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Abstract: Electronic health records naturally contain most of the medical information in the form
of doctor’s notes as unstructured or semi-structured texts. Current deep learning text analysis
approaches allow researchers to reveal the inner semantics of text information and even identify
hidden consequences that can offer extra decision support to doctors. In the presented article, we
offer a new automated analysis of Polish summary texts of patient hospitalizations. The presented
models were found to be able to predict the final diagnosis with almost 70% accuracy based just on the
patient’s medical history (only 132 words on average), with possible accuracy increases when adding
further sentences from hospitalization results; even one sentence was found to improve the results
by 4%, and the best accuracy of 78% was achieved with five extra sentences. In addition to detailed
descriptions of the data and methodology, we present an evaluation of the analysis using more than
50,000 Polish cardiology patient texts and dive into a detailed error analysis of the approach. The
results indicate that the deep analysis of just the medical history summary can suggest the direction
of diagnosis with a high probability that can be further increased just by supplementing the records
with further examination results.

Keywords: electronic health records; deep learning; text analysis; diagnosis prediction; Polish language

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity
worldwide, and ischemic heart disease (IHD), also known as coronary artery diseases
(CADs), represents one of the major global health burdens [1]. Subsequently, a large
number of CVD patients treated in outpatient and inpatient settings generates extensive
amounts of medical data, and current clinical practice requires the documentation of every
medical encounter. Routinely, medical professionals collect information related to patients
that result in textual documents (admission notes, medical histories, physical examinations,
progress notes, diagnostic and laboratory test results, discharge summaries and recom-
mendations) that are stored in an electronic health record (EHR) system with the final
coding-based classification of the diseases and procedures. To facilitate categorization, the
International Statistical Classification of Diseases and Related Health Problems (ICD), now
one of the most widely used systems among healthcare systems worldwide, was introduced
to provide information on causes, severity and consequences of diseases. Primarily, the
ICD codifies diagnoses of diseases into alphanumeric codes for public health, statistical and
reimbursement purposes [2]. However, despite advancements in information technologies
and EHR systems, ICD coding is still based on a manual and time-consuming approach
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(~30 min per case by disease coders) [3], causing even more workload for medical profes-
sionals who spend almost half of their work time on electronic documentation [4]. Thus,
automated ICD coding systems have the potential to support providers in everyday clinical
practice and help medical organizations to optimize workflows. Furthermore, correctness
of ICD coding has a direct impact on the billing process. In general, health insurance
systems (e.g., Medicare) reimburse hospitals in a fee-for-service model based on reported
ICD codes [5]. Thus, misclassification might result in inappropriate reimbursement for
medical organizations. Accordingly, the accurate categorization of diagnoses and provided
treatment has a realistic influence on clinical settings from a broad perspective.

EHRs consist of possibly large volumes of heterogeneous data that include databases of
form-like information based on both external and internal standards, textual narratives by
doctors and medical specialists, and imaging data from patients’ investigations. Automated
analyses of EHR data may lead to fast and accurate predictions of many aspects of the
treatment such as patient diagnoses or risk prediction [6,7], disease progression [8], and
unplanned readmission to hospitals [9]. The topic of diagnosis prediction is usually based
on data such as the temporal sequence of patient’s visits represented as medical codes
of the investigations. Ma et al. [10] experimented with deep learning architecture based
on bidirectional recurrent neural networks supplemented with attention mechanisms,
which allowed them to improve the processing of long medical code sequences to reach
a prediction accuracy of 46–48%. Gao et al. [11] used co-attention memory networks that
allowed them to combine the sequential history data with patient demographic information
using specific diagnosis embeddings trained over a disease taxonomy, ultimately achieving
a mean average precision MAP@5 of 57%.

The textual parts of EHRs together form 80% of patients’ information without any
straightforward technique of extracting the information for subsequent applications [12].
However, current natural language processing (NLP) approaches based on advanced deep
learning techniques open new ways of prospering from the full EHR content [13]. The
best deep language models are based on encoder–decoder transformer architectures [14],
which are pre-trained on very large collections of unstructured texts such as BERT [15] and
RoBERTa [16]. The final analysis accuracy of these models directly corresponds to the input
texts and tasks used for pre-training, as well as the language(s) of the training texts and the
internal size of the architecture model; the numbers of trainable parameters range from
110 million in BERT-base to 354 million in RoBERTa-large. Other transformer language
models with even larger numbers of parameters exist, e.g., GPT-3 [17], but they are usually
pre-trained and designed for text generation tasks.

