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Abstract: Background: While magnetic resonance imaging (MRI) is the imaging modality of choice for
the evaluation of patients with brain tumors, it may still be challenging to differentiate glioblastoma
multiforme (GBM) from solitary brain metastasis (SBM) due to their similar imaging features. This
study aimed to evaluate the features extracted of dual-tree complex wavelet transform (DTCWT)
from routine MRI protocol for preoperative differentiation of glioblastoma (GBM) and solitary brain
metastasis (SBM). Methods: A total of 51 patients were recruited, including 27 GBM and 24 SBM
patients. Their contrast-enhanced T1-weighted images (CET1WIs), T2 fluid-attenuated inversion
recovery (T2FLAIR) images, diffusion-weighted images (DWIs), and apparent diffusion coefficient
(ADC) images were employed in this study. The statistical features of the pre-transformed images
and the decomposed images of the wavelet transform and DTCWT were utilized to distinguish
between GBM and SBM. Results: The support vector machine (SVM) showed that DTCWT images
have a better accuracy (82.35%), sensitivity (77.78%), specificity (87.50%), and the area under the
curve of the receiver operating characteristic curve (AUC) (89.20%) than the pre-transformed and
conventional wavelet transform images. By incorporating DTCWT and pre-transformed images,
the accuracy (86.27%), sensitivity (81.48%), specificity (91.67%), and AUC (93.06%) were further
improved. Conclusions: Our studies suggest that the features extracted from the DTCWT images can
potentially improve the differentiation between GBM and SBM.

Keywords: artificial intelligence; dual-tree complex wavelet transform; glioblastoma multiforme;
machine learning; magnetic resonance imaging; solitary brain metastasis; wavelet transform

1. Introduction

Glioblastoma multiforme (GBM) and brain metastasis are the most commonly identi-
fied brain neoplasms in the adult population [1,2]. The distinction between these two types
of tumors is critical for future therapeutic planning. These two diseases have quite differ-
ent treatment strategies. For example, maximum safe resection followed by concomitant
chemoradiotherapy needs to be considered for GBM [3], while stereotactic radiosurgery or
en bloc resection can be performed for brain metastases [4]. Accurate diagnosis with ad-
vanced imaging modalities provides information about these two tumors without needing
to obtain histopathologic evidence, posing the risk of morbidity and mortality. Magnetic
resonance imaging (MRI) is generally recommended as the imaging modality in clinical
practice for differentiating GBM and brain metastasis.
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GBM typically presents with central necrosis surrounded by an enhancing rim of
tumor cells with peritumoral edema [5]. Brain metastasis tends to be located between
the gray–white matter interface [6], solitary or multiple. A cerebellar position, multifocal
dissemination, clear boundaries, and clinical information on systemic cancer favor the di-
agnosis of brain metastasis over glioblastoma in patients with enhancing brain masses [7,8].
However, brain metastases can present as a solitary (named SBM in the following context)
lesion approximately half of the time [6,9], which may cause difficulty in differentiation
with GBM on conventional and advanced MRI due to insufficient and variable validity of
these imaging modalities [10].

The radiomics-based extraction of mineable high-dimensional data from MRI for
texture analysis can provide the underlying information related to pathophysiology, which
is arduous to detect by visual perception [11,12]. The extracted features are helpful as
a complementary tool to the professional human reader. Therefore, the images should
be treated as high-dimensional data [13]. The goal of precision medicine could be to
aid with machine learning and improve diagnosis, prognosis, and prediction in clinical
practice [14]. Radiomics was first used in oncology research, but it can potentially be used
for any disease [13], including neurologic, thoracic, genital–urinary, breast, gastrointestinal,
hematologic, and musculoskeletal radiology [15,16]. The typical pipeline of radiomics
predominantly involves the following steps: image acquisition, segmentation, image
preprocessing, feature extraction, dimension reduction, model validation, and performance
evaluation [11,12,17].

As mentioned, the boundaries of GBM and SBM would have different characteris-
tics in the MR images, suggesting that algorithms sensitive to the edges would benefit
from the distinction, such as the wavelet transforms mentioned in the online (version 5)
image biomarker standardization initiative (IBSI) reference manual [18]. However, the
conventional wavelet transforms only emphasize vertical and horizontal features of the
images that conflict with the nature of tumors which have round or irregular margins. This
could be why little attention has been paid to incorporating wavelet transformation into
the workflow of radiomics for differentiation of GBM and SBM [19–25]; however, it has
been suggested that incorporating it could improve the performance of differentiation [19].
To avoid the restraints from the conventional wavelet transforms, we applied dual-tree
complex wavelet transformation (DTCWT) [26] to address this problem, which deciphers
the image details by six orientations (±15◦, ±45◦, and ±75◦). Some studies have shown
that Alzheimer’s disease and multiple sclerosis (MS) can be distinguished from normal
brains using DTCWT [27–29]; however, to the best of our knowledge, there are no reports
on the application of DTCWT to brain tumors.

