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Abstract: Athletic performance is determined by many factors, such as cardiorespiratory fitness,
muscular strength and psychological features, which all interact simultaneously. The large Italian
National Olympic Committee database of Olympic athletes offers a unique healthy population
to verify the strength of the interplay among a number of major elements of training, including
autonomic nervous system (ANS) modulation, biochemical indicators and body composition, in a
system medicine approach. This observational, retrospective study involved 583 individuals. As part
of the yearly precompetitive examination, cardiac autonomic (heart rate variability), psychological,
physical (cycloergometer stress test), biochemical and body composition (BOD POD) evaluations were
performed. In subsequent analysis, we first considered the relationship between body composition
and single individual variables in a simple correlation matrix, including a multitude of variables; then,
Exploratory Factor Analysis (EFA) restricted