In the presented study, we employed the latest large transformer models for the Polish
language, which was used as a representative of non-mainstream languages. The deep
semantic representation of EHR input texts was then trained and evaluated in the task of
predicting the final patient diagnosis ICD code based on a selected textual part of his or her
EHR record. According to a mix of patient medical history and selected information from
further examinations, the prediction accuracy was found to range from 69% to 78% when
distinguishing between the four most frequent cardiological diagnoses that cover 75% of
hospitalizations, and the accuracy was also shown to significantly surpass several baseline
approaches even with increasing numbers of diagnoses.

2. Materials and Methods

Before discussing any details of the dataset, it is necessary to emphasize the aspects of
language and data availability: while English boasts a booming field of deep learning appli-
cations in EHR analysis and massive health record databases have been made public [18,19],
the situation is radically different in other languages, especially in non-mainstream lan-
guages such as Polish. Due to the legal difficulties of obtaining health record data, this
field of research remains largely untouched in many languages, and for this reason, tens of
millions of people are unable to benefit from AI-enhanced medicine.
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It is hard to overstate the importance of the fact that this experiment was conducted
with Polish health records—as such, it is a pioneering endeavor leading the way for
neighboring Slavic languages (such as Czech and Slovak) and many others facing similar
data and resource scarcity.

2.1. Dataset Characteristics

The dataset for this study was extracted from the Asseco Medical Management Solu-
tions (Asseco Poland S.A., Rzeszow, Poland) EHR system covering the patient population
hospitalized at the 3rd Department of Cardiology, Leszek Giec Upper Silesian Medical
Centre of the Medical University of Silesia in Katowice (GCM), Poland.

The study adhered to the principles of the Declaration of Helsinki and the Good Clinical
Practice guideline. Prior to analysis, patient data were anonymized, and a data privacy policy
was applied in accordance with the General Data Protection Regulation (GDPR) [20].

The dataset consisted of 50,465 recorded cardiology hospitalizations between 2003
and 2020 (see more dataset statistics in Table 1). As can be seen in the example in Table 2,
each record contains up to four sections of unstructured text and one piece of structured
data: the ICD-10 code of the final diagnosis. The record always contains only one ICD-10
diagnosis code—even though this often does not correspond to real-world states of multiple
diagnoses that are simultaneously present, it allows for a straightforward classification task
that tries to identify the most salient diagnosis.

Table 1. Statistics detailing unit counts and averages in the Polish health record dataset.

Average word count per record 472
Average word counts per sections 132; 249; 86; 64

Records 50,465
Sentences 2,583,087

Words 23,831,785
Tokens 34,315,153

The four textual parts of each record correspond to 4 sections along the timeline of
the hospitalization:

1. Admission, reasons for admission, and medical history.
2. Physical examination at admission.
3. Discharge, summary of hospitalization, and results.
4. Recommendations at discharge and medication.

For the purposes of content analysis and exploitation, the individual sections have a
varying degree of utility. Section 2 contains template-based records of physical examination,
which differ very little from each other and bear no strong relation to the diagnosis (the
nuances of cardiac function rarely have specific outward manifestations). Section 4 mostly
contains lists of medication prescriptions and therefore lacks both standard words and
natural language syntax, which makes it unsuitable for the natural language-based deep
learning methods utilized in our experiments. On the other hand, Sections 1 and 3 contain
assessments custom-written by doctors before and after the hospitalization, and these
provide the highest-quality language data in the dataset. Therefore, our focus was primarily
directed at:

• Section 1 (admission) composed without the knowledge of future diagnosis; models
trained on Section 1 text can be said to perform true prediction.

• Section 3 (discharge) composed with the knowledge of the diagnosis; models trained
on Section 3 text are useful for pattern/inconsistency discovery but also set a ceiling
value for any prediction efforts, revealing the limitedness of textual information (as
distinct from measurements or medical imaging) in determining the actual physical
condition of a patient.
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Table 2. Example of a complete health record in the Polish health record dataset.