Several advanced MRI techniques, such as diffusion imaging, perfusion imaging,
spectroscopy, and diffusion tensor imaging, have been used to discriminate between the
two entities [30–32]. Likewise, the discriminations could be improved with enhanced sensi-
tivity and resolution at a stronger B0 field. However, these techniques are not conducted
routinely or universally owing to long acquisition times, inconsistent accuracy, or high
cost. Conventional MRI techniques at a 1.5 T system are still primarily used in clinical
practice. Herein, we attempted to differentiate GBM and SBM from the MRI images with
routine protocols acquired at 1.5 T. We focused on the features obtained from the wavelet
transformations, especially DTCWT, which could reveal more structure information.

2. Materials and Methods
2.1. The Patient Enrollment

We collected the cases of GBM and brain metastasis from 1995 to 2020. There were
62 pathology-proven GBM cases found in the GBM database. Of the 62 GBM cases,
27 cases were recruited and retrospectively entered into this study. On the other hand,
85 pathology-proven cases of brain metastases were found in the brain metastasis database.
Of the 85 cases with brain metastases, 24 cases with SBM were recruited and retrospec-
tively entered into this study. In total, 51 patients were recruited between 2007 and 2020
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(27 GBM and 24 SBM) in this retrospective analysis which the local Institutional Review
Board approved (the approval number: IRB2021051 and the approval date: 31 May 2021).
For the 24 patients with SBM, histopathological analysis revealed 13 cases that originated
from the lung, five cases from the breast, two from the liver, one from the kidney, two from
the colon, and one from the ovary. Inclusion criteria were as follows: (1) patients of single
GBM or SBM with pathologically confirmed according to the WHO criteria [33]; (2) avail-
able preoperative MRI with multiparametric protocol; (3) newly diagnosed cases without
history of treatment. The exclusion criteria were as follows: (1) examinations with artifacts
or missing sequences; (2) extra-parenchymal masses; (3) subjects with multiple lesions.

2.2. MRI Research Protocol

The preoperative MRI was collected from the picture archiving and communication
systems (PACS) at Ditmanson Medical Foundation Chia-Yi Christian Hospital. In detail,
19 GBM and 14 SBM cases were performed on a 1.5 T Signa™ HDxt scanner (GE Healthcare,
Milwaukee, WI, USA) with an eight-channel neurovascular array GE coil and fast spin
echo (FSE) sequence. Eight GBM and 10 SBM cases were performed on a 1.5 T Optima™
MR450w (GE Healthcare, Milwaukee, WI, USA) scanner with a 16-channel GE head-and-
neck unit coil and the PROPELLER (Periodically Rotated Overlapping Parallel Lines with
Enhanced Reconstruction) sequence. The duration of each complete examination was about
20 min with ear plugs.

The acquisition protocols of the MRI examinations included FSE T1-weighted image
(T1WI) (repetition time/echo time (TR/TE), 2600/24 ms; rephasing radiofrequency (RF)
pulse, 160◦; section thickness, 6 mm, intersection gap, 0.6 mm; number of acquired signals,
1; matrix, 320 × 224; field of view (FOV), 220 mm × 220 mm), FSE T2 fluid-attenuated
inversion recovery (T2FLAIR) (TR/TE, 9000/140 ms; inversion time (TI): 2200 ms; rephas-
ing RF pulse, 160◦; section thickness, 6 mm, intersection gap, 0.6 mm; number of acquired
signals, 1; matrix, 320 × 224; FOV, 220 mm × 220 mm), single-shot echo planar imaging
(SS-EPI) diffusion-weighted image (DWI) (TR/TE, 8000/76.6; section thickness, 6 mm; in-
tersection gap, 0.6 mm; number of acquired signals, 1 for b value 0 s/mm2 and 2 for b value
1000 s/mm2; matrix, 128 × 128; FOV, 240 mm × 240 mm; b values, 0 and 1000 s/mm2),
and contrast-enhanced T1-weighted image (CET1WI). We routinely apply FSE and fat
suppression (FS) techniques on CET1WI. After a check-up of the patients’ renal function,
CET1WI was obtained with the T1WI sequence about 30 s after intravenous administration
of a standard dose of gadobutrol (Gadovist®, 0.1 mmol/kg body weight). The array spatial
sensitivity encoding technique (ASSET) was applied for DWI sequences to accelerate image
acquisitions. The apparent diffusion coefficient (ADC) maps were generated automatically
using the GE built-in algorithm. All the images acquired were two-dimensional with static
MRI scans.

