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Abstract: Reproduction is a complex process, which is based on the cooperation between the
endocrine–immune system and the microbiota. Testicular immunity is characterized by the so-
called immune privilege, a mechanism that avoids autoimmune attacks against proteins expressed
by spermatozoa. Testicular microbiota is connected with the gut microbiota, the most prevalent site
of commensals inthe body. Both microbiotas take part inthe development of the immune system
and protection againstpathogen invasion. Dysbiosis is caused by concurrent pathologies, such as
obesity, diabetes, infections and trauma. The substitution of beneficial bacteria with pathogens may
lead to destruction of spermatozoa directly or indirectly and, ultimately, to male infertility. Novel
therapeutic interventions, i.e., nutritional interventions and supplementation of natural products,
such as, probiotics, prebiotics, antioxidants and polyphenols, may lead to the restoration of the
otherwise-impaired male reproductive potential, even if experimental and clinical results are not
always concordant. In this review, the structure and immune function of the testis will be described
with special reference to the blood–testisbarrier. The regulatory role of both the gut and testicular
microbiota will be illustrated in health and disease, also emphasizing therapeutic attempts with
natural products for the correction of male infertility, in the era of personalized medicine.

Keywords: immune privilege; microbiota; male infertility; spermatogenesis; testis; polyphenols;
probiotics; personalized medicine

1. Introduction

The testis is a continuous source of germ cells as the first step of male reproduction,
followed by the transport of sperm to the fallopian tube sperm–egg binding sites [1]. In
general terms, reproduction is a complex process, which requires a strict collaboration
between the endocrine and the immune system. In fact, spermatogenesis is regulated by
the hypothalamic–pituitary–testicular axis for the gonadal steroid hormone to occur [2,3].
On the other hand, the testis is endowed with a specialized immune system that becomes
tolerogenic towards the antigenic proteins expressed by spermatozoa [4]. Such a charac-
teristic of the testis is known as “immune privilege” in the sense that spermatozoa are
protected from autoimmune attacks by gonadal immune cells [5,6]. Furthermore, the
testis owns a physical barrier, the so-called blood–testis barrier (BTB), which protects germ
cells from noxious immune responses [7]. Alterations of the above-described protective
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homeostasis by metabolic disorders, infectious events, inflammation and trauma may lead
to autoimmunity and infertility [8–10].

Microbiota is the assembly of commensal microorganisms located in different districts
of the body, which contribute to the health of the host [11]. Particularly, gut microbiota, the
most abundant in the body (80%), neutralizes pathogen colonization, exerts metabolic and
nutritional activities and takes part in the development of the immune system [12–15]. Of
note, only 9% of the human microbiota is harbored in the urogenital tract, but it is mostly
gut microbiota that takes part in male and female sexual maturation. In fact, intestinal
metabolites, such as secondary bile acids as well as indole and soybean, regulate male and
female sexual organs [16–18].

The gut microbiota is composed offour major phyla, i.e., Bacteroidota, Bacillota, Actinomycetota
and Pseudomonadota with Bacteroidota and Bacillota representing the 90% of intestinal bacte-
ria contingent. The imbalance of gut microbiota, also in relation to high-fat and calorie-rich
diets, may lead to a condition of dysbiosis, which with the time canresult in disease sta-
tus [19]. Moving to the male microbiota, Lactobacillus, Pseudomonas and Prevotella represent
the main bacteria contained in the seminal fluid and their replacement by other pathogens
may cause dysbiosis, which, in turn, leads to infertility [20].

In this review, special emphasis will be placed on the description of the immune
system of the testis, as well as to the components of BTB. Then, the influence of the
gut microbiota and male microbiota on the testicular immune system will be illustrated,
pointing out all those conditions of dysbiosis which may alter gonadal function and fertility.
Novel therapeutic attempts with natural products will also be discussed. All needs must
be considered when determining the optimal way to treat an individual patient in the
emerging era of personalized medicine.

