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Abstract: Antidepressants are standardly used to treat moderate to severe symptoms of depression
and/or anxiety in youth but may also be associated with rare but serious psychiatric adverse events
such as irritability, agitation, aggression, or suicidal ideation. Adverse events are especially common
in youth with a family history of bipolar disorder (BD) who are at heightened risk for dysfunction in
neurobiological systems that regulate emotion and arousal. To further understand this phenomenon,
this study will examine (a) baseline risk factors associated with dysfunctional arousal in a sample
of youth at high-risk for BD treated with or without an antidepressant, (b) whether antidepressant-
related changes in arousal are mediated by changes in prefrontal-limbic circuitry, and (c) whether
pharmacogenetic factors influence antidepressant-related changes in arousal. High-risk youth (aged
12–17 years with moderate to severe depressive and/or anxiety symptoms and at least one first-degree
relative with bipolar I disorder) will be randomized to receive psychotherapy plus escitalopram or
psychotherapy plus placebo. Neuroimaging and behavioral measures of arousal will be collected
prior to randomization and at 4 weeks. Samples for pharmacogenetic analysis (serum escitalopram
concentration, CYP2C19 metabolizer phenotype, and HTR2A and SLC6A4 genotypes) will be collected
at 8 weeks. Youth will be followed for up to 16 weeks to assess change in arousal measures.

Keywords: bipolar risk; hyperarousal; depression; anxiety; adolescent; neuroimaging; escitalopram; phar-
macogenetics

1. Introduction
1.1. Risk Factors and Putative Mechanisms Underlying Emotional and Physiological Arousal
during Antidepressant Treatment

Antidepressants are among the most common medications prescribed to youth in the
United States (U.S.) and are used to treat many psychiatric disorders including depression
and anxiety disorders [1]. The combined prevalence of depressive and anxiety disorders in
U.S. adolescents is approximately 17% [2]. Multiple studies suggest that these medications
reduce symptoms [3,4], improve functioning [5], and are generally well tolerated. However,
several studies suggest that some youth may experience antidepressant-related psychiatric
adverse events [6] such as aggression, psychosis, agitation, suicidal ideation, hypomania,

J. Pers. Med. 2022, 12, 1006. https://doi.org/10.3390/jpm12061006 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm12061006
https://doi.org/10.3390/jpm12061006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0001-9185-3321
https://orcid.org/0000-0001-6417-3961
https://orcid.org/0000-0002-3983-9079
https://orcid.org/0000-0002-9647-6147
https://orcid.org/0000-0002-4373-3293
https://doi.org/10.3390/jpm12061006
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm12061006?type=check_update&version=1


J. Pers. Med. 2022, 12, 1006 2 of 15

or mania—all behaviors that may be associated with increased emotional arousal [7]. These
adverse events are more frequent and potentially more severe in children compared to
adults [8–10]. We might avoid some of these rare but serious adverse events by identifying
youth who are at a greater risk of developing them.

Of particular interest to our study, youth with a family history of BD (i.e., “high-risk”
youth) may be predisposed to developing antidepressant-related adverse events. This
increased risk may relate to several factors, including increased vulnerability to developing
dysfunctional emotional arousal, independent of antidepressant exposure. Indeed, a family
history of BD is among the strongest risk factors for developing mood and anxiety disorders
in youth [11]. Twin and family studies have provided compelling evidence that having a
parent with BD [12,13] is associated with increases in risk for the offspring’s development
of disorders of emotional arousal compared with the general population. Moreover, when
these offspring develop dysfunctional emotional arousal, their risk of developing BD
increases even further [14]. We now also know that multiple genes may moderate the
association between having a parent with BD and an offspring’s development of BD [15],
and that even healthy youth who have a parent with BD have distinct prefrontal, striatal,
and limbic function and connectivity at rest [16], and during emotional [17] and reward
processing [18] compared with healthy offspring of depressed and healthy parents. Taken
together, these data suggest that neurogenetic vulnerabilities for developing BD precede
symptom onset and may progress to manic symptom emergence and the onset of BD.