Section 1 (Admission)

Pacjent przyjęty w ramach ostrego dyżuru z powodu zawału mięśnia sercowego ściany dolnej.
Spoczynkowe dolegliwości wieńcowe od 29.03. 17:00, w dniu dzisiejszym, w godzinach
porannych zgłasił sie do poradni, gdzie rozpoznano zawał. Czynniki ryzyka choroby wieńcowej:
Hypercholesterolemia i nadcisnienie leczone skutecznie. Nigdy nie palił. Cukrzycę neguje, ale
przy przyjęciu cukier >200 mg% i dodatni wywiad rodzinny—matka chorowała. Skargi
dodatkowe i choroby przebyte: Nie zgłasza. Na żółtaczkę nei chorował, nie szczepiony. Alergie i
nietolerancje lekowe neguje. Wywiad rodzinny: Matka chorowała na cukrzycę. Bez wczesncyh
powikłań miażdżycowych w rodzinie.

Section 2 (Physical)

Pacjent przytomny, ułożenie dowolne, kontakt logiczny zachowany. Budowa prawidłowa,
nadwaga 170 cm, 90 kg. Skóra prawidłowo ucieplona, bez wykwitów patologicznych. Tkanka
podskórna prawidłowo rozwinięta. Węzły chłonne niewyczuwalne. Głowa opukowo niebolesna.
Gałki oczne osadzone prawidłowo, symetryczne. Źrenice równe, okrągłe, prawidłowo reagują na
światło i nastawność. Nad płucami wypuk jawny, szmer oddechowy pęcherzykowy symetryczny.
Drżenie głosowe zachowane. Akcja serca miarowa 80/min. Tony serca głuche, bez szmerów
patologicznych. Brzuch miękki, palpacyjnie niebolesny, bez oporów patologicznych. Wątroba
pod łukiem żebrowym. Śledziona, nerki niewyczuwalne. Objawy Chełmońskiego i Blumberga
ujemne. Objaw Goldflama obustronnie ujemny. Perystaltyka słyszalna. Bez obrzęków
obwodowych. Bez zmian żylakowatych. Tętno na tt. kończyn dolnych dobrze wyczuwalne.

Section 3 (Discharge)

Pacjent lat 68 przyjęty w ramach ostrego dyżuru z powodu zawału ściany dolnej mięśnia
sercowego. Wykonano koronarografię, w której stwierdzono w prawej tętnicy wieńcowej w
początkowym odcinku 99% zwężenie. Jednoczasowo wykonano skuteczny zabieg PCI PTW z
implantacją stentu. W lewej tętnicy wieńcowej stwierdzono: pień bez zmian, LAD bez zmian,
LCx zmiany przyścienne, OM1 dość szeroka i rozległa, medialnie krótka zmiana do 95%.
Wskazany w 2-gi etap PCI w OM1. Przeprowadzono wewnatrzszpitalny etap rehabilitacji
kardiologicznej. W badanich dodatkowych stwierdzono podwyższone wartości glikemii,
rozpoczęto intensywną farmakoterapię (z insuliną). Pacjent wypisany do domu z zaleceniami jw.

Section 4 (Recommendations)

Vivacor 6,25 1-0-1 Enarenal 5 1-0-1 Polocard 75 mg 0-0-1 Zocor 20 mg 0-0-1 Ranigast 150 mg 0-0-1
Plavix 1-0-0 (optymalnie 12 miesięcy) Siofor 500 mg 1-1-0 Insulina wg. poziomu glukozy (ostatnie
zapotrzebowanie: NovoMix 30: R-20j, W-19j) Normalizacja wagi ciała. Dieta cukrzycowa.Dalsze
leczenie w Poradniach: lekarza rodzinnego, kardiologicznej, diabetologicznej (pilne). Pacjent za
około 2 miesiące zostanie ponownie przyjęty celem wykonania 2-go etapu leczenia choroby
wieńcowej (PCI OM)- konieczne skierowanie do Kliniki. Po zakończeniu leczenia
interwencyjnego proponujemy rehabilitacje w warunkach sanatoryjnych.