1.1. The Immune Environment of the Testis

Immune privilege is confined to a few districts of the body, and, among them, the
testicular environment is included. In fact, the proteins expressed on the spermatozoa
membrane can elicit a robust immune attack, which may destroy spermatozoa, ultimately
leading to infertility. Immune privilege relies on two major mechanisms: (I) the physical
shield represented by the BTB, mainly consisting of Sertoli cells (SCs); (II) the tolerogenic
response mounted by the immune armamentarium of the testis [21]. In this framework, it
is important to briefly describe the structure of the testis for a better comprehension of its
function. The epithelium of the seminiferous tubules holds SCs, which provide nutrition
and growth factors to germ cells [22,23]. On the other hand, Leydig cells are interspersed
between the tubules and secrete testosterone (T) for spermatogenesis to take place [24,25].
The interstitial space of the testis harbors lymphatic vessels, which permit access to afferent
lymph nodes [26]. Peritubular lymphatic sinusoids surround the seminiferous tubules with
lymphatic capillaries ubicated beneath the tunica albuginea [27]. Macrophages, dendritic
cells (DCs), mast cells and T cells are contained in the interstitium, and their function will
be described in a specific section of this review. The structure of the testis is depicted in
Figure 1.

1.2. Blood–Testis Barrier Function

The BTB is constituted by tight junctions (TJs), gap junctions (GJs), desmosome-like
junctions and SCs. BTB is maintained by the N-cadherin/beta-catenin of the GJs and
occluding/Z0-1 of the TJs all anchored in F-actin bundles [28].Junctions prevent haploid
germ cells fromreaching the blood [29]. SCs supply support to germ cells, giving glucose,
fatty acids and growth factors, as well asmaintaining an appropriate ionic and metabolic
milieu in the testis [30,31]. Moreover, SCs secrete factors which keep an immunoprotected
environment in the testis, such as transforming growth factor (TGF)-beta 1 in order to avoid
autoimmune destruction of sperm cells [32].

Another mechanism of protection elicited by SCs is their ability to phagocyte apoptotic
germ cells and residual bodies [33]. In order to accomplish their phagocyitc activity, SCs
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utilize Axl, tyro3 and Mer tyrosine kinase receptors, as well as growth-arrest-specific
gene 6 (GAS6). SC-mediated phagocytosis supports spermatogenesis through various
mechanisms: (1) making room for the germ cell differentiation process; (2) eliminating
harmful substances derived from necrotic germ cells; (3) clearing autoantigens, which may
trigger autoimmune responses; (4) providing energy sources to other SCs via the recycle of
apoptotic germ cell components [34]. Lastly, SCs switchoff the inflammatory responses of T
cells in the testicular interstitium [35]. The BTB is illustrated in Figure 2.
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Figure 2. Blood–testis barrier composition. The blood–testis barrier, besides in gap junctions,
desmosome-like junctions and tight junctions, has Sertoli cells (SCs). SCs participate in the nu-
trition and growth of germ cells, maintenance of the immune privilege and clearance of autoantigens
and apoptotic cells via phagocytosis.

1.3. The Immune Arsenal of the Testis

The BTB via SCs constitutes a physical barrier devoted to the protection of germ cells from
a destructive immune attack. Besides that, testicular immune cells maintain either a tolerogenic
milieu or protect spermatogenesis from pathogen invasion; thus, theycontrol inflammatory
processes, which very often are responsible for male infertility [36–38]. In fact, evidence has
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been provided that infections or inflammatory states inhibit steroidogenesis, cause apoptosis
of germ cells and destroy testicular epithelial cells, thus provoking infertility [39].

Immune response relies on two major arms, the innate immune system and the
adaptive immune system, respectively [40]. Phagocytes(granulocytes and macrophages),
natural killer cells and dendritic cells(DCs) [majorantigen-presenting cells (APCs)] are
involved in the innate immuneresponse. On the other hand, T and B lymphocytes recognize
their specific antigensand maintain immunological memory. Mostly, T cells are divided
into differentsubsets, such as T helper (h), T cytotoxic (Tc) and T regulatory (Treg) cells [41].

In the next paragraphs, the functions of testicular macrophages, DCs and lymphocytes
will be discussed under both steady state and inflammatory conditions.