2.3. Imaging Processing and Analysis

The operational flow of the imaging processing and analysis is shown in Figure 1. A
radiologist (W.-F.W.) and a radiographer (K.-M.L.) manually selected a region of interest
(ROI) from all of the CET1WI images independently. These ROIs were selected once;
hence, no intra-observer analysis was available. The intersection of selected ROIs from
an image was utilized in the subsequent studies. T2FLAIR, DWI, and ADC images were
aligned to the corresponding CET1WI images. The pixels out of the skull region were
treated as the background and removed, and then the images were normalized using a
histogram with 100 bins [34]. These images then could be transformed using discrete
wavelet transform (DWT) with the Haar wavelet or DTCWT. Combining the imaging types
(CET1WI, T2FLAIR, DWI, and ADC) and transformed approaches (six in DTCWT, four in
DWT, and the pre-transformed image), 44 images could be derived from a patient. The ROIs
of these images were extracted using six statistical metrics: mean, coefficient of variation
(CV), skewness, kurtosis, energy, and entropy. The definition of these metrics is listed in the
Supplementary Materials (Table S1). This extracted information was then selected using a
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t-test. Finally, we used the linear support vector machine (SVM) to distinguish GBM and
SBM on the basis of the possible combination of the selected features [19,20], in which the
SVM was performed with a fivefold cross-validation (the ratio of training and validation
data was 4) and regularization parameter, c, of 1. All the analyses were performed using
MATLAB® 2021a (The MathWorks, Inc., Natick, MA, USA).
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Figure 1. The flowchart of imaging processing and distinguishing. Briefly, a region of interest (ROI)
was selected on the basis of fast spin echo (FSE) contrast-enhanced T1-weighted imaging (CET1WI)
with fat suppression (FS) images. Then, T2 fluid-attenuated inversion recovery (T2FLAIR) image,
diffusion-weighted image (DWI), and apparent diffusion coefficient (ADC) were aligned to the
corresponding CWT1WI image. The backgrounds of these images were then removed, and the
images were then normalized before the discrete wavelet transform (DWT) and dual-tree complex
wavelet transform (DTCWT) and analysis. Finally, the features were selected using a t-test, and
glioblastoma multiforme (GBM) and solitary brain metastasis (SBM) were differentiated using the
support vector machine (SVM).

3. Results

The representative CET1WI and T2FLAIR images and the selected ROIs are shown in
Figure 2. No apparent signatures could be used to distinguish between the GBM and SBM
images. The corresponding DWI and ADC images are shown in Figure S1. The CET1WI
and T2FLAIR images were further transformed using DWT or DTCWT (Figure 3). The
approximation component of DWT indicates a tumor profile; hence, these images lose the
details and vary less in amplitude.
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In contrast, these details are depicted in DWT’s horizontal, vertical, and diagonal
components and six orientations in DTCWT. The corresponding wavelet-transformed DWI
and ADC images are shown in Figure S2. In this particular pair of GBM and SBM patients,
the wavelet-transformed images seem to have more differences between the GBM and SBM
patients, suggesting the potential of using wavelets to distinguish GBM and SBM patients.
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Figure 2. The representative fast spin echo (FSE) contrast-enhanced T1-weighted imaging (CET1WI)
with fat suppression (FS) images and T2 fluid-attenuated inversion recovery (T2FLAIR) images from
the glioblastoma multiforme (GBM) and solitary brain metastasis (SBM) patients. The enclosed
regions with the red boundary were utilized for the analysis.

By applying the wavelet transforms and statistical features to these images,
264 features could be generated from a patient. Then, we used a t-test to select 21 features
with a p-value smaller than 0.001 between GBM and SBM for further investigation (as
shown in Table 1). For the pre-transformed images, the six selected features were all from
the CET1WI images. For the DWT images, most of the statistical features from the CET1WI
approximation images were selected, and the kurtosis of the T2FLAIR diagonal image was
selected. For the DTCWT images, the selected features were mainly the ±15◦ and ±45◦ of
T2FLAIR images with skewness, kurtosis, and entropy. No features from ADC and DWI
images were selected on the basis of the p-value.