ICD-10 diagnosis I21.1

2.2. Dataset Preprocessing for Classification

The described dataset was subsequently used to run a deep learning classification ex-
periment aimed at predicting the ICD-10 diagnosis category based on the unstructured text
of the health records. For this experiment, we used state-of-the-art transformer language
models, RoBERTa and BERT, trained on Polish or multilingual data, and we fine-tuned
them for multi-label text classification. The training data used for fine-tuning consisted
of selected parts of the unstructured health record text, labeled with the respective final
ICD-10 diagnosis category.

Since BERT and RoBERTa can only be fine-tuned with sequences of up to 512 to-
kens (words and punctuation), the training data were appropriately resized, even though
no shortening was necessary in most cases thanks to the health records being already
felicitously suited to this limitation.

While the full ICD-10 codes available in the dataset have 4 characters (e.g., I25.0), we
decided to only use the first 3 characters marking the diagnosis category (I25.0, I25.1, and
I25.2 collectively as I25). Apart from providing a more appropriate starting granularity, this
setup benefits from larger class sizes.
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2.3. Limitations and Data Consistency Considerations

The presented approach is concentrated on identifying the core information in a
representative collection of summary documents per each final diagnosis. In this respect,
the prediction accuracy depends on the available number of documents per category.

Even with 3-character ICD-10 categories, the problem faced by the classification task
was the high number of classes (170) in the dataset and the stark differences in their fre-
quency (see Figure 1 and Table 3), where the leading four categories (I25, I20, I21, and I50)
accounted for 3

4 of the total (74.85%) and the bottom 150 comprised a mere 4.04%, with
13 examples per category on average; the long tail of this decline curve was unsuitable for
deep learning.
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Table 3. Overview of the 10 most frequent concluding primary ICD-10 categories in the dataset. This
distribution does not reflect realistic diagnosis frequencies because the conditions frequently co-occur
and one health record in the dataset can only be assigned one diagnosis code.

ICD-10 Category Medical Name Count in Dataset

I25 Chronic ischemic heart
disease/chronic coronary syndrome 17,973 (36.03%)

I20 Unstable angina pectoris 9741 (19.53%)
I21 Acute myocardial infarction 6262 (12.55%)
I50 Heart failure 3360 (6.74%)
I48 Atrial fibrillation and flutter 1678 (3.36%)
I35 Nonrheumatic aortic valve disorders 1511 (3.03%)
I10 Essential hypertension 1299 (2.60%)
I49 Other cardiac arrhythmias 881 (1.77%)
Z03 Suspected condition not found 804 (1.61%)
I34 Nonrheumatic mitral valve disorders 777 (1.56%)
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To deal with these imbalances and data scarcity in the underrepresented categories,
we created different subsets of training data using a limited number of the most frequent
categories, subsuming the tail of the data under the “other” category. Table 4 shows the
key training subsets.

Table 4. Overview of the training subsets listing individual ICD-10 categories included in the training
and coverage of such a subset with respect to the whole dataset.

Training Subset Categories Included Coverage

4 + 1 I25, I20, I21, I50, “other” 74.8%
6 + 1 I25, I20, I21, I50, I48, I35, “other” 81.2%
9 + 1 I25, I20, I21, I50, I48, I35, I10, I49, Z03, “other” 87.2%

12 + 1 I25, I20, I21, I50, I48, I35, I10, I49, Z03, I34, Q21, I42, “other” 91.0%

In the descriptions of admission and discharge notes, doctors focus on the main medi-
cal problem that patients present during hospitalization. As the whole studied database
came from a hospital focused on cardiovascular diseases, most of the non-cardiological
chronic conditions will not be mentioned in this paper unless the disease was shown to
have a direct impact on the current cardiovascular problem (e.g., hyperthyroidism and
atrial fibrillation or chest pain and low hemoglobin level).

Having been collected over 18 years, the data exhibit natural variations in diagnosing
practices, which may reflect a variety of influences, including:

• Real changes in disease prevalence.
• Evolution of medical research.
• Individual staff members’ documentation tendencies.

