereby accounting for heterogeneous neurotransmission-related profiles and selective
vulnerabilities within IDH-mutated tumors. Neurotransmitter-related genes amenable to
epigenetic reprogramming may impact the therapeutic efficacy of experimental anti-cancer
DNA demethylating drugs [40].

Neurotransmission-based glioma clusters are also distinct by virtue of altered ex-
pression of miRNAs interacting with GABA-, glutamate- and calcium-related genes. In
particular, four miRNAs (hsa-mir-100, hsa-mir-183, hsa-mir-128-2 and hsa-mir-23a) were
shown to be highly expressed in comparison to the other deregulated miRNAs. In gliomas,
hsa-mir-183 promotes cell proliferation, invasion, angiogenesis and radioresistance [41–46]
and is overexpressed in NT-3 and NT-4 IDH-mutated gliomas. The hsa-mir-128-2 miRNA,
which is overexpressed in the NT-1 cluster, has an inhibitory role on tumor growth and
angiogenesis in glioma [47]. Furthermore, its overexpression is associated with an in-
crease of temozolomide cytotoxicity and chemosensitivity in glioma and a decrease in
chemotherapeutic resistance in breast cancer [48–50]. Next, hsa-mir-23a promotes cell
growth [51], proliferation [52] and invasion [53] in glioma and participates in colorectal
cancer cell chemoresistance [54,55]. As for hsa-mir-100, its overexpression is associated
with reductions in cell proliferation [56], growth [57] and chemoresistance [58] even though
it is overexpressed in more aggressive NT-2 gliomas. Overall, the differential expression
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of miRNAs directly interacting with neurotransmission-related genes represents another
layer of epigenetic diversity between NT-1-4 gliomas that may impact treatment response
and resistance.

Correlations between the CHRM1, CHRM3 and GRIN-1 NT-1-4 glioma intersecting
gene signatures and various immune signaling pathways suggested that NT gliomas
may be endowed with distinct tumor immune microenvironments. Further, 2-HG is an
important mediator of tumor immunity in IDH-mutated gliomas. It acts as a suppressor of
antitumor T-cell activity and also impedes macrophage recruitment in gliomas by altering
tryptophan metabolism [59,60]. Lower pools of M2-phenotype macrophages were detected
in NT-1 gliomas when compared to NT-2-4 gliomas. Considering the anti-tumor and
immunosuppressive functions of this type of macrophage in gliomas, this observation
could be in keeping with a less suppressive and less tumor-supportive inflammatory
microenvironment in NT-1 gliomas, partly explained by their IDH status but also promoted
by operational neurotransmitter signaling pathways modulated by released GABA or
glutamate in cancer or microenvironment cells [61].

We identified novel, neurotransmission-based glioma subgroups with their peculiar-
ities in terms of expression, epigenetics (methylation and miRNAs) and inflammatory
microenvironment. These findings may be of clinical relevance should neurotransmitter
pathways impacting tumor aggressiveness be actionable or reactivable in gliomas, whether
it is through epigenetic-based strategies for IDH-mutated tumors or any other strategy for
IDH-wt gliomas.

The adult gliomas included in this study are infiltrative by nature. It is thus expected
that brain biopsy samples will include non-neoplastic brain cells. We do expect that some of
the differentially expressed NT genes identified in this study belong to the non-neoplastic
tumor microenvironment, where they can still impact tumor aggressiveness. Further
bioinformatics studies on microdissected tumor tissue and single-cell RNA sequencing data
will help to specify more precisely the location of neurotransmission targets in tumor cells
versus non-neoplastic tumor cells of the microenvironment. Experimental studies targeting
neurotransmitter signaling elements and relevant miRNAs in vitro will also further our
knowledge regarding the impact of these pathways on glioma aggressiveness.

5. Conclusions

This multi-omics analysis revealed the existence of neurotransmission-based glioma
categories with significant differences in regard to neurotransmission-related gene expres-
sion, methylation, and miRNA profiles in adult gliomas. It also revealed alterations in
the nature of the tumor inflammatory microenvironment between NT glioma subgroups.
Deciphering operational neurotransmitter signaling pathways and underpinning mecha-
nisms that may represent actionable targets is a promising personalized treatment avenue
to explore for glioma patients as a complement to current radiotherapy and chemotherapy
treatments in an attempt to improve clinical outcomes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/jpm12040633/s1. Supplementary Data Figure S1: Upset plot describing the 351 neurotransmission-
related genes used in our analyses. These gene sets were taken from the KEGG metabolic database,
Supplementary data Table S1: List of 351 neurotransmitter-related genes used for unsupervised
clustering (>10 counts), Supplementary Data Figure S2: Average entropy of the TCGA glioma
expression dataset unsupervised clustering based on the IDH and 1p/19q codeletion status, ac-
cording to the number of clusters generated. The optimal number of clusters is equal to 4 (red
dot), Supplementary Data Table S2: Distribution of the NT-1-4 glioma clusters among the 661 TCGA
glioma samples, Supplementary Data Figure S3: Gene ontology enrichment analysis on correlated
genes between previously-identified NT1-4 intersecting genes (CHRM1, CHRM3 and GRIN1) and
non-neurotransmission-related genes., Supplementary Data Table S3: Distribution of biomolecular
and epidemiological variables among NT-1-4 glioma clusters, Supplementary Data Figure S4: Signifi-
cant Gene Ontology group terms associated with cell activation, cell proliferation and movement of
cell or subcellular component gene ontology level 3 gene ontology group terms. Colors represent the
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correlation type (blue and red for negative and positive correlations, respectively). Supplementary
Data Table S4: Distribution of overexpressed and underexpressed neurotransmission-related genes in
NT-1-4 gliomas, Supplementary Data Figure S5. Significant Gene Ontology group terms associated
with system process, macromolecule localization, establishment of localization, regulation of biologi-
cal quality, cellular component organization or biogenesis and cell communication gene level 3 gene
ontology group terms. Colors represent the correlation type (blue and red for negative and positive
correlations, respectively), Supplementary Data Table S5: Average expression levels of 73 differen-
tially expressed miRNAs in NT-1-4 gliomas. Supplementary Data Table S6: Positive and negative
correlations between CHRM1, CHRM3 and GRIN-1 genes and nonrelated neurotransmission genes.
Supplementary Data Table S7: Comparison of immune cell type enrichment among NT-1-4 glioma
clusters generated by the CIBERSORT analysis tool. Supplementary Data Table S8: Distribution of
biomolecular and epidemiological variables among CGGA NT-1-4-like glioma clusters.
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