(a) Macrophages

Testicular macrophages derive from three distinct sources: (1) early yolk sac macrophages;
(2) fetal livermonocytes; (3) bone-marrow-derived monocytes [42,43]. Experimental studies
have reported that testicular macrophages are able to preserve the local immune privi-
lege, as observed in the testis of rats where these activated phagocytes produce the anti-
inflammatory cytokine, interleukin (IL)-10, also expanding T regulatory (Treg) cells [44,45].

Testicular inflammation is caused either by bacteria such as Escherichia (E.) coli and
Klebsiella spp. or viruses (HIV-1, Zika and Mumps orthorubulavirus) [46,47]. Furthermore, in
this instance, animal experiments have clarified the detrimental role of infiltrating monocyte-
derived macrophages in the promotion of local inflammation, even if the differentiation of
peripheral monocytes into testicular macrophages needs further demonstration [48]. Moreover,
infected testicular macrophages have been shown to alter SC TJ and interrupt the BTB [49].

Testicular macrophages have been divided into three groups: (1) ED-1 recognizing
macrophages, a class of pro-inflammatory cells, which produce tumor necrosis factor-alpha
and interferon-gamma; (2) ED-2 macrophages, which exert anti-inflammatory activities
by release of IL-10; (3) ED1+ED-2 macrophages, which are a source of nitric oxidase
synthase (NOS) [46,47]. ED2+ cells are the majority of the testis macrophages that support
a tolerogenic milieu in this organ [50].

(b) Dendritic Cells

Dendritic cells (DCs), as professional antigen-presenting cells (APCs), play a tolero-
genic effect in the testis, principally leading to Treg cell activation in response to normal
sperm antigens [51]. Furthermore, indoleamine 2,3-dioxygenase (IDO), whichcatalyzes
the tryptophan metabolism and generates kynurerine, has been found in activated DCs,
thus contributing to immune privilege [52]. In fact, kynurerine, acting as a ligand for aryl
hydrocarbon receptors on T cells, induces the generation of Foxp3+ Treg cells [51]. Of note,
IDO has been shown to induce Treg cell activation in tumors and pregnant uterus, which
are also privileged sites, like the testis [53,54].

Under pathological circumstances, in azoospermic humans testicular DCs are able to ac-
tivate autoreactive T cells, upregulating co-stimulatory molecules, proinflammatory cytokines
and major histocompatibility complex class-II (MHC-II), thus leading to male infertility [55,56].

(c) T Cells

Treg cells (T cells) have been detected in the mouse, rat and human testis, where they
reside in the draining lymph nodes, thus interacting with tissue-specificautoantigens [57].
Located in such a strategic position, Treg cells exert their suppressive function, thus pro-
tecting spermatozoa from autoimmune attacks. In this respect, patients with autoimmune
regulator gene mutation associated to a defect of Treg cells undergo a chronic testicular
inflammation [58]. In chronic inflamed human azoospermic testis, evidence has been
provided that Foxp3+ Treg cells are decreased with an increase in the proinflammatory T
cell subset, T helper (h) 17 cells [59]. In rat experimental autoimmune orchitis (EAO), CD8+,
CD25+, Foxp3+ and CD4+, CD25+, Foxp3+ and Treg cells are increased in the early phase,
while the latter subset decreases in the chronic phase [60].
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All the above evidence suggests that Treg cells are overly critical in the prevention
of organ-specific autoimmunity and maintenance of the immune privilege in the testis.
Testicular Th1 cells seem to be necessary for supporting immune homeostasis in this organ.
However, an excessive activation of these cells may contribute to autoimmune orchitis [61].
Further studies have proven the intervention of Th17 cells in the later phase of autoimmune
orchitis, thus hampering the function of Treg cells, also contributing to the subversion of
the testis structure and spermatogenesis [62].