For example, Figure 2 shows that since 2003, I25 (chronic IHD) has been declining
in favor of the more specific ICD-10 categories. This aspect of the dataset might be the
subject of future experiments considering features of health records in relation to the year
of diagnosis.
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3. Results
Experiments

The state-of-the-art models chosen for fine-tuning in the classification task (their per-
formance in general Polish measured by the KLEJ benchmark [21]) included HerBERT [22],
Polish RoBERTa [23], and the multilingual XLM-RoBERTa [24]. The best-performing model
in most cases was Polish RoBERTa, even though HerBERT sometimes prevailed in cases
with higher numbers of categories. In further analysis results, Polish RoBERTa was used as
our chosen model.

In preparing the training subsets, we divided the entire dataset into files based on
both the section of the report and its final three-character ICD-10 category (one file per
category per section, e.g., “all sections 1 belonging to I25”). For each subset, we created a
different “other” data file containing a random selection of the remaining categories (e.g.,
for 4 + 1, the “other” data file contained a random selection of categories except for I20, I21,
I25, and I50). To achieve equal representation, training data of the smaller categories were
augmented up to four times. Table 5 shows the numbers of training and testing examples
per class for each of the major training subsets.

Table 5. Overview of the main classification results for the different dataset variations.

Training Dataset Training/Testing Examples per Class Accuracy (Admission Data) Accuracy (Discharge Data)

4 + 1 15,148/841 68.79% 78.64%
6 + 1 6773/376 67.71% 77.00%
9 + 1 3533/196 59.62% 71.49%

12 + 1 2458/136 56.49% 69.21%

We set up the fine-tuning process using the AdamW optimizer and a learning rate of
5 × 10−7. For Polish RoBERTa, we chose a batch size of 34, the maximum allowed by the
memory of the NVIDIA A100 unit, and allowed the setup to run for up to 20 epochs. After
each training run, we selected the final model from all epoch checkpoints by looking for
the best performance on the validation set.

For each training subset, we separately fine-tuned models with admission data
(Section 1) and discharge data (Section 3). In the 4 + 1 and 6 + 1 training subsets, the
accuracy (evaluated on a test set with balanced numbers of categories) approached 70%
with admission data and 80% with discharge data (detailed results are shown in Table 5,
and confusion matrices are shown in Figures 3 and 4).
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The 9 + 1 and 12 + 1 subsets gravitated toward accuracies of 60% and 70% for admission
and discharge data, respectively, while staying well above baselines.

To visualize the role of category count in the models’ performance, we ran a set of
fine-tuning experiments, gradually increasing the category count from 2 to 30, and observed
a decline in accuracy (see Figure 5) that nonetheless stayed high compared to baselines
such as random guess (48% vs. 3% for 30 categories) and the most frequent category (36%).
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Note that the more categories are involved, the less data are available for the least
populated ones, causing the further deterioration of accuracy and overfitting. With the
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presently available data, it would not be reasonable to increase the category count beyond
12 + 1 (all above 500 examples) or, at best, 15 + 1 (all above 300).

The deep learning models need to set up several hyperparameters such as learning
rate or weight decay, which are usually experimentally determined using a grid search.
With our dataset, the optimization of learning rate and weight decay, as shown in Figure 6,
indicated optimal values of 5 × 10−7 for learning rate and 0.01 for weight decay.
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decay (b); training was conducted with the 6 + 1 category dataset version, limited to a maximum of
10 epochs.

To further elucidate the relationship between admission and discharge data, training
subsets that included the full admission text and a designated number of sentences from
discharge text for each health record were created; see Figure 7. As the discharge text
lists the procedures the patient has undergone, this experimental scenario “simulated” the
process of gradually complementing the admission information with results of further
investigations. The fact that adding just one sentence increased the accuracy by 4% with
sustainable further improvements is a promising indicator.
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Overall, the results show that a deep text analysis of very brief input summaries pre-
pared at the time of patient’s admission to the hospital can provide an informed prediction
of the final diagnosis. In case of distinguishing among the four most frequent diagnoses
(plus a special “other” category), the model’s accuracy reached more than 68%. When
increasing the number of diagnoses up to 30 (covering more than 98% of patients), the accu-
racy still stayed above or around 50%, i.e., more than 10 times higher than a random guess.
Another implication of the results is that prediction based on the admission summary
can be further improved (up to 78%) using from one to five sentences from the discharge
summary that can be used to represent brief descriptions of investigations taking place
during hospitalization.