However, by examining the box plots of these selected features (Figures S3–S5), the
distributions of a feature from GBM and SBM still could overlap, which indicates the
challenge of differentiating GBM and SBM on the basis of a sole feature. Hence, features
from the pre-transformed, DWT, and DTCWT images were further grouped to distinguish
between GBM and SBM using SVM. Specifically, we considered all possible combinations
of features from the pre-transformed (63 combinations, i.e., 2number of features−1 = 26−1),
DWT (63 combinations), and DTCWT (511 combinations) images. We also considered all
the combinations (221−1) of the selected features from the pre-transformed, DWT, and
DTCWT images.
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Figure 3. The enlarged region of interests (ROIs) from Figure 2 and the corresponding wavelet-
transformed images. The top panels show the arrangement of the wavelet-transformed images. DWT,
discrete wavelet transform; DTCWT, dual-tree complex wavelet transform; A, approximation; H,
horizontal; V, vertical; D, diagonal.

Table 1. The selected features using a t-test with a criterion of p < 0.001.

Pre-Transformed DWT DTCWT

Image Feature Image COMP Feature Image COMP Feature

T1 Mean T1 A Mean T2 15◦ Skewness
T1 Energy T1 A Energy T2 15◦ Entropy
T1 CV T1 A Skewness T2 45◦ Skewness
T1 Skewness T1 A Kurtosis T2 45◦ Kurtosis
T1 Kurtosis T1 A Entropy T2 45◦ Entropy
T1 Entropy T2 D Kurtosis T2 −45◦ Skewness

T2 −15◦ Skewness
T2 −15◦ Kurtosis
T2 −15◦ Entropy

COMP, the component of wavelet decomposition; DWT, discrete wavelet transform; DTCWT, dual-tree complex
wavelet transform; CV, coefficient of variation; A, approximation; D, diagonal; T1, CET1WI; T2, T2FLAIR.
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The best feature combination from each group is shown in Table 2. DTCWT had the
highest accuracy (82.35%), followed by the DWT (76.47%) and pre-transformed (72.55%)
images. Likewise, DTCWT had the highest area under the curve (AUC) of the receiver
operating characteristic (ROC) curve (89.20%), followed by the DWT (88.89%) and pre-
transformed (84.26%) images. DTCWT also had the highest specificity (87.50%) and sensi-
tivity (77.78%). When all the possible combinations were considered, SVM selected three
and six features from the pre-transformed CET1WI and DTCWT T2FLAIR images, respec-
tively. The accuracy (86.27%), sensitivity (81.48%), specificity (91.67%), and AUC (93.06%)
were further improved. We also included another statistical analysis, F1-score, to evaluate
the classification, which showed a similar result to AUC.

Table 2. The best results of distinguishing between GBM and SBM based on the selected features of
the pre-transformed, DWT, and DTCWT images.

Performance Pre-Transformed DWT DTCWT Pre-Transformed +
DWT + DTCWT

ACC (%)
(CI)

72.55
(59.05–82.89)

76.47
(63.24–85.99)

82.35
(69.74–90.43)

86.27
(74.27–93.19)

SEN (%)
(CI)

74.07
(54.13–87.36)

70.37
(50.37–84.75)

77.78
(58.04–89.86)

81.48
(62.07–92.21)

SPC (%)
(CI)

70.83
(51.98–84.49)

83.33
(65.38–92.97)

87.50
(70.26–95.40)

91.67
(75.43–97.53)

AUC (%)
(CI)

84.26
(71.93–91.79)

88.89
(77.41–94.92)

89.20
(77.79–95.12)

93.06
(77.25–98.15)

F1-score 74.07% 76.00% 82.35% 86.27%

Image/(COMP)/Feature

T1/energy
T1/skewness

T1/A/energy
T1/A/entropy
T2/D/kurtosis

T2/45◦/skewness
T2/45◦/kurtosis

T2/−15◦/skewness

Pre-transformed
T1/kurtosis

T1/mean
T1/skewness

DTCWT
T2/15◦/skewness
T2/45◦/kurtosis

T2/45◦/skewness
T2/−45◦/skewness
T2/−15◦/entropy
T2/−15◦/kurtosis

GBM, glioblastoma multiforme; SBM, solitary brain metastasis; DWT, discrete wavelet transform; DTCWT, dual-
tree complex wavelet transform; ACC, accuracy; SEN, sensitivity; SPC, specificity; AUC, the area under the curve
of the receiver operating characteristic (ROC) curve; CI, confidence interval; T1, CET1WI; T2, T2FLAIR