T cytotoxic (c) lymphocytes (CD8+ cells) harbor the testis in a percentage which is
2-fold higher than that of Th cells [63]. Testicular CD8+ cells are functionally associated with
resident macrophages or Leydig cells and take part in graft survival [64]. In this respect,
pancreatic and islet transplantation in the testis undergoes a lower rate of rejection with an
elevated induction of Treg cells [65,66]. This may depend on the SC-mediated activation
of Treg cells or on the less potent cytotoxic activity of testicular Tc lymphocytes [67]. To
complete the above issue, it is worth mentioning the relationship between T lymphocytes,
Leydig cells and SCs, respectively. Leydig cells harbor the interstitial region between
seminiferous tubules and represent themajor source of T [68]. Co-cultures of Leydig cells
and T cellshave revealed the suppressive effect of the former on the latter, also in view
of the binding of Leydig cells to T cells viavascular adhesion molecules [69,70].Androgen
receptors are expressed on T cells and, therefore, Leydig cells can modulate their function
through androgen secretion.

Experimentally, depletion of T by ethane dimethane sulphonate gives rise to an
epididymal sperm granuloma and accumulation of CD4+ and CD8+ T cells, which can be
abrogated by supplementation of T [71]. Furthermore, in the EAO rat model, T replacement
inhibits the development of autoimmune orchitis through the expansion of Treg cells [72].
Conclusively, Leydig cells are able to limit the infiltration of T cells within the testis,
directly and indirectly. SCs are devoted to the protection of spermatogenesis, acting as
immunological sentinels. In this regard, it appears that SCs promote the differentiation
of tolerogenic DCs and Treg cells [73]. Of note, SCs behave as nonprofessional APCs,
expressing MHC-II molecules, thus mediating the expansion of Foxp3+ Treg cells [74].

In this direction, transplanted SCs protect syngeneic islet grafts, generating Treg cells
and decreasing release of IL-17 by T helper (h)17 cells [75]. In sum, SCs not only contribute
to the BTB composition but also keep on check detrimental T cell responses. The testicular
immune cells are expressed in Figure 3.
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1.4. Composition and Function of the Testicular Microbiota

The dogma according to which the testis is an immune privileged site has been
contradicted by the evidence that a few bacteria are able to colonize the gonad milieu.
In fact, the phyla Actinomycetota, Bacteroidota, Bacillota and Pseudomonadota have been
detected in testicular biopsies of azoospermic patients [76]. Moreover, the phyla Bacillota,
Actinomycetota, Bacteroidota and the genera Blautia, Clostridium and Prevotella were found
in testicular specimens of infertile men [77]. In another report, in dyspermic patients and
healthy donors Lactobacillus, Pseudomonas, Prevotella and the phyla Pseudomonadota, Bacillota,
Actinomycetota, Bacteroidota and Fusobacteria were identified, with the genus Prevotella being
inversely associated with sperm concentration, while the Pseudomonas genus was correlated
with sperm motility [78,79].

Despite the detection of the testicular microbiota, its role in the testis is still debated. Ac-
cording to a recent report, testicular microbiota seems to expand IL-17, producing gamma-
delta T cells during puberty, promoting gonadal immune surveillance [80]. It is noteworthy
that current research in this specific field has been focused on the link between gut mi-
crobiota and testicular microbiota. In the zebrafish model, the genera Vibrio, Aeromonas,
Pseudomonas and Plesiomonas spp. have been detected in both gut andtestis [81,82]. In the
same model, excessive fat intake led to a dramatic reduction of the genus Vibrio and Ple-
siomonas spp., with a subversion of signal transduction mechanisms, amino acid transport
and metabolism. Furthermore, testicular microbiota regulates the signaling mechanisms of
vitamin K and vitamin A and its alteration may change the composition of the extracellular
matrix, ultimately leading to male infertility [83,84].