4. Discussion
4.1. Error Analysis

As already indicated, the imperfect classification performance achieved with deep
learning is mainly due to the constraints of the text modality in medicine—the data lack
the multimodal and multi-format information involved in treating and diagnosing actual
human beings.

Underlying this, the more fine-grained failures seem to be related to the specificity of
the respective ICD-10 categories.

While I21 (acute myocardial infarction) can be expected to be easily distinguishable
because of its acute nature, I48 (atrial fibrillation and flutter) presents with a very specific
measurable symptom, and I35 (nonrheumatic aortic valve disorders) is explicitly localized
in the aortic valve, other categories often lack this degree of specificity.

I25 (chronic IHD), by far the most populous ICD-10 category in our dataset, trailed
behind other categories in terms of performance. This could have partially been due to the
breadth of the category, which subsumes an unusual number of codes and conditions, but
also due to its chronicity—patients suffering from chronic heart disease can be expected
to be hospitalized in a variety of settings due to a variety of reasons, and the outcomes
of treatment might range from finding very little to various isolated manifestations and
interventions, diluting the specificity of the category for classification systems.

Similarly, I10 (essential hypertension) shares its chronic nature, various possible rea-
sons for hospitalization, and inconclusive discharge statements with I25.

The second and fourth most frequent ICD-10 categories in our dataset, I20 (unstable
angina pectoris) and I50 (heart failure)—neither as chronic nor bad-performing as I25 and
I10—serve to highlight the principle that broad categories with low specificity tend to
present below-average performance in classification.

Table 6 also shows that the worst performing category of all was found to be “other”,
which is a topic in its own right. This category is necessary in order to enable the classifier
to issue true statements about the data. However, the designation means “any of the rest”
of the total of 170 ICD-10 categories that, being rarer, are often highly specific. Plus, these
smaller categories, more often than resembling each other, are marginally related to one of
the larger categories. Thus, this inverted set of highly diverse training examples is difficult
to learn by its very design.

Upon the closer inspection of the confusion matrix in Figure 8, we can see that the
notoriously underperforming I25 (chronic IHD) was often misclassified as I10 (essential
hypertension), I20 (unstable angina pectoris), and Z03 (suspected condition not found).
These relationships were often mutual—I20 tended to be misclassified as I25 even more
often and I10 was classified as Z03 just as often as the other way around. Together with the
fact that they all belong to the vaguer end of the spectrum, this indicates objective reasons
for the classifier’s underperformance—i.e., actual overlap in the reported symptoms and
physical circumstances between the ICD-10 categories.
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Table 6. Performance per category in a 9 + 1 setup fine-tuned on both admission and discharge data,
sorted by F1 score, as a harmonic mean of precision and recall.

ICD-10 Category F1 Score Frequently Confused with

I21 0.90 other
I48 0.80 other, I49
I35 0.79 other
I49 0.74 I10, other, I48
Z03 0.72 I10
I20 0.69 I25
I50 0.69 other, I48, I35
I10 0.63 Z03, other
I25 0.56 Z03, I20, I10

other 0.53 I10, I50, I35
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Some of the relations were found to be unilateral: I25 tended to be misclassified as
Z03, but Z03 was rarely ever thought to be I25; I25 was often regarded as I10, but I10 was
unlikely to be classified as I25. This is even more telling regarding the relationships between
ICD-10 categories because it specifies exactly where the unclarity resides. In this example,
border cases of I25 frequently resembled the less serious categories of I10 and Z03 but not
vice versa. The real-world correlate of this might be the preventive caution exercised in
cardiology, calling attention to anomalies (however small) so that no potentially dangerous
condition is left unattended.

The capability of classifiers to discover such relationships, especially if applied to
larger datasets, has the potential to feed back into the medical domain and help reflect
on the practices of differential diagnosing, possibly even drawing attention to previously
unnoticed connections.

4.2. Medical Implications

The amount of data collected on a daily basis from hospital and outpatient healthcare
systems is continuously growing [25]. In order to organize gathered medical information,



J. Pers. Med. 2022, 12, 869 12 of 17

the ICD classification system was adopted by healthcare institutions worldwide to assign
diagnosis codes into EHR summarizing patients’ medical encounters.