4. Discussion

Several features observed on conventional MRI (e.g., T1WI, CET1WI, T2WI, and
T2FLAIR) [5], such as tumor morphology, distribution, number, enhancing pattern, and
peritumoral T2 prolongation, have been used to differentiate between GBM and brain
metastasis [35,36]. However, these morphologic characters are nonspecific and prone to
high interobserver variability. Advanced MRI (e.g., diffusion-based techniques) [5] uti-
lizing multiple parameters to assess cellular density, microvascular permeation, vascular
proliferation, and tissue metabolites improves the diagnostic performance of classifying
these two disease entities in comparison with conventional MRI [20,37–39]; nonetheless,
the advanced MRI protocols are sensitive to the acquired and analytic methods. In ad-
dition, several other studies demonstrated inconsistent discrimination results [31,40–42].
However, the discrepancies among the studies make it difficult for advanced MRI to guide
clinical practice.

The radiomics analysis quantifies the information of texture features extracted from
MRI, enhancing clinicians’ existing data. Currently, radiomics-based analysis forces a shift
from the visual perception of medical images, which is highly variable, to the extraction
of highly dimensional meaningful data to support clinical decision making for precision
medicine [11–17]. In addition, several reports utilizing texture features for differentiation



J. Pers. Med. 2022, 12, 1276 8 of 12

between high-grade gliomas or GBM and brain metastases demonstrated AUC results in
the range between 0.68 and 0.96 [19,20,23,43,44].

An image can be transformed into frequency domains by employing a wavelet series.
These wavelets are the images’ high- or low-pass filters and result in the approximation,
vertical, horizontal, and diagonal components. The approximation component can be
further transformed, resulting in a hierarchical multiresolution image [45–47]. With these
unique properties, wavelet transformation has been applied in many fields, including
medical imaging [48]. However, these wavelets were proposed to capture the horizontal
or vertical details, which may not be suitable for detecting the physiological morpholo-
gies. DTCWT extracts the image features from six different orientations, including ±15◦,
±45◦, and ±75◦. Compared with DWT, DTCWT offers a higher degree of directional
selectivity [49–51], allowing more information on the morphologic features of an image
with increased robustness in the orientations. Therefore, it is suggested that the energies
of the decompositions from the DTCWT identify the difference between MS patients and
healthy volunteers [27]. In the present study, we proposed applying the DTCWT technique
on radiomics-based machine learning with routine MRI sequences to discriminate patients
with a single GBM from those with SBM.

Among the 264 radiomics features obtained from a patient, 21 features were selected
by t-test with a p-value <0.001 (Table 1). We also attempted to select the features using
principal component analysis (PCA). However, we found that (1) none of the principal
components (PC) dominates (<20%), and (2) the feature weightings in each PC are small
(e.g., <10% in PC1). The feature selection using PCA only provided ambiguous results. The
selected features based on a t-test were all associated with CET1WI or T2FLAIR images,
and none of the DWI or ADC features were selected. Our results are consistent with the
previous finding that using ADC values for quantitative analysis does not help differentiate
GBM and metastasis [41,42]. The presumed causes could be that DWI or ADC has a lower
spatial resolution, signal-to-noise ratio, and contrast-to-noise ratio [52]. Even though the
diffusion-based images seemed ineffective in this study, we think that the potential of
the diffusion images could also have been diminished by our ROI selection (based on
CET1WI). The lesions from the diffusion images might still be valuable with a proper
choice of ROI [53].