In this direction, evidence has been provided that in a metabolic syndrome model,
vitamin A deficit alters the gut–testis axis, finally resulting in an impaired spermatogen-
esis [85,86]. The gut–testis axis is supported by experimental evidence. Transplantation
of fecal flora from high-fat diet (HFD) to normal mice caused an increase in Bacteroidota
phylum and Prevotella genus in normal mice followed by intestinal inflammation and endo-
toxemia, but mostly by an impaired spermatogenesis [82,87]. In the human counterpart,
male infertility is characterized by a negative correlation between Bacteroidota phylum
and Prevotella genus with sperm viability as a result of the “leaky gut hypothesis”. Thus,
intestinal endotoxins may impede the T synthesis in Leydig cells, thus provoking a decrease
in spermatozoa [88]. More precisely, endotoxins via binding to the TLR-4 expressed on
immune cells and epithelial cells can activate the NF-kB pathway with massive release of
proinflammatory cytokines [89,90]. In turn, cytokines activate the xanthine oxidase system,
thus generating, elevated levels of reactive oxygen species (ROS) and oxidative stress [91].

Conclusively, the bacterial translocation-mediated inflammation can account for en-
dothelial damage, subversion of the BTB and alteration of the spermatogenesis and sperma-
tozoa viability [92]. Additionally, DCs and macrophages, which infiltrate the epididymis,
are able to capture spermatozoa, thus, contributing, to the impairment of spermatoge-
nesis [93]. Another link between gut microbiota and male reproduction is represented
by the endotoxin-mediated insulin resistance (IR), as an expression of altered intestinal
permeability [94–96]. IR stands for an event of pathogenetic relevance since it alters both
gut microbiota and spermatogenesis. In fact, in infertility models with IR, higher levels of
Saccharibacteria phylum and lower levels of the phyla Actinomycetota and Verrucomicrobia
have been observed in comparison to controls without IR [97]. Parallelly, increased IR
is associated with a decreased secretion of T by Leydig cells also in view of a reduced
gonadotropin release [98]. In Figure 4 the gut–testis axis is described.
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Figure 4. The gut–testis axis. The existence of the gut–testis axis is supported by different evidence.
Fecal transplantation from high-fat diet mice to normal mice accounts for endotoxemia occurrence
and altered spermatogenesis. In turn, endotoxemia abrogates synthesis of testosterone from Leydig
cells, thus reducing the number of spermatozoa with increased release of pro-inflammatory cytokines.
Insulin resistance as a result of an altered intestinal permeability leads to a reduced spermatogenesis.

1.5. Seminal Dysbiosis with Particular Reference to Male Infertility

The influence of seminal dysbiosis is an issue of current interest. Dyspermic conditions,
i.e., oligo-azoospermia, asteno-azoospermia and azoospermia, have been investigated in
terms of microbial composition of seminal fluid. For instance, in azoospermic individuals,
Bacteroidota and Bacillota phyla are increased, while the phyla Pseudomonadota and Actino-
mycetota are reduced [98]. In the oligo-asteno-teratozoospermic patients, instead, the genera
Neisseria, Klebsiella and Pseudomonas and the phylum Bacillota are very abundant, but there
is a decrease in Lactobacillus [99]. In idiopathic non-obstructive azoospermic patients, the
Clostridium genus was decreased [100].

Quite interestingly, over the past few years, the influence of female microbiota on the
male microbiota has intensively been investigated. For instance, Gardnerella vaginalis and
the genus Lactobacillus have been detected in younger men’s seminal microbiota, while the
genera Pseudomonas, Flavobacterium and Acidovorax have been found in seminal fluid of older
individuals [101,102]. On the other hand, inflammatory seminal fluid is associated with
Streptococcus agalactiae, Gardnerella vaginalis and bacterial vaginosis-related bacteria [103].

1.6. Microbial-Mediated Male Infertily

Despite the presence of the BTB, the testicular immune arsenal and the local microbiota,
the testis can be invaded by urethral pathogens and sexually transmitted bacteria [104].
Acute epididymitis is a very frequent infection of the male reproductive tract, even if this
organ has a structure quite overlapping that of the testis [105]. More exactly, epididymis is
a less immunologically privileged site in comparison to the testis with a certain degree of
immune responsiveness in the caput and an inflammatory profile in the cauda [106,107]. In
epididymitis patients, the quality of semen is very low, with an alteration of the protein com-
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position of the sperm, thus contributing to male infertility [108,109]. Persistent pathogen
damage leads to fibrotic transformation and epithelial degeneration of the epididymis [110].

