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Abstract: Our study aims to develop an effective integrated machine learning (ML) scheme to predict
vascular events and bleeding in patients with nonvalvular atrial fibrillation taking dabigatran and
identify important risk factors. This study is a post-hoc analysis from the Randomized Evaluation
of Long-Term Anticoagulant Therapy trial database. One traditional prediction method, logistic
regression (LGR), and four ML techniques—naive Bayes, random forest (RF), classification and
regression tree, and extreme gradient boosting (XGBoost)—were combined to construct our scheme.
Area under the receiver operating characteristic curve (AUC) of RF (0.780) and XGBoost (0.717) was
higher than that of LGR (0.674) in predicting vascular events. In predicting bleeding, AUC of RF (0.684)
and XGBoost (0.618) showed higher values than those generated by LGR (0.605). Our integrated ML
feature selection scheme based on the two convincing prediction techniques identified age, history of
congestive heart failure and myocardial infarction, smoking, kidney function, and body mass index
as major variables of vascular events; age, kidney function, smoking, bleeding history, concomitant
use of specific drugs, and dabigatran dosage as major variables of bleeding. ML is an effective data
analysis algorithm for solving complex medical data. Our results may provide preliminary direction
for precision medicine.

Keywords: arrhythmia; cardioembolic stroke; non-vitamin K antagonist oral anticoagulants; dabiga-
tran; machine learning

1. Introduction

Stroke is the leading cause of death and disability worldwide [1]. Cardioembolic stroke
is a primary subtype, and nonvalvular atrial fibrillation (NVAF) is one of the most common
risk factors for cardioembolic stroke, with a global prevalence of 1–2% [2]. In recent decades,
this event has been treated by shifting from the traditional vitamin K antagonist warfarin to
nonvitamin K antagonists (NOACs) [3–5]. Because of the significant increase in the clinical
demands for NOACs, off-label use, especially the dosage selection regimen, has become
an important issue in recent years. In real-world studies, off-label low-dose NOACs were
prescribed to approximately 9–31% of patients with NVAF [6,7]. Adverse effects including
a higher risk of ischemic stroke and systemic embolism have been observed in these
patients [8,9].

Dabigatran etexilate, the only direct thrombin inhibitor, is an NOAC with two ap-
proved doses based on the Randomized Evaluation of Long-Term Anticoagulant Therapy
(RE-LY) trial [10]. In this trial, low-dose dabigatran (110 mg twice daily) had similar
vascular prevention effects as those of warfarin with lower rates of major hemorrhage.
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High-dose dabigatran (150 mg twice daily) was associated with lower rates of vascular
events but similar rates of major hemorrhage. The dosage adjustment plan of dabigatran
was based on previous studies and expert opinions (European label) [11], which suggested
that clinicians could decrease the dosage of dabigatran among patients aged >80 years,
those aged 75–80 years with a high risk of bleeding, or those with concomitant use of
verapamil. Physicians must balance the risk of recurrent stroke and bleeding tendency
in clinical practice. Currently, the congestive heart failure, hypertension, age ≥ 75 years
[doubled], diabetes mellitus, prior stroke, transient ischemic attack or thromboembolism
[doubled], vascular disease, age 65–74 years, and sex category (CHA2DS2-VASc) [12] and
hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition,
labile international normalized ratio, elderly [age ≥ 65 years], drugs/alcohol concomitantly
(HAS-BLED) [13] scores are used to calculate the risk of recurrent ischemic stroke and assess
bleeding risk, respectively. However, these tools share the same grading factors: old age,
hypertension, and stroke history. This may lead to a clinical dilemma, i.e., one patient could
score high in both scoring systems. Although the CHA2DS2-VASc score has been widely
used for years with convenience and reliability [14,15], insufficient prediction performance
(C statistic of 0.679) has remained a concern [16]. Machine learning (ML) methods have
been recently used as well-constructed analytical, classification and prediction tools for
medical problems [17–22]. Their advantage and performance in demonstrating complex
relationships between risk factors and outcomes and analyzing important information
hidden in the vast amount of medical data have made them an emerging research topic.
Kamel et al. [23] and Chun et al. [24] have confirmed the feasibility of predicting vascular
events. Unlike prediction models that use only one ML technique that might be insufficient
to provide complete, adequate and stable feature selection results, our study developed
an integrated ML feature selection scheme with the benefits of stable and balanced perfor-
mance. Our method may reveal important variables influencing the efficacy and safety
of dabigatran to provide a precision medical suggestion regarding dose selection and risk
control for patients with different characteristics.

2. Materials and Methods
2.1. Study Population

This study is a post-hoc analysis based on RE-LY trial dataset. This study was reviewed
and approved by the Research Ethics Review Committee of the Fu Jen Catholic University
Hospital. The requirement for informed consent was waived, since the data contain only
de-identified information.

In the RE-LY trial, >18,000 patients with newly diagnosed arrhythmia and indications
of secondary prevention with an anticoagulant were randomized to receive dabigatran
110 or 150 mg twice daily or an adjusted dose of warfarin with a median follow-up period
of approximately 2 years. Exclusion criteria included a history of severe heart valve
disorders, a recent stroke, and renal insufficiency. The primary outcome was stroke or
systemic embolism and the primary safety outcome was major hemorrhage. The definitions
and results of other secondary outcomes have been described in detail and published.
We collected the data of patients taking dabigatran with complete follow-up in the RE-LY
trial for the present analysis.

2.2. Proposed Integrated Machine Learning Scheme

We proposed an integrated ML feature selection scheme for predicting vascular events
and bleeding in patients with NVAF taking dabigatran and for identifying important risk
factors. Figure 1 shows the process of establishing the proposed scheme.
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Figure 1. Flow chart of the proposed integrated ML feature selection scheme.

First step: Identify risk factors as predictor variables and define target variables.
For risk factors we referred to the recommendations in the guidelines of the American
Heart Association and the European Society of Cardiology [11,25], which included sex; age;
body mass index (BMI); body weight; ethnicity; kidney function abnormality; concomitant
use of specific drugs; history of hypertension, stroke, previous bleeding, myocardial infarc-
tion (MI), diabetes mellitus (DM), congestive heart failure (CHF), or systemic embolism;
smoking; and liver function abnormality. Boundaries of subgroups in most variables
followed the definition of CHA2DS2-VASc and HAS-BLED scores. BMI was classified
according to the definition of the World Health Organization [26]. Moderate and severe
kidney function abnormality was labeled according to the United States Food and Drug
Administration (USFDA) [27].

For analyzing the influence of these factors on efficacy and safety, we selected two
target variables including vascular events (P1: stroke, MI, systemic embolism, and vascular
death) and major bleeding (P2: major bleeding defined as blood loss with a decrease in
hemoglobin level of ≥2 g/dL (1.2 mmol/L), transfusion of ≥2 packed red blood cells,
or symptomatic bleeding in a critical area or organ). Our presumed important variables
and prognostic outcomes were individually categorized according to the definition shown
in Table 1.

Subjects were identified according to participants’ characteristics and laboratory data
collected during their enrolment in the RE-LY trial. Only patients with available complete
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information were included in our analysis. Two independent investigators confirmed
prognostic outcomes according to the criteria mentioned in the trial.

Table 1. Description of predictor and target variables in this study.

Variables Description Units

V1 Sex 0: Male; 1: Female -

V2 Age 1: <65; 2: ≥65 and <75; 3: ≥75 years

V3 BMI 1: <18.5; 2: ≥18.5 and <30; 3: ≥30 kg/m2

V4 Body weight 0: <60; 1: ≥60 kg

V5 Ethnicity 0: Arab/others; 1: European -

V6 Hypertension history 0: Record of hypertension that required medical treatment); 1: No -

V7 Kidney function (GFR) 1: <30; 2: ≥30 and <50; 3: ≥50 mL/min/1.73 m2

V8 Previous stroke history 0: History of stroke or TIA; 1: No -

V9 Previous bleeding history 0: History of bleeding; 1: No -

V10 Concomitant use of drugs 0: Concomitant use of verapamil, diltiazem, antithrombotic agent,
NSAID, or COX inhibitor; 1: No -

V11 History of MI 0: History of MI; 1: No -

V12 History of DM 0: History of DM; 1: No -

V13 History of CHF 0: Medical history of CHF or heart echo revealed ejection fraction
<40%; 1: No -

V14 Smoking 1: Never; 2: Current smoker; 3: Former smoker -

V15 History of systemic embolism 0: History of systemic embolism; 1: No -

V16 Liver function abnormality # 0: Presence of liver function abnormality
1: No -

V17 Anemia 0: Hemoglobin ≥10; 1: <10 g/dL

V18 Medicine dosage (dabigatran) 0: 110 mg twice per day
1: 150 mg twice per day -

P1 Vascular events † 0: No vascular event happened within the first year of follow-up
1: Yes -

P2 Bleeding events * 0: No bleeding event happened within the first year of follow-up
1: Yes -

Abbr.: BMI, body mass index; GFR, glomerular filtration rate; TIA, transient ischemic attack; NSAID, nonsteroidal
anti-inflammatory drug; COX, cyclooxygenase; MI, myocardial infarction; DM, diabetes mellitus; CHF, congestive
heart failure. # Liver function abnormality defined as a medical history of cirrhosis or abnormal biochemical data
when the patients were enrolled (bilirubin level more than two times the upper limit of normal, plus one or more
of aspartate transaminase, alanine transaminase, or alkaline phosphatase level more than three times the upper
limit of normal). † Vascular events defined as stroke, myocardial infarction, systemic embolism, and vascular
death. * Major bleeding was defined as blood loss with a decrease in hemoglobin level of ≥2 g/dL (1.2 mmol/L),
transfusion of ≥2 packed red blood cells, or symptomatic bleeding in a critical area or organ. Critical areas were
intraocular, intracranial (including hemorrhagic stroke), intraspinal, intramuscular with compartment syndrome,
retroperitoneal, intraarticular, or pericardial.

The study protocol included one traditional prediction method, logistic regression
(LGR), and four ML techniques, viz., naive Bayes (NB), random forest (RF), classification
and regression tree (CART), and extreme gradient boosting (XGBoost). NB is a popular ML
model used for classification tasks. This algorithm can sort objects according to specific
characteristics and variables based on the Bayes theorem. It calculates the probability
of hypotheses on presumed groups [28]. RF is an ensemble learning method developed
by constructing several decision trees. It collects numerous random samples of variables
as the training dataset to alleviate the overfitting feature of decision trees. Each tree
in the RF outputs its prediction result, and the class with the most votes sums up the
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best performance model [29]. CART is a classification ML algorithm that constructs a
decision tree based on Gini’s impurity index. The decision tree structure comprises root,
internal, and leaf nodes, which may represent training data and decision-making points.
The CART prediction model is constructed by picking variables and evaluating split ends
until an appropriate tree is produced [30]. XGBoost is an optimized distributed gradient
boosting system that implements ML algorithms based on the gradient boosting framework.
It uses the regularization term to control model complexity and simultaneously uses first-
and second-order derivatives to perform a second-order Taylor expansion of the loss
function [31]. These ML methods, which share characteristics of interpretable tools for
prediction and classification with good performance in vast unprocessed data, have been
widely applied in solving cerebrovascular and cardiovascular disease problems [32–35].
Meanwhile, the logistic regression, which is a widely accepted analytic method in medical
research, was defined as the benchmark in our study.

Second step: Train NB, RF, CART, and XGBoost models and evaluate their predictive
performance. The models are trained using two combinations of predictor and target
variables. One combination involves using 18 variables (V1–V18) as predictors and vascular
events (P1) as the target variable; the other combination involves using V1–V18 as predictors
but bleeding (P2) as the target variable. In training these models, the data of recruited
patients were randomly separated into 90% training and 10% testing datasets according
to the 10-fold cross-validation (CV) method. Our scheme applied the 10-fold nested
CV method for enhancing stability to estimate the best performance of each model [36].
This process consisted of 10-fold inner CV for tuning and then determining the best
hyperparameter set of each method for model selection and 10-fold outer CV for evaluating
the predictive performance of the best model of each method for model evaluation.

These models’ efficacy were evaluated based on their mean and standard deviation of
accuracy, sensitivity, specificity, and area under the receiver operating characteristic (ROC)
curve (AUC) [37]. Sensitivity is the proportion of true positives tests of all patients with
predicted events. Specificity is the proportion of true negative tests out of all patients who
have not predicted events. Accuracy is the proportion of correct predictions (both true
positives and true negatives tests) among the total number of patients examined. ROC
curve is a graphic performance measurement of a classification model at various classifi-
cation thresholds. AUC is the Area under the ROC curve, which provides an aggregate
performance measure across all possible classification thresholds. The best hyperparame-
ters with leading validation performance based on the AUC value for each model can be
chosen to construct tuned NB, RF, CART, and XGBoost best models. The results of the best
performance model with AUC values exceeding those of LGR were the cornerstone of our
predicting models of vascular events and bleeding.

Third step: Importance ranking of risk factors. The “caret” R package version 6.0-90 [38]
was applied for each of the four methods to generate each variable’s importance value.
We defined the priority demonstrated in each model ranking 1 as the most critical factor
and 18 as the least critical factor. Each model would perform 10 times due to the use of
10-fold outer CV to gain the average ranking of each variable for more confident results.
Individual ML methods may produce different importance rankings owing to distinct
characteristics. Ensemble machine learning method based on a combination of multiple
models’ outputs is widely accepted and has produced good results in recent years [39].
An integrated ML feature selection scheme might assemble the prediction powers of these
methods. We summarized the major important variables from the average ranking of each
risk factor based on the identified convincing ML models to enhance stability and integrity.

According to the individual priority of the variables presented in the predictive models
of vascular events and bleeding, we may establish an instruction concept for patients with
NVAF taking dabigatran. In the final stage, we summarized our significant findings and
discussed them in light of previous concepts.

All analyses were conducted using R software version 4.1.2 (R core team, Vienna,
Austria) and RStudio version 1.1.453 (http://www.R-project.org; accessed on 2 March 2022;

http://www.R-project.org
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https://www.rstudio.com/products/rstudio/; accessed on 2 March 2022). The methods
were applied using the R software with the required installed packages: “randomFor-
est” package version 4.6-14 for RF [40]; “rpart” R package version 4.1-15 [41] for CART;
and “XGBoost” package version 1.5.0.2 for XGBoost [42]. To estimate the best parameter
set for developing effective RF, CART, and XGBoost methods, the “caret” package version
6.0-90 [38] was used for tuning the relevant hyperparameters. NB was implemented using
the “klaR” package version 0.6-15 [43] with the default setting of hyperparameters.

3. Results

There were 12,091 patients randomized to take dabigatran in the RE-LY trial. After ex-
cluding 289 patients with missing data, 11802 patients were enrolled in our study. Subjects’
demographic data are outlined in Table 2. There were 318 (2.69%) patients with vascular
events, and 2238 (18.96%) patients had bleeding within the first year of follow-up when
taking dabigatran, while others were event-free.

Table 2. Subjects’ demographics.

Characteristics Metrics

V1 Sex N (%)

0: Male 7519 (63.70)

1: Female 4284 (36.30)

V2 Age (years) N (%)

1: <65 1982 (16.79)

2: ≥65 and <75 5123 (43.41)

3: ≥75 4697 (39.80)

V3 BMI (kg/m2) N (%)

1: <18.5 123 (1.04)

2: ≥18.5 and <30 7589 (64.30)

3: ≥30 4091 (34.66)

V4 Body weight N (%)

0: <60 1098 (9.30)

1: ≥60 10,705 (90.70)

V5 Ethnicity N (%)

0: Arab/others 3594 (30.45)

1: European 8209 (69.55)

V6 Hypertension history N (%)

0: Record of hypertension that required medical treatment 9301 (78.80)

1: No 2502 (21.20)

V7 Kidney function (GFR) N (%)

1: <30 45 (0.38)

2: ≥30 and <50 2245 (19.02)

3: ≥50 9513 (80.60)

https://www.rstudio.com/products/rstudio/
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Table 2. Cont.

Characteristics Metrics

V8 Previous stroke history N (%)

0: Yes 2366 (20.05)

1: No 9437 (79.95)

V9 Previous bleeding history N (%)

0: Yes 774 (6.56)

1: No 11,029 (93.44)

V10 Concomitant use of drugs N (%)

0: Yes 2845 (24.10)

1: No 8958 (75.90)

V11 History of myocardial infarction N (%)

0: Yes 1982 (16.79)

1: No 9821 (83.21)

V12 History of diabetes mellitus N (%)

0: Yes 2739 (23.21)

1: No 9064 (76.79)

V13 History of congestive heart failure N (%)

0: Yes 4125 (34.95)

1: No 7678 (65.05)

V14 Smoking N (%)

1: Never 5781 (48.98)

2: Current 867 (7.35)

3: Former 5155 (43.68)

V15 History of systemic embolism N (%)

0: Yes 306 (2.59)

1: No 11,497 (97.41)

V16 Liver function abnormality N (%)

0: Presence of liver function abnormality 84 (0.71)

1: No 11,719 (99.29)

V17 Anemia N (%)

0: Hemoglobin ≥10 g/dL 11,773 (99.75)

1: Hemoglobin <10 g/dL 30 (0.25)

V18 Medicine dosage (dabigatran) N (%)

1: 110 mg 5870 (49.73)

2: 150 mg 5933 (50.27)

P1 Vascular events N (%)

0: No 11,485 (97.31)

1: Yes 318 (2.69)

P2 Bleeding events N (%)

0: No 9565 (81.04)

1: Yes 2238 (18.96)
Abbr.: BMI, body mass index; GFR, glomerular filtration rate.
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Table 3 shows the values of hyperparameters which train best NB, RF, CART, and XG-
Boost models with leading AUC values. The performances of LGR, NB, RF, CART,
and XGBoost methods in predicting vascular events and bleeding are listed in Table 4.
The ROC curve of each model is presented in Figure 2. In predicting vascular events,
RF (AUC = 0.780) and XGBoost (AUC = 0.717) showed higher AUC values than LGR
(AUC = 0.674). In predicting bleeding, RF (0.684) and XGBoost (0.618) showed higher AUC
values than LGR (0.605). In contrast, NB and CART showed inferior performance to LGR
in predicting vascular events and bleeding. Therefore, we selected RF and XGBoost as the
basis of our integrated ML feature selection model.

Table 3. Summary of the values of the hyperparameters which train the best NB, RF, CART, and
XGBoost models.

Methods Hyperparameters Best Value Meanings

CART

minispilt 20 The minimum number of observations that must exist in a node for a split
to be attempted.

minibucket 20 The minimum number of observations in any terminal node.

maxdepth 10 The maximum depth of any node of the final tree.

xval 10 Number of cross-validations.

cp 0.0013 Complexity parameter: The minimum improvement in the model needed
at each node.

RF
ntree 500 The number of trees in forest.

mtry 2 The number of predictors sampled for splitting at each node.

NB

fL 1 Adjustment of Laplace smoother.

usekernel FALSE Using kernel density estimate for continuous variable versus a Gaussian
density estimate.

adjust 1 Adjust the bandwidth of the kernel density.

XGBoost

nrounds 100 The number of boosted trees.

maximum depth 2 The maximum depth of a tree.

learning rate 0.4 Shrinkage coefficient of tree.

gamma 0 The minimum loss reduction.

subsample 1 Subsample ratio of columns when building each tree.

colsample_bytree 0.8 Subsample ratio of columns when constructing each tree.

rate_drop 0.01 Rate of trees dropped.

skip_drop 0.95 Probability of skipping the dropout procedure during a boosting iteration.

min_child_weight 1 The minimum sum of instance weight.

Abbr: CART, classification and regression tree; RF, random forest; NB, naive Bayes; XGBoost, eXtreme gradient
boosting.

Table 5 shows the overall importance ranking of each risk factor in predicting vascular
events based on RF and XGBoost. The average rankings with 10-fold cross-validation of
the two models were demonstrated as “Average Ranking of 10 Times RF” and “Average
Ranking of 10 Times XGBoost”. The different methods generated individual importance
ranking according to their analyzing rules. For a more comprehensive view, we summarized
the findings of the two models equally in our integrated ML feature selection scheme.
We obtained the “Average ranking of the 2 Models” with simple averaging the average
ranking values from the RF and XGBoost models. To clarify the ranking, we ranked the
result from 1 and showed that the “Final ranking in predicting vascular events” was listed
using the “Average ranking of the 2 Models” value. Age; history of CHF, MI, DM, and
stroke; smoking; kidney function; BMI; ethnicity, and dabigatran dosage were the major
predictor variables of vascular events.
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Table 4. Performance of the four machine learning methods in predicting (a) vascular events and
(b) bleeding.

Methods Accuracy
Mean (SD)

Sensitivity
Mean (SD)

Specificity
Mean (SD)

AUC
Mean (SD)

(a) Vascular events

LGR 0.574 (0.03) 0.571 (0.04) 0.707 (0.03) 0.674 (0.00)
NB 0.569 (0.03) 0.565 (0.03) 0.711 (0.04) 0.674 (0.00)
RF 0.890 (0.03) 0.898 (0.03) 0.599 (0.04) 0.780 (0.01)
CART 0.599 (0.09) 0.598 (0.10) 0.621 (0.09) 0.637 (0.00)
XGBoost 0.646 (0.09) 0.645 (0.09) 0.693 (0.04) 0.717 (0.04)

(b) Bleeding

LGR 0.604 (0.03) 0.622 (0.05) 0.527 (0.05) 0.605 (0.00)
NB 0.599 (0.01) 0.613 (0.02) 0.537 (0.02) 0.603 (0.00)
RF 0.757 (0.01) 0.822 (0.02) 0.479 (0.02) 0.684 (0.00)
CART 0.787 (0.07) 0.959 (0.12) 0.052 (0.16) 0.467 (0.03)
XGBoost 0.625 (0.03) 0.650 (0.05) 0.517 (0.05) 0.618 (0.00)

Abbr.: SD, standard deviation; AUC, area under the receiver operating characteristic curve; LGR, logistic regres-
sion; NB, naive Bayes; RF, random forest; CART, classification and regression tree; XGBoost, eXtreme gradient
boosting. In predicting both vascular events and bleeding, RF and XGBoost demonstrated higher AUC values
(indicated in bold) than LGR.
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CHF, MI, DM, and stroke; smoking; kidney function; BMI; ethnicity, and dabigatran dos-
age were the major predictor variables of vascular events. 

Table 5. Importance ranking of risk factors in predicting vascular events based on RF and XGBoost. 

Risk Factors 
Average Rank-
ing of 10 Times 
RF 

Average Rank-
ing of 10 Times 
XGBoost 

Average Rank-
ing of the 2 
Models 

Final Ranking in Pre-
dicting Vascular 
Events 

Age 1 5.2 3.1 1 
History of congestive heart failure 4.6 2.1 3.35 2 
History of myocardial infarction 4 2.8 3.4 3 
Smoking 2.2 5.6 3.9 4 
Kidney function 5.9 6.1 6 5 
BMI 3.5 10.5 7 6 
Ethnicity 7.8 7.3 7.55 7 
History of diabetes mellitus 8.6 7 7.8 8 

Figure 2. Receiver operating characteristic (ROC) curves of the five methods in predicting (a) vascular
events and (b) bleeding.

Table 5. Importance ranking of risk factors in predicting vascular events based on RF and XGBoost.

Risk Factors Average Ranking
of 10 Times RF

Average Ranking of
10 Times XGBoost

Average Ranking
of the 2 Models

Final Ranking in
Predicting
Vascular Events

Age 1 5.2 3.1 1

History of congestive heart failure 4.6 2.1 3.35 2

History of myocardial infarction 4 2.8 3.4 3

Smoking 2.2 5.6 3.9 4

Kidney function 5.9 6.1 6 5

BMI 3.5 10.5 7 6

Ethnicity 7.8 7.3 7.55 7
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Table 5. Cont.

Risk Factors Average Ranking
of 10 Times RF

Average Ranking of
10 Times XGBoost

Average Ranking
of the 2 Models

Final Ranking in
Predicting
Vascular Events

History of diabetes mellitus 8.6 7 7.8 8

Medicine dosage (dabigatran) 8.5 7.5 8 9

Previous stroke history 9.4 9.6 9.5 10

Body weight 12.2 8.9 11.05 11

Concomitant use of drugs 14.3 9.8 12.05 12

Hypertension history 11.8 13.2 12.5 13

Sex 11.7 14.3 13 14

Previous bleeding history 14.5 14 14.25 15

History of systemic embolism 16.3 14.8 15.55 16

Liver function abnormality 16.7 15 15.85 17

Anemia 18 18 18 18

Abbr.: RF, random forest; XGBoost, eXtreme gradient boosting; BMI, body mass index.

Table 6 presents the overall importance ranking of each risk factor in predicting
bleeding. By averaging the rank values of RF and XGBoost methods, we concluded
that age, kidney function, smoking, bleeding history, concomitant use of specific drugs,
dabigatran dosage, BMI, MI and CHF history, and ethnicity were the major predictor
variables of bleeding.

Table 6. Overall importance ranking of each risk factor in predicting bleeding based on RF
and XGBoost.

Risk Factors Average Ranking
of 10 Times RF

Average Ranking of
10 Times XGBoost

Average Ranking
of the 2 Models

Final Ranking in
Predicting Bleeding

Age 1 1.3 1.15 1

Kidney function 3.2 3.5 3.35 2

Smoking 2.1 4.7 3.4 3

Previous bleeding history 4.7 2.4 3.55 4

Concomitant use of drugs 4.8 5 4.9 5

Medicine dosage (dabigatran) 7 6.7 6.85 6

BMI 5.2 9.6 7.4 7

History of myocardial infarction 9.2 6.1 7.65 8

History of congestive heart failure 10.1 10.3 10.2 9

Ethnicity 9.1 12.2 10.65 10

Sex 10.8 11.3 10.55 11

History of diabetes mellitus 12.8 11.5 12.15 12

Previous stroke history 11 14.2 12.6 13

Hypertension history 14 12.6 13.3 14

Body weight 15 12.3 13.65 15
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Table 6. Cont.

Risk Factors Average Ranking
of 10 Times RF

Average Ranking of
10 Times XGBoost

Average Ranking
of the 2 Models

Final Ranking in
Predicting Bleeding

History of systemic embolism 16 13 14.5 16

Liver function abnormality 17 17 17 17

Anemia 18 17.4 17.7 18

Abbr.: RF, random forest; XGBoost, eXtreme gradient boosting; BMI, body mass index.

4. Discussion

To our knowledge, this is the first study attempting to analyze risk factors in patients
with NVAF taking dabigatran using integrated ML feature selection methods. RF and
XGBoost demonstrated prominent prediction values exceeding those of LGR. We could
conclude the ranking of essential risk factors in these patients after averaging the results
of these two methods. In order to balance simplicity and practicality against precision,
we selected the top nine important variables to discuss according to physicians’ decision.
(Table 7).

Table 7. Major nine important variables in predicting vascular events and bleeding.

Average Ranking of Variables Variable of Prediction of Vascular Events Variable of Prediction of Bleeding

1 Age Age
2 History of CHF Kidney function
3 History of MI Smoking
4 Smoking Previous bleeding history
5 Kidney function Concomitant use of drugs
6 BMI Medicine dosage (dabigatran)
7 Ethnicity BMI
8 History of diabetes mellitus History of MI
9 Medicine dosage (dabigatran) History of CHF

Abbr.: CHF, congestive heart failure; MI, myocardial infarction; BMI, body mass index.

In most predictive models, an age of >65 years is a standard variable that predicts
ischemic stroke and bleeding. As expected, age was the leading predictor of vascular events
and bleeding in our study.

Smoking induces atherosclerosis and endothelial dysfunction, simultaneously result-
ing in more ischemic insults and hemorrhage [44–46]. Smoking also contributes to an
increased probability of developing arrhythmia via several metabolic factors and under-
lying diseases [47]. Smoking cessation is a well-documented strategy to prevent vascular
disease either with or without arrhythmia. Regarding the medical management of patients
with atrial fibrillation, smoking has received insufficient attention. In a consensus, smoking
was reported to increase warfarin clearance, influencing the drug effects [48]. There was
no similar concern when the anticoagulant was shifted to NOACs. However, in our study,
smoking appeared to be a more important variable than other common systemic diseases
in patients taking dabigatran.

In the CHA2DS2-VASc score, ischemic stroke history played a more critical role than MI
after adding the two scores when patients ever had a stroke. However, MI was a prevalent
risk factor for vascular events rather than stroke in our study. CHF that might result from
ischemic heart disease or hypertension complications also has a significant impact on
most evaluating tools [49]. Cardiomegaly caused by these underlying diseases leads to
left ventricular hypokinesia, the major cause of thrombus formation [50–52]. However,
endothelial dysfunction and cerebral autoregulation disturbance are also the consequences
of CHF [53]. In ML models, we may comprehensively analyze several variables with
different interactions; hence, CHF and MI show higher grades in the prediction of vascular
events among all underlying diseases.



J. Pers. Med. 2022, 12, 756 12 of 16

Kidney dysfunction was infrequently mentioned as a major risk factor for ischemic
stroke. Severe kidney impairment (estimated creatinine clearance <30 mL/min/1.73 m2)
was an exclusion criterion for most NOACs [10,54–56]. Delayed drug clearance may in-
crease the possibility of bleeding [57]. In a study on Danish population, kidney func-
tion impairment was found to contribute to a high tendency of developing vascular
events and bleeding [58]. The levels of inflammatory and procoagulant factors including
C-reactive protein, fibrinogen, factor VIIc, and factor VIIIc were high [59]. Furthermore,
hemostatic dysfunction including decreased glycoprotein IIb and IIIa levels, reduced von
Willebrand factor activity, and altered arachidonic acid metabolism were detected in older
individuals with renal insufficiency [60]. These double-sided adverse effects may be due to
these physiological alterations, and kidney dysfunction is the end-organ damage result of
hypertension and diabetes. Our scheme selects it as a significant representative variable of
vascular events and bleeding.

In general, a high BMI may be associated with metabolic syndrome and hyperten-
sion [61]. High BMI increases the prevalence of cerebrovascular and heart diseases [62].
However, this trend is controversial in patients with arrhythmia. Meta-analysis and real-
world cohort studies have revealed less ischemic stroke and bleeding prevalence in patients
with high BMI [63,64]. The all-cause death rate was higher in underweight patients.
BMI was critical for predicting vascular events and bleeding in our study.

For a competitive relationship in the CYP3A4 and P-glycoprotein inhibition path-
way [65], the recommended dabigatran dose in the European label is 110 mg if a patient is
on verapamil. In the United States, the USFDA recommended that clinicians use dabiga-
tran with caution when patients are on long-term use of nonsteroidal anti-inflammatory
drugs (NSAIDs), antithrombotic agents, or medicines that may elevate the blood levels
and effects of dabigatran, such as dronedarone or ketoconazole [66]. Observational stud-
ies conducted in the US and Taiwan have indicated that concomitant use of these drugs
enhances bleeding risk in patients taking dabigatran [67,68]. Combining antithrombotic
and antiplatelet agents is a well-known therapy limited in certain conditions owing to
high bleeding probability [69]. Our results confirm that these drug interactions have an
important effect on bleeding risk.

This study attempted to solve the dilemma of dose selection of dabigatran to obtain
the maximum benefit of prevention and avoidance of side effects in patients with various
physiological conditions and comorbidities. Dabigatran dose was also defined as a variable
in our model. Although it had a noticeable influence on both vascular events and bleeding,
it was not a major factor in either result. This issue remains a complex problem that our
study could not solve completely because of three of the top five risk factors of either vas-
cular event or bleeding being the same (Table 7). Nevertheless, we could identify essential
factors to provide good suggestions using this model. First, smoking cessation and main-
taining an appropriate body shape are vital for patients prescribed dabigatran. CHF and
MI imply a high risk for thrombotic events with secondary prevention with dabigatran,
and intensive medical control and prescribing a standard dabigatran dose are essential.
In contrast, a previous bleeding history and concomitant use of antithrombotic agents,
NSAIDs, and medicines with effects on CYP3A4 have adverse effects on bleeding when we
select a low dabigatran dose. However, older age and kidney function impairment have
double-sided adverse effects causing more vascular events and bleeding simultaneously.
Other methods are indicated to determine the dividing line of each factor if it exists.

5. Limitations

Our study has several limitations. First, our findings must be applied with cau-
tion in clinical practice considering the inclusion and exclusion criteria of the RE-LY
trial. The trial population comprised subjects with relatively low CHA2DS2-VASc scores
(2.1 ± 1.1), and patients with certain comorbidities were excluded. Second, the trial par-
ticipants were regularly followed up for two years with good compliance that might be
infrequent in our outpatients. Specific effects of other systemic diseases might be allevi-
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ated. Third, we intended to establish a prediction model for patients with NVAF taking
dabigatran; vascular events including stroke, MI, systemic embolism, and vascular death
were defined as the primary outcome. Given that we selected only one NOAC instead
of an antiplatelet agent or combined therapy, and though an antiplatelet agent could pre-
vent atherosclerosis, this issue might be affected by risk factors including dyslipidemia,
lifestyle, and genetics, which were not included in our study. Nevertheless, our study
design was suitable for clinical practice when considering the secondary prevention of
cardioembolic stroke.

6. Conclusions

NOACs could replace warfarin owing to their similar protective effects and better
safety quality in real-world studies. Appropriate dose selection and intensive risk factor
control are necessary to achieve high-quality secondary prevention. In our research, RF and
XGBoost generated higher accuracies and AUC values than LGR in simultaneously predict-
ing vascular events and bleeding even with the disproportionate prevalence. Furthermore,
these methods remained relatively stable between their sensitivities and specificities in the
imbalanced data. This integrated ML feature selection scheme showed a great opportunity
to solve complex medical data. Although further evaluation is indicated, our study might
provide a preliminary direction of precision medicine for secondary prevention in patients
with arrhythmia.
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