The selected features of the pre-transformed images (Table 1) were all from CET1WI,
which might reflect the solid enhancing components of GBM and SBM [5]. However, it
also pointed out that using the pre-transformed images’ statistical features might only have
limited accuracies. The features selected from DWT images were mostly the approximation
component, which suggests the tumor profiles would provide more information than the
morphology details (e.g., vertical, horizontal, and diagonal components) to distinguish be-
tween GBM and SBM. Likewise, the morphology details from CET1WI images transformed
by DTCWT also showed little difference. However, the features of T2FLAIR seemed potent
to DTCWT (orienting on ±15◦ and ±45◦), which suggests that the heterogeneity differences
between GBM and SBM could be identified. The differences in morphology details are not
apparent enough to be detected by DWT and DTCWT on post-contrast images (CET1WI).
Gadolinium-based contrast medium shortens the T1 relaxation rates of water proton [54]
to increase the T1 imaging contrast. The contrast agents diffusing into interstitial spaces
enhance the tissue contrast between normal and diseased structures [55]. However, the
contrast agents could also diminish the slight difference in the relaxations within a tumor.
Herein, the loss of the morphology details resulting from the contrast agents might explain
that DWT and DTCWT detected no useful features from the details of the CET1WI images.
In contrast, these useful features of the morphology details from T2FLAIR images extracted
using DTCWT could indicate the fine-structure differences between GBM and SBM.

There were several limitations to this study. Firstly, radiomics studies are based on
retrospectively collected data and tend to have varied imaging protocols, attenuating the
reproducibility of radiomics features and classifiers [17]. It is crucial that radiomics studies
are compliant with the IBSI guidelines [56] to ensure reproducibility and validity of the out-
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comes. The compliance assessment of our radiomic software program for the IBSI standard
needs further investigation. Herein, we listed the items we followed from the IBSI checklist
in Table S2. Secondly, only 51 patients (27 GBM and 24 SBM) were included in the study
due to the limited size of our database. Although we employed fivefold cross-validation to
minimize the overfitting due to the small sample size, it still requires additional test data to
verify its generalizability. Thirdly, the ROIs’ intra- and interobserver variability might be
introduced due to the manual segmentation, which could be minimized by utilizing auto-
matic or semi-automatic algorithms, which are potentially more reproducible [11]. Fourthly,
further investigations of the tumor cell infiltration and edema (i.e., the peritumoral region)
might improve the differentiation based on the DWI and ADC images [5,57]. However, our
extracted features were segmented from the enhancing and non-enhancing necrotic areas
of the tumor without including the peritumoral region. Consequently, our segmentations
based on the CET1WI images might have resulted in the ineffectiveness of diffusion images
for differentiating GBM and SBM. Further work is required to employ the concept of tumor
habitat imaging in radiomics for potential valuable disease-specific cues [58]. Fifthly, we
only employed the basic wavelet, Haar, as the benchmark of the conventional wavelet,
which could slightly underestimate the performance of DWT. However, our results showed
that the useful features for the differentiation of GBM and SBM were from CET1WI for
DWT and T2FLAIR for DTCWT, which indicated that DTCWT and the conventional DWT
identified the different image characteristics. Hence, the underestimated performance
of DWT using Haar wavelet might have been negligible. Lastly, employing the wavelet
features to differentiate GBM and SBM was based on the assumption that these two kinds
of tumors had specific information from different directions. However, we might have
missed the links between these directional features and histology characteristics.

5. Conclusions

To our knowledge, there have been no reports about the application of DTCWT
for the differentiation of GBM and SBM. This application of DTCWT demonstrated the
technical feasibility in feature extraction and dimensional reduction of an image for dis-
tinguishing GBM and SBM with high performance. Significantly, DTCWT improves the
ability to analyze the details of extracted images with six different orientations, which
enormously increases the robustness of orientations and relevantly conforms to the actual
tumor morphologies while doing radiomics-based machine learning. In conclusion, the
application of DTCWT on routine MRI in differentiating GBM from SBM with the approach
of radiomics-based machine learning is feasible with a favorable and comparable (compar-
ative) diagnostic accuracy compared with the performances of DWT and pre-transformed
images. Further study with a more significant amount of sample data and inclusion of
the peritumoral region for texture analysis is required to improve diagnostic accuracy and
expand generalizability.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/jpm12081276/s1: Table S1: The definition of the employed metrics;
Table S2: The relevant items from the Image Biomarker Standardization Initiative (IBSI) guideline;
Figure S1: The representative diffusion-weighted imaging (DWI) and apparent diffusion coefficient
(ADC) images from the glioblastoma multiforme (GBM) and solitary brain metastasis (SBM) patients;
Figure S2: The enlarged region of interests (ROIs) from Figure S1 and the corresponding wavelet-
transformed images; Figure S3: The box plots of the selected features from the pre-transformed
images are based on the t-test (p < 0.001); Figure S4: The box plots of the selected features from the
DWT images are based on the t-test (p < 0.001); Figure S5: The box plots of the selected features from
the DTCWT images are based on the t-test (p < 0.001).
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