Due to the scarcity of human epididymal specimens, research has mainly been con-
ducted on rodent tissue samples. Experimental Gram-negative and Gram-positive infec-
tions in the mouse testis have revealed a strong proinflammatory cytokine response with
upregulation of NOS-2 [111]. Uropathogenic Escherichia coli (UPEC) infections in the mouse
are characterized by an activation of TLR4and TLR5 in the epididymis caput with liberation
of proinflammatory cytokines and type 1 interferon [112]. On the other hand, epididymal
cells respond to UPEC challenge with the production of the antimicrobial peptide defensin
b2, which is more effective than gentamycin in reducing bacterial load in both epididymis
and testis [113].

Chlamydia trachomatis (Ct) is the most frequent sexually transmitted pathogen in males,
leading to chronic inflammation and scarring of the male genital tract [114]. Ct antigens
bind to TLR2 and TLR4 and pathogen recognition receptors with massive liberation of
proinflammatory cytokines, which account for chronicity of inflammation [115]. As far as
viral diseases are concerned, mumps virus, an RNA virus, is the most frequent cause of
epididymitis and orchitis, which in turn cause male infertility [116]. COVID-19 has been
reported to infect the testis, impairing T secretion, thus inducing primary hypogonadism
or aggravating a preexistent status of hypogonadism [117]. In particular, a reduced number
of Leydig cells have been detected in COVID-19 patients along with a high expression
of angiotensin-converting enzyme 2 in the testis [118–121]. Additionally, involvement of
testicular T and B lymphocytes in COVID-19 infection has been reported [122]. Infections
of the male reproductive tract are illustrated in Figure 5.
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Figure 5. Microbial invasion of the testis. UPEC and C. trachomatis damage the male genital tract via
production of pro-inflammatory cytokines and nitric oxide, with tissue scarring. COVID-19 infection
is characterized by a reduction of Leydig cells, infiltration of T and B cells and elevated expression
of ACE-2.

1.7. Therapeutic Correction of Testicular Dysbiosis with Natural Products

In view of the connection between microbiota and male reproduction new therapies
have been explored. With special reference to personalized medicine, there is a large body
of evidence that nutrition can influence the composition of the microbiota, the quality of
sperm in terms of caloric content of food components, as well as fatty acid, carbohydrate
and protein profiles. In this regard, a high intake of saturated fatty acids may impair
male fertility, while a healthy dietary regimen, i.e., the Mediterranean diet (MED) con-
tributes to the preservation of the microbiota and sperm quality [123–125]. Conversely,
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the Western diet causes the rapid spread of obesity associated with hyperinsulinemia and
hyperglycemia, which lead to an altered sperm function [126,127].

On these grounds, nutritional interventions to protect male reproduction have been
adopted. For instance, MED has been shown to positively affect male reproductive perfor-
mance, especially through the consumption of extra virgin olive oil (EVOO). According
to [128], EVOO is able to change the sperm membrane lipid composition, reducing oxida-
tive stress and enhancing mitochondrial function. Furthermore, MED exerts a homeostatic
function in the endocrine–metabolic–immune axis, also shifting the gut microbiota towards
an anti-inflammatory profile [129,130]. It is likely that testicular microbiota may be posi-
tively affected by MED, but such an assumption needs scientific demonstration. Certain
natural products potentially effective in the restoration of testicular microbiota will be
illustrated in the following paragraphs.

(a) Probiotics

Probiotics by definition are “live microorganisms which when administered in adequate
amounts confer a health benefit on the host” [131,132]. They have been used to enhance
male reproduction, owing to their ability to protect the intestinal barrier, inhibit pathogen
growth and activate the immune response [133,134]. In astheno-azoospermic human
donors, 3 weeks’ supplementation of Lactobacillus (L.) rhamnosus and Bifidobacterium longum
improved sperm motility while reducing DNA fragmentation [135,136]. In another study,
administration of a symbiotic, Familact®, composed by Lactobacillus strains and oligo-
fructosaccharides, to idiopathic male infertility could enhance sperm quality and DNA
integrity, while reducing free radicals in the semen [137].