In light of public health challenges, CVDs remain the leading cause of death
globally [1,26,27]. Among them, CADs cover a group of clinical syndromes characterized
by an imbalance between myocardial blood supply and demand that results in myocardial
ischemia due to atherosclerotic plaque in the coronary arteries [28]. A broad spectrum of
CAD includes chronic coronary syndromes [29,30] (also referred as chronic IHD or stable
CAD [I25]) and acute coronary syndromes covering unstable angina pectoris (I20) and
myocardial infarction (I21). As a consequence, CADs may lead to ischemic cardiomyopathy,
defined as HF (I50), which is diagnosed in 1–2% of the adult population [31–35]. Fur-
thermore, atrial fibrillation, one of the most prevalent cardiac arrhythmias, is a common
comorbidity in HF patients, and both diseases have seen a rising number of incidences in
recent years [36,37]. This has subsequently translated into a high number of outpatient and
inpatient visits, generating tremendous amounts of medical information collected during
routine clinical care. Medical providers process and organize these data into contextual
information documenting them in the EHR system as clinical notes. However, the majority
of information in the electronic documentation is stored in an unstructured format, making
it challenging to analyze at scale [38,39]. Interestingly, advancements in the field of AI and
NLP have enabled the in-depth evaluation of electronic medical data for research purposes,
which, in turn, has strong practical potential.

For example, AI/NLP-based systems can be used to verify potential discrepancies
between EHR-derived original ICD codes manually entered by clinicians and automatically
generated ICD codes. Inappropriate diagnostic codes are being reported in an increasing
number of publications including cases of stroke [40], myocardial infarction [41], and
endocarditis [42]. Tremendous discrepancies were also reported in the ambulatory care
in documenting ICD-10 codes for six standardized clinical case scenarios. Only half of
provided codes were appropriately annotated by clinicians, while approximately a quarter
of ICD-10 codes were missing [43]. Furthermore, a study on barriers affecting coding
quality reported variability in the documents used for coding, increases in errors during
transcriptions from paper due to extra actors, difficulties in choosing an appropriate code,
and coding delay due to lack of resources and tools for coders [44].

From a clinical perspective, miscoding may have serious negative consequences for
patients. On the other hand, the analyses of high quality EHR-derived data may pro-
vide predictive models showing clinical trajectories for specific patient cohorts, as well
as phenotype subsets of diseases [41,45–48]. In a broader perspective, beyond automatic
coding, the NLP-based approach has allowed for the building of predictive models [49]
and the phenomapping analyses of individuals with myocardial infarction [50] and heart
failure, which reflects heterogeneous clinical syndrome [51–53]. Novel classification may
help to define specific therapeutic strategies in this challenging group of HF patients [54].
Moreover, multi-modal algorithms searching for myocardial infarction-related keywords,
ICD codes, and information on percutaneous coronary intervention procedures in dis-
charge summaries have increased the positive predictive value of detecting the ST-segment
elevation myocardial infarction type in EHRs [55].

Importantly, erroneous coding impacts hospital-level quality metrics, having a broader
influence on epidemiological studies that are used to build public health strategies [56]. For
example, the SILesian CARDiovascular (SILCARD) registry, built in collaboration between
the Silesian Centre for Heart Diseases in Zabrze and the Regional Department of the Polish
National Health Fund, was used to analyze causes of hospitalization and prognosis in CVD
patients of the entire Silesian region inhabited by 4.6 million people. Specifically, data from
310 hospital departments and 1863 outpatient clinics specialized in cardiology, cardiac
surgery, diabetology and vascular surgery contained information on 487,518 patients and
956,634 inpatient encounters. The primary ICD-10 and ICD-9 codes were used for statis-
tical analysis, reporting high prevalences of HF and CADs, as well as declining trend in
1-year mortality among CVD patients [57]. Similarly, populational trend evaluations were



J. Pers. Med. 2022, 12, 869 13 of 17

performed for atrial fibrillation [58], left atrial appendage occlusion procedures [59], tran-
scatheter aortic valve implantation and surgical aortic valve replacement operations [60],
implantable cardioverter-defibrillators and cardiac resynchronization therapy [61]. Fur-
thermore, NLP technology allows for the in-depth EHR assessment of social determinants,
which are non-medical factors impacting patient health outcomes [62–64]. Leveraging
this opportunity, AI systems can help to verify the correctness of the diagnoses, as well as
provide valuable information on critical aspects associated with populational health.

It should be also mentioned that misclassification and inaccuracy in diagnostic codes
are directly associated with the reimbursement process for healthcare institutions. For
example, the down-grading of the ICD-10 code (i.e., miscoding I25 instead of I21) will
categorize a CAD as chronic IHD instead of acute myocardial infarction, which has a higher
billing rate. While discussing the economic perspective, it should be mentioned that the
adoption costs of the novel ICD system are substantial and included the training of the
users, as well as initial and long-term losses of productivity. In the U.S., it was estimated
that costs of ICD-10 implementation ranged from $425 million to $1.15 billion, adding
$5–40 million per year in lost productivity [65].

Another important aspect might be exemplified by the opportunity to reduce the
documentation-related burden imposed on medical staff. Data from a cardiology outpatient
clinic show medical providers spend approximately 50% of their time with electronic
documentation and only 30% with patients [4]. Of note, the ICD-10 coding process is
time- and resource-consuming due to the complexity of coding rules (e.g., code orders,
inclusion/exclusion criteria, and growing number of ICD-10 codes). It was estimated that
for a professional disease coder, ICD-10 categorization may take ~0.5 h per case. Thus,
an automatic AI-based system for imputing ICD-10 codes from free-text format might
be implemented and synchronized with existing EHR systems to detect, red-flag, and
potentially correct misclassified diagnostic codes. This could pave a way to ensure reliable
clinical, administrative and reimbursement data for everyday practical applications and for
research-oriented advanced downstream analysis [3,66].

For this purpose, we explored the electronic medical database of GCM hospital, which
is one of the largest hospitals in Poland. The Cardiology and Cardiac Surgery Centre of
GCM has been specializing in the most complex medical procedures for over 35 years.
Specifically, we explored the 3rd Department of Cardiology, which consists of 52 beds,
including 12 cardiac intensive care unit beds, that generate a vast amount of non-English
language medical data available for analysis. In light of the limited availability of standard
medical vocabularies and NLP tools for Polish language information extraction, we aimed
to test the efficacy of the current best deep learning models when predicting a patient’s
diagnoses based on small selected subsets of the patient’s medical history. Our results
demonstrated that the evaluated models significantly surpass other techniques and can
offer fast and well-timed estimates of necessary follow-up procedures. From a practi-
cal standpoint, we plan to use the results of the current study to perform phenomapping
analyses of patients presenting to the emergency department with chest pain to improve dif-
ferential diagnosis efficacy. As a foundation, this approach could support medical providers
in everyday clinical practice. Furthermore, we aim to apply the NLP/AI framework to sim-
ulate an economic impact of potentially miscoded diseases on the reimbursement process.
It is essential for healthcare institutions to consider the financial aspect which is crucial
to secure quality medical supplies, provide access to novel technologies and offer high
standards of care.

5. Conclusions

Automated ICD coding systems have the potential to support providers in everyday
clinical practice, help medical organizations to optimize administrative/reimbursement
processes, and reduce costs for healthcare systems during the implementation of novel
coding systems.



J. Pers. Med. 2022, 12, 869 14 of 17

We have introduced a new deep learning model for processing summary texts of
Polish electronic health records for the task of predicting final patient diagnoses. The
presented text analysis model was shown to be able to predict the diagnosis code of the
four prevailing diagnoses that cover 75% of cases with 69–78% accuracy based on the
mix of its input texts. The 69% accuracy can be achieved immediately after the patient
admission to the hospital using just the medical history text (132 words in average), and
the accuracy can be increased to 78% by adding further examination results (represented by
1–5 successive single sentences from the discharge summary). As the model can be applied
as an early prediction support, its current form can already offer valuable data to doctors
and to medical administration.

In future work, we plan to improve the accuracy of the model by constructing an
ensemble of fine-grained diagnosis predictors that concentrate on a specific subset of
diagnoses and can thus concentrate on the discriminating details. We will also provide
prediction feedback to the medical specialists regarding the most frequent misclassification
to discuss potential regular inconsistencies in their summaries.
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