Antidepressants are commonly used to treat mood and anxiety symptoms [19], which
in youth at risk for developing BD may represent prodromal manifestations of BD [8,20].
Therefore, it is difficult to disentangle whether the natural progression of prodromal
manifestations and/or antidepressant-related dysfunction leads to the initial onset of manic
or hypomanic symptoms. Moreover, whether antidepressants are safe and effective for
youth with a family history of BD who present with depressive and anxiety disorders (but
with no hypomania or mania symptoms), remains an ongoing clinical dilemma. Further
complicating this problem are inconclusive results from intervention studies. Specifically,
a few open-label studies in high-risk youth have examined the efficacy of pharmacologic
agents including aripiprazole [21], lithium [22], divalproex [23], and quetiapine [24] for a
variety of complex mood symptoms, but to date there are no large randomized controlled
trials of antidepressants in youth with a family history of BD. Thus, understanding the risk
factors for antidepressant-induced adverse events could guide clinicians to either avoid
antidepressants or use different monitoring procedures in high-risk youth.

Studies reporting antidepressant-induced adverse events across multiple units of anal-
ysis have mechanistically implicated the Arousal construct of the Research Domain Criteria
(RDoC) Arousal and Regulatory Systems. RDoC is a research framework for investigating
psychiatric disorders that integrates many levels of information (e.g., genomics, neural
circuits, behavioral ratings) to explore basic dimensions of functioning that span normal
and abnormal human behavior. Arousal facilitates one’s interaction with the environment
in a context-specific manner, can be modulated by the physical characteristics and motiva-
tional significance of stimuli, and can be regulated by homeostatic drives [25]. In humans
and other animals, antidepressants may produce sustained changes in (1) behavioral [6,26]
and psychophysiological indexes of arousal including increased emotional, sensory, and
motor reactivity [27,28], (2) heart and respiratory rate [29], and (3) structure and function
of regions involved in prefrontal-limbic circuits implicated in the generation [30] and regu-
lation of emotional arousal [31]. Indeed, these changes have been observed in individuals
with a genetic propensity for rare but serious adverse events from antidepressant exposure
(e.g., mania, suicidality) [20]. They also span a range of psychiatric disorders [32], and
this cascade of hyperarousal is especially pronounced in youth with a family history of
BD [33,34].

With these consideration in mind, our double-blind placebo-controlled study will ex-
amine whether specific biomarkers predict the risk of antidepressant-induced hyperarousal
and characterize the mechanisms underlying hyperarousal. Several mechanistic hypotheses
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may explain why some youths are more likely to develop adverse events while others
benefit from antidepressants. First, antidepressants may be working to potentiate rather
than attenuate a limbic system that may already be primed for reactivity in youth prone
to adverse events [35]. Second, youth prone to arousal events may have modified gene
expression of monoamine transporters that make it challenging for antidepressants to reach
their typical neural targets [36]. Third, in contrast to the expected antidepressant-related
decreases in limbic activity, adverse event-related limbic hyperactivity may occur with high
antidepressant doses and acute dose escalations [37]. Finally, there are sensitive periods in
development (e.g., puberty) when youth may be more vulnerable to antidepressant-related
adverse events because of pruning of neural networks [38]. Through a combination of
clinical trial design, functional neuroimaging, and pharmacogenetic analysis, we hope to
generate data to better inform our understanding of each of these explanations.

1.2. Dynamic Functional Networks Subserving Hyperarousal

Neural systems involved in sensory (e.g., amygdala) and emotion regulatory function
(e.g., ventral lateral prefrontal cortex, VLPFC) are implicated in emotional arousal. Neu-
ral models of adults [39,40] and children [41,42] with symptoms of disrupted emotional
arousal across multiple psychiatric syndromes posit broader aberrant interactions between
regulatory structures and sensory structures that support the generation and regulation
of emotional arousal [43]. These studies suggest that aberrant emotional arousal is associ-
ated with dysfunction in a prefrontal-limbic circuit through impaired top-down prefrontal
regulation of bottom-up limbic hyperactivity [44,45]. In adults and youth, antidepressants
appear to exert their therapeutic effects, in part, by normalizing this aberrant functional
activation [46–48]. Over time, antidepressants may initially increase [49] and then decrease
amygdala activity while increasing prefrontal inhibition of the amygdala. In contrast, one
study identified a significant difference in mean activation in the right amygdala among
youth with a familial risk for bipolar disorder treated with antidepressants, at-risk youth
without antidepressant use, and healthy controls. Specifically, youth at risk for bipolar
disorder who were treated with antidepressants and experienced an antidepressant-related
adverse reaction had the lowest amygdala activation at baseline [50]. These findings sug-
gest that in youth at risk for bipolar disorder, baseline dysregulation of amygdala activity
may be exacerbated by antidepressants and inadequately moderated by prefrontal regu-
lation of amygdala activity, leading to adverse behavioral reactions such as aggression,
impulsivity, and irritability [50]. Though replicable findings describe consistent patterns of
neural activity and modulation, antidepressants may exert dynamic effects on the brain
which require repeated assessment over time.

Other studies have documented antidepressant-related aberrant physiological re-
sponses [29,51] and cardiorespiratory decoupling [52] that may be associated with dys-
functional arousal, independent of dosage or symptom severity [53]. Importantly, these
patterns of neurobiological dysfunction can persist into adulthood, conferring lifelong
vulnerabilities for the development of various psychopathologies [54,55]. Thus, individ-
uals with specific neurobiological characteristics [56] may be at relatively higher risk for
antidepressant-related hyperarousal. To date, however, research has been limited to ex-
amining risk factors retrospectively, using small samples [57,58], and assessing unitary
measures and categorical outcomes. The large, double-blind, placebo-controlled study
described herein is designed to address these limitations by using an RDoC organizational
framework.

1.3. Escitalopram Pharmacogenetics in High-Risk Youth

Our study will use escitalopram, a selective serotonin reuptake inhibitor (SSRI), which
is commonly used to treat depressive and anxiety disorders in children and adolescents [59].
Escitalopram is safe and effective for treating pediatric major depressive and generalized
anxiety disorders [60], and is approved by the US Food and Drug Administration (USFDA)
for the treatment of major depressive disorder in youth ages 12 and older. Additionally,
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escitalopram is well-tolerated and cost-effective [61,62]. Given the previously noted risks
of developing any psychopathology [54] and/or experiencing a hyperarousal event in
response to SSRIs [8,20] among youth at risk for BD, pharmacogenomic assays may provide
targeted information about risks for adverse events in these youth (including hyperarousal)
during treatment with escitalopram [63]. Modern genetic testing allows for quick geno-
typing for dozens of genetic polymorphisms which are identified as potential genes of
interest in predicting treatment outcomes and rates of adverse events during treatment
with escitalopram.

In this study, we will obtain a genetic sample from all high-risk youth to identify
pharmacokinetic and pharmacodynamic risk alleles. Pharmacokinetic genes of interest
include enzymes involved in the metabolism of escitalopram, including members of the cy-
tochrome P450 (CYP) family, such as CYP2C19, CYP2D6, and CYP1A2 [33,63,64]. CYP2C19
plays a significant role in the metabolism of escitalopram, and multiple single nucleotide
polymorphisms (SNPs) in CYP2C19 are linked to differences in the rate of escitalopram
metabolism [65,66]. Multiple studies suggest that escitalopram dosing regimens should be
modified based on CYP2C19 alleles to achieve comparable therapeutic serum concentrations
of escitalopram, as some genotypes confer a greater risk of therapeutic failure or adverse
events [64–67]. Notably, individuals with BD, as compared to those with MDD, have poorer
metabolism via CYP2C19, which may predispose them toward antidepressant-induced
hyperarousal [68] (see Figure 1). Among adolescents with anxiety disorders treated with
escitalopram who experienced hyperarousal, a greater maximum concentration (Cmax) and
area under the curve (AUC) of blood serum concentrations of escitalopram was observed
compared with adolescents who did not experience hyperarousal symptoms [64].

Other cytochrome P450 genes may also be involved in the metabolism of escitalopram,
and some models suggest that pharmacogenomic assays which can integrate the influence
of multiple CYP genes may have greater therapeutic utility than a focus on any one CYP
gene involved in escitalopram metabolism [69]. For instance, CYP1A2 polymorphisms
contribute to a faster rate of escitalopram metabolism and are linked to higher rates of
fatigue, nausea, and vomiting [33], though no escitalopram dosing recommendations are
available based on CYP1A2 alleles. Additionally, smoking induces greater expression of
CYP1A2, and smoking increases the rate of escitalopram metabolism, a change which
correlates with lower serum concentrations of escitalopram [70]. Patient age and weight
may also contribute to differences in the rate of escitalopram metabolism, though the clinical
significance of these weight- and age-related metabolic differences remains uncertain [71].
Together, these studies suggest that there may be value in examining the combined effects
of multiple P450 genes which may contribute to treatment failure or the development of
antidepressant-related hyperarousal.

Genetic polymorphisms that influence SSRI pharmacodynamics may also affect treat-
ment outcomes and rates of adverse events. Alleles of interest include polymorphisms in
the gene HTR2A, which encodes the serotonin receptor 2A subtype (5-HT2A), and SLC6A4,
which encodes the serotonin transporter protein (5-HTT), the primary pharmacologic target
of escitalopram. Studies of the influence of HTR2A and other serotonin receptor subtypes
on adverse reactions in youth have produced mixed results [69,72–75], and findings re-
lated to SLC6A4 are similarly equivocal [39,63,64,69]. In light of these ambiguities, some
researchers have suggested utilizing a combination of risk alleles to produce more con-
sistent pharmacodynamic results [75]. However, a recent study utilizing combinatorial
pharmacogenetics in the treatment of depression in adolescents found no advantage in
treatment outcomes or rates of adverse events compared to a control group which did not
have access to pharmacogenetic testing [76]. These differences in findings may be due
to the mix of antidepressants and doses included in the studies, the lack of accounting
for specific antidepressant exposure, differences in alleles tested across studies, and other
study design considerations including populations studied and the clinical characteristics
of participants.
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To date, a few pharmacogenetic studies of HTR2A or SLC6A4 have specifically exam-
ined the risk of hyperarousal in youth with a familial risk for BD, though their results are
inconclusive. An open trial of citalopram in children and adolescents with depressive or
anxiety symptoms found that youth who were homozygous for the “short” allele (S/S) of
the SLC6A4 gene exhibited poor antidepressant treatment response for depressive symp-
toms (but not for anxiety symptoms) compared to youth who were homozygous for the
“long” allele (L/L) of SLC6A4 [77]. A cross-sectional study of youth with at least one parent
with BD found antianxiety medication-naïve S/S youth exhibited greater anxiety than
L/L youth [78]. Of particular relevance to our study, the S allele of SLC6A4 increases the
risk that high-risk youth will develop arousal symptoms, an effect which was reportedly
mediated by greater activity in, and functional connectivity between, the ventrolateral
prefrontal cortex (VLPFC) and the right amygdala [79], elegantly intertwining neurogenetic
and neurophysiologic systems (see Figure 1). Although more data are needed to support
firm conclusions, we hope that our study will advance our understanding of these and
other pharmacogenomic interactions and will do so with a larger number of participants in
the context of a randomized placebo-controlled trial. Thus, this study will address broader
questions about these genes and the underlying mechanisms of antidepressant-related
adverse events.
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Figure 1. Escitalopram is predominantly metabolized by CYP2C19, and reduced CYP2C19
metabolism has been associated with increased risk of hyperarousal in youth at high risk for bipolar
disorder. Youth homozygous for the “short (S)” allele of SLC6A4 exhibit reduced SLC6A4 and greater
rates of adverse drug events. Furthermore, 5-HT2A may play a role in escitalopram pharmacody-
namics, but its role in the development of hyperarousal or bipolar disorder is less clear. Adapted
from Strawn et al. (2021) [80].

This study will also serve as an initial step to identifying potential biomarkers which
might affect antidepressant treatment response and ultimately, might lead to addressing
whether very serious antidepressant-related adverse events that result in antidepressant
discontinuation or accelerate the development of BD (i.e., via hyperarousal) are preventable
in high-risk youth. Our findings will have basic science, translational, and clinical impli-
cations. In addition to advancing the neurobiological understanding of arousal and BD
within an RDoC framework, focused genetic screening of high-risk youth may lead to
scalable and cost-effective innovations in precision medicine.
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2. Study Protocol
2.1. Setting and Study Population

We will recruit 150, 12- to 17-year-old youth with significant depressive or anxiety
symptoms, based on responses to Children’s Depression Rating Scale-Revised (CDRS-
R) [81] and the Pediatric Anxiety Rating Scale (PARS) [82] clinical interviews and 60, 12-
to 17-year-old healthy control youth (ClinicalTrials.gov Identifier: NCT02553161, first
posted 17 September 2015). Youth with significant depressive or anxiety symptoms will
be included in our study, and psychotherapy and the study medication (escitalopram)
will be provided to study participants to treat their depressive and/or anxiety disorders.
Although participants’ DSM-5 diagnoses will be assessed using KSADS, we will not require
a specific diagnosis for inclusion and will only exclude participants with the following
diagnoses: bipolar I or II disorder, autism spectrum disorders, obsessive compulsive
disorder, post-traumatic stress disorder, Tourette’s disorder, or any psychotic disorder
including schizophrenia. Our inclusion and exclusion criteria are summarized in Table 1.
Healthy controls will receive behavioral, neural, and physiological assessments at baseline
only. First-degree relatives will be assessed using the Structured Clinical Interview for
Diagnostic and Statistical Manual (SCID) [83] and the Family History-Research Diagnostic
Criteria (FH-RDC). We will also compare our findings to those of a recently published
double-blind, placebo-controlled trial using the same neuroimaging task and the same
medication, but in youth without a family history of BD [84].

Table 1. Inclusion and exclusion criteria for study participants.

Inclusion Criteria: High-Risk Youth Inclusion Criteria: Healthy Controls

1. Aged from 12 years, 0 months to 17 years, 11 months 1. Aged from 12 years, 0 months to 17 years, 11 months

2. At least one parent, step-parent, or guardian with whom
the subject lives is willing to participate in research sessions

2. At least one parent, step-parent, or guardian with whom
the subject lives is willing to participate in research sessions

3. The child and relative(s) are able and willing to give
written informed assent/consent to participate, respectively

3. The child and relative(s) are able and willing to give
written informed assent/consent to participate, respectively

4. At least one first-degree relative with bipolar I disorder
as assessed by the Structured Clinical Interview for DSM
(SCID) [83], the Kiddie Schedule for Affective Disorders
and Schizophrenia (KSADS-PL) [85], and the FH-RDC [86]

4. No personal psychopathology (except specific phobias)

5. Evidence of current, significant depressive or anxiety
symptoms as determined by a current Childhood
Depression Rating Scale-Revised (CDRS-R) [81] score > 35
and/or a current Pediatric Anxiety Rating Scale (PARS)
score > 15 [82].

5. No family history (first- or second-degree) of any mood
or psychotic disorders

Exclusion Criteria: All Participants

1. Any history of syndromal bipolar I or II disorder (i.e., history of mania, mixed episode, or major depression with
hypomania)

2. A history of previous antidepressant exposure

3. A DSM-5 diagnosis of autism spectrum disorders, obsessive compulsive disorder, post-traumatic stress disorder,
Tourette’s disorder, or any psychotic disorder including schizophrenia

4. Evidence of intellectual disability (IQ < 70) as determined by the Weschler Abbreviated Scale of Intelligence (WASI;
Psychological Corporation, 1999)

5. Comorbid neurologic diseases such as seizure disorder

6. Drug or alcohol abuse or dependence disorders in the 4 months prior to study recruitment, although a lifetime history of
substance or alcohol disorders could be present if the child has been abstinent for at least 6 months

7. Evidence of an unstable medical or psychiatric disorder that required immediate hospitalization or other emergency
medical treatment

8. A positive pregnancy test

9. Any contraindication for MRI, including metal in the body related to an injury or surgery (e.g., surgical clips, metal
fragments in the eyes), piercings that could not be removed, braces, or permanent retainers

2.2. Randomization

High-risk youth will be randomized to receive double-blinded treatment with psy-
chotherapy plus escitalopram (MED) vs. psychotherapy plus placebo (No MED) in a 2:1
ratio using block randomization with a block size of six. Randomization will be stratified
within sites with respect to diagnoses (anxiety only, depression only, or anxiety and depres-
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sive symptoms), family history load (i.e., ≥3 first- or second- degree relatives with bipolar
disorder vs. 1–2 first- or second-degree relatives with bipolar disorder), and the presence
(vs. absence) of concomitant stimulant or alpha-2 agonist treatment.

We selected psychotherapy (No MED) as the most ethically reasonable comparator
for youth presenting with clinically significant symptoms of depression or anxiety. All
participants (No MED and MED) will be assigned a study-trained therapist who will
provide hour-long, up to weekly, individual cognitive-behavioral therapy or family-focused
therapy (FFT) for high-risk youth [87,88]. FFT is a semistructured treatment that is protocol-
driven and incorporates psychoeducation about mood and stress vulnerability models
for depression/anxiety, structured communication training among family members, and
problem-solving skills. Sessions will be weekly for the first 4 weeks, then participants will
be given the option to continue meeting weekly or once every two weeks for an additional
12 weeks.

2.3. Medication Dosing and Accountability

High-risk youth in the MED condition will be treated with escitalopram and moni-
tored by a child and adolescent psychiatrist who is blinded to treatment assignment. Each
high-risk participant will be assessed weekly for the first 4 weeks, then once every two
weeks until 16 weeks. Escitalopram will be initiated at 5 mg daily for 1 week, then titrated
to 10 mg daily for 1 week, then titrated to a target dose of 20 mg daily (maximum dose
30 mg/day). Titration will proceed no faster than 5 mg/week. Clinicians will carefully
monitor participants for treatment response based on symptom severity rating scales of anx-
iety (PARS), depression (CDRS-R), (hypo)mania (Young Mania Rating Scale) [89], and the
emergence of dysfunctional emotional arousal using the clinician-version of the Pediatric
Adverse Events Rating Scale (PAERS) [90] and the parent-rated Treatment-Emergent Acti-
vation and Suicidality Assessment Profile (TEASAP) [91]. Escitalopram (or placebo) will be
discontinued if there is a 2-step worsening on the Clinical Global Impression-Severity of
Activation (CGI-SA) scale [91] compared with baseline and a Children’s Global Assessment
Scale (CGAS) [92] score of <55.

Adherence, based on pill count, will be obtained at each visit. First, participants will
receive weekly clinical follow-ups during dose titration, then clinical follow-ups every
two weeks until week 16 to closely monitor for treatment adherence. Blood samples for
analysis of serum escitalopram and desmethylescitalopram concentrations will be drawn at
8 weeks or at early termination if sooner than week 8. We aim to recruit medication-naïve
youth but recognize that some high-risk youth who are seeking treatment for significant
symptoms may be exposed to prior psychotropic medications. We will consider the role of
past medications in our analysis of primary outcomes, and participants will be allowed to
continue stable doses of concomitant stimulants and alpha-2 agonists.

2.4. Primary Clinical Outcome and Neural and Pharmacogenetic Mediators of Outcome

Our primary clinical arousal outcome will be the highest score on the arousal-based
items of the clinician PAERS. The PAERS will be administered to all youth at baseline, and
to high-risk youth weekly for the next 4 weeks then once every two weeks until week 16. We
will explore subgroups of arousal due to worsening symptom severities of mania, anxiety,
depression, psychosis, suicidality, and anxiety using clinician-, self-, and parent-reported
(e.g., TEASAP [91]) measures of emotional reactivity and lability, and reaction times during
the Continuous Performance Task with Emotional and Neutral Distracters (CPT-END)
as secondary predictors of dysfunctional emotional arousal [93]. Heart rate, respiratory
rate, and galvanic skin response will be collected while the participants undergo an MR
scan during rest and during presentation of emotionally arousing stimuli as ancillary
objective measurements of physiological arousal to support our neural predictions. Based
on prior studies [29,51], we hypothesize that high-risk youth who develop antidepressant-
related hyperarousal will exhibit, at baseline, greater physiological responses to emotionally
arousing stimuli compared to high-risk youth who do not develop antidepressant-related
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hyperarousal. We will compare arousal in the MED and No MED conditions at its highest
point between 4 and 16 weeks, which we believe will result in the most meaningful
comparison across groups that also accounts for the possibility that some youth may
improve with intervention.

2.4.1. Neural Mediators

Our main neural outcomes are defined by prior studies implicating amygdala and
VLPFC activation. We will evaluate activation in these regions during the emotional-neutral
contrast of the Continuous Performance Task with Emotional and Neutral Distracters (CPT-
END) task, a task of sustained attention with emotional and neutral pictures which we
have used in our prior work examining prefrontal-limbic connectivity [94,95]. To assess the
complex prefrontal-limbic circuit mechanisms that subserve antidepressant-related arousal
both intrinsically at rest and during emotional arousal, youth will complete a resting state
scan followed by the CPT-END in the MR scanner. Connectivity during the CPT-END and
at rest will also be assessed. MRI data will be acquired at baseline for high-risk youth and
controls, and at 4 weeks in high-risk youth using a 3.0 Tesla GE whole-body MRI scanner
located at Cincinnati Children’s Hospital Medical Center Imaging Research Center and
Stanford’s Richard M. Lucas Center for Imaging. An additional MRI scan will be acquired in
any high-risk youth who develops antidepressant-related dysfunctional emotional arousal
prior to 4 weeks, or up to one additional scan after 4 weeks if a hyperarousal event occurs
between 4–16 weeks.

Participants will complete two fMRI runs of the emotionally arousing CPT-END task,
in which whole-brain images (volumes) will be acquired every 3 s using a T2*-weighted
gradient-echo echo-planar imaging pulse sequence. We will explore whether high-risk
youth who do not develop antidepressant-related arousal benefit from antidepressant
treatment, which has been documented to reduce amygdalar activation [96]. For those
high-risk youth who are not exposed to escitalopram, we predict that there will be effects on
limbic activation and connectivity due to a combination of psychotherapeutic effects [97],
trait vulnerability to prefrontal-limbic dysfunction [35], and a natural propensity toward
symptom progression [98]. We hypothesize that early change (baseline to 4 weeks) in the
level of amygdala hyperactivity will predict the level of subsequent arousal (highest after
the 4-week scan) and that the correlation between changes in neural circuitry and the level
of subsequent arousal is stronger in the MED condition compared to the No MED condition
(Figure 2).
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2.4.2. Pharmacogenetic Mediators

Our main pharmacogenetic-related mediators are CYP2C19 metabolizer phenotype
and serum escitalopram level. At 8 weeks or discontinuation of study participation (if ear-
lier), we will obtain a sample for pharmacogenetic testing with the GeneSight Psychotropic
assay. CYP2C19 metabolizer phenotypes will be determined using Clinical Pharmacoge-
netics Implementation Consortium (CPIC) guidelines [99] and classified as normal (NM),
rapid (RM), ultrarapid (UM), intermediate (IM), or poor (PM) metabolizer phenotypes.
We will also perform a blood draw at 8 weeks or at early termination to determine serum
escitalopram levels via mass spectrometry. Serum escitalopram concentration, CYP2C19
metabolizer phenotypes, and medication adherence data will be integrated and modelled
using MWPharm++ to determine pharmacokinetic parameters such as the maximum serum
concentration (Cmax), the 24 h area under the curve (AUC24), the elimination half-life (t1/2),
and clearance (CL) of escitalopram. Genetic testing reports will identify alleles in other
genes as well (e.g., CYP2D6, CYP2C9, CYP1A2, SLC6A4, and HTR2A) and we will explore
associations between these alleles and outcomes such as treatment efficacy and rates of
adverse events. Based on similar studies of escitalopram in youth [64,65], we predict that
high-risk youth with reduced CYP2C19 metabolizer phenotypes will have higher Cmax
and/or AUC24 and higher rates of arousal symptoms than high-risk youth with normal or
elevated CYP2C19 metabolizer phenotypes.

2.5. Hypotheses and Analytic Plan

Our core analytic strategy is mixed-effects modeling [100] utilizing baseline and
highest levels of arousal assessed between 4–16 weeks as our primary outcome. In the
mixed effects analysis, change in arousal (baseline to post, where post is defined as the
highest level of arousal recorded between 4 and 16 weeks) will be the outcome predicted
by treatment status (MED vs. No MED); escitalopram levels and neural changes will be the
primary mediators. This method was chosen for improved precision (power) and better
handling of missing data compared to approaches that use single change scores or analysis
of covariance. We will use the MacArthur framework [101,102], which will be embedded
in our mixed-effects modeling, to investigate treatment effect mediators, moderators, and
nonspecific predictors. We have chosen this framework as the preferred approach to
define and test mediation because this framework allows for stronger inferences regarding
temporal relations, and the research question posed has significant implications for clinical
decision-making [102].

Power estimation for mediation hypotheses was conducted using Monte Carlo simu-
lations based on a single longitudinal mixed-effects model. Previous studies showed effect
sizes ranging from d = 0.6 to 1.8 for the effect of antidepressant medication on neural out-
comes [20,49]. We assumed a conservative effect size of d = 0.5 given that we will measure
changes in neural outcomes early on (4 weeks). We allowed a moderate difference across
the two sites (d = 0.6 vs. d = 0.4, on average d = 0.5). Under this scenario, with the initial
N = 150 (Stanford:50 MED, 25 No MED; UC:50 MED, 25 No MED), the estimated power to
detect the treatment effect (MED vs. No MED) on change in amygdala hyperactivity is 0.82
(two-tailed, alpha = 0.05).

2.6. Limitations

The proposed study will gather data on high-risk youth only during a 16-week period,
so this study cannot determine whether there are long-term risks or delayed effects of
antidepressant exposure in high-risk youth far beyond the duration of the study. We expect
that most children who enroll in our study may still live with their first-degree relatives
with BD, so our study cannot easily differentiate between the mental health risks posed by
heritable genetic factors as opposed to the stress of living with a family member (especially
a parent) with a serious psychiatric disorder. Treatment adherence will be well-tracked,
but achieving reliable medication adherence in adolescents remains challenging. Even
though minor lapses in medication adherence may have relatively little effect on clinical
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or neuroimaging outcomes, missed or extra doses may introduce significant noise into
pharmacokinetic data. For example, serum escitalopram levels can vary greatly when
doses are missed in the week before blood samples are drawn. Furthermore, youth who
experience hyperarousal symptoms may be more distressed and consequently less likely
to participate in some inherently stressful aspects of the study, such as entering the MR
scanner or providing a cheek swab or blood sample for pharmacogenetic analysis. Finally,
we expect that most youth enrolled in this study will be medication-naïve, but some study
participants may be allowed to take concomitant psychostimulants or alpha-2 agonists
before and during the study, and this may also confound results.

3. Impact of the Study

This study will be highly innovative and may have important implications for develop-
ing integrative neurobehavioral models of dysfunctional emotional arousal and advancing
our understanding of the neuropathophysiology of bipolar disorder. It also has the poten-
tial to advance our understanding of the role of antidepressants in dysfunctional emotional
arousal by identifying clinical, neural, and pharmacogenetic risk factors, which may ulti-
mately improve treatments for emotional dysregulation in youth. This study will be the
first rigorously designed prospective study to examine data from clinical, neuroimaging,
physiologic, and pharmacogenetic sources to understand antidepressant-related dysfunc-
tional emotional arousal in youth. Assessments proposed have not been previously applied
to examine the mechanisms underlying antidepressant-induced dysfunction in emotional
arousal, a clinically significant problem for which there is very limited evidence. Most
studies to date have examined antidepressant-related adverse events retrospectively, ob-
servationally, and categorically (presence/absence of an adverse event) in youth treated
for single and heterogeneous disorders [6]. Here, we aim to elucidate factors involved
in antidepressant-related adverse events in youth with a focus on identifying levels of
dysfunction associated with these events in specific neurophysiologic constructs that cut
across traditional diagnostic categories. Such an innovative approach is consistent with
the RDoC framework which aims to capture variations in different units of analysis and in
samples with inherent dimensionality in clinical presentation with a range of symptoms.
Finally, this study has the potential to advance not only the neurobiological understand-
ing of bipolar disorder, but also the neurophysiologic and pharmacologic mechanisms of
arousal more generally. We hope our results lead to actionable improvements in the care
of this very vulnerable population and ultimately, will allow for the prevention of bipolar
disorder in at-risk youth.

4. Ethics Statement

The study will be conducted according to the guidelines of the Declaration of Helsinki
and is approved by the Institutional Review Boards of the University of Cincinnati and
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