Experimentally, in HFD obese mice, supplementation of L. rhamnosus improved sper-
matozoa motility, increasing the number of Leydig cells [138]. In infertile mice, administra-
tion of Lactobacillus spp., Bacillus spp., Saccharomyces cerevisiae (beer yeast) and photosyn-
thetic bacteria cultures reduced sperm damage and improved motility [139].

(b) Prebiotics

Oligofructose, galacto-oligosaccharides and breast-milk oligosaccharides are the most
representative prebiotics, endowed with the ability to increase levels of Bifidobacterium and
Lactobacillus, as well as of SCFAs [140,141]. In a preclinical study, evidence has been pro-
vided that manno-oligosaccharides were able to accelerate sexual maturation in rats [142].
In particular, the decrease in blood corticosterone observed in this study could account
for the elevated levels of T and maturation of seminiferous tubules. To the best of our
knowledge, no clinical trials have been conducted to treat male infertility with prebiotics.

(c) Antioxidants

Vitamin C and vitamin E can exert especially beneficial effects in infertile men, reduc-
ing ROS levels, improving sperm motility and maintaining DNA integrity [143]. Among
other antioxidants, lycopene, present in tomatoes and red fruits, seems to display posi-
tive effects on the testicular mitochondria by modulating lipid peroxidation within the
mitochondrial membrane [144]. Conversely, other studies based on theadministration of
antioxidants did not show any improvement of semen biomarkers and DNA integrity in
infertile men [145,146].

(d) Polyphenols

Polyphenols are natural compounds, mainly contained in fruits, vegetables, oil, wine
and cocoa [147,148]. They exert potent anti-inflammatory and antioxidant activities on
different cell types, even including spermcells [149–151]. Experimental and human studies
have been undertaken with quercetin and resveratrol; however, results have been quite
controversial, since both polyphenols are endowed with antioxidant and pro-oxidant
activities [152,153].

Table 1 shows the main natural products putatively involved in the treatment of male
genital tract infections.
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Table 1. Natural products for the correction of testicular dysbiosis. Both probiotics and synbiotics
are able to improve sperm quality and motility in male infertility. In rats, manno-oligosaccharides
(prebiotics) promote sexual maturity. Polyphenols exert both antioxidant and pro-oxidant activities.
Among antioxidants, vitamin C and vitamin E are able to reduce ROS generation and improve
sperm mobility and DNA integrity. Lycopene enhances sperm performance via lipid peroxidation on
mitochondrial membranes.

Natural Products against Testicular Dysbiosis
PROBIOTICS PREBIOTICS POLYPHENOLS ANTI-OXIDANTS

• In astenoazoospermic human donors
• In idiopathic male infertility

symbiotic-induced
• Lactobacillus-mediated

improvement of enhancement of
sperm quality and reduction of
sperm motility and DNA
fragmentation free radicals in
the semen

Mann-oligosaccharides
acceleration of sexual

maturity in rats

Controversial results with
quercetin and resveratrol
since they are endowed

with both anti-oxidants and
pro-oxidants activities

• Vitamin C and vitamin E ->
reduction of ROS and improvement
of sperm mobility and DNA integrity

• Lycopene -> modulation of lipid
peroxidation on mitochondrial
membrane

2. Conclusions

A mutual cooperation between testicular immunity and microbiota contribute to nor-
mal spermatogenesis and sperm maturation. Such an equilibrium may be subverted by a
range of factors, even including concurrent pathologies, e.g., obesity, diabetes, infections
and trauma. Among novel therapeutic approaches to restore male infertility, a proper
nutritional regimen, as in the case of MED, may be useful in male infertility associated to
obesity and diabetes. Furthermore, supplementation of natural products, such as probi-
otics, prebiotics, antioxidants and polyphenols has been demonstrated to enhance male
reproductive function either in animal models or clinical trials. However, also, in view of
conflicting results, more clinical attempts are needed to establish the actual effectiveness of
natural products for the correction of testicular microbiota and immune function in the era
of personalized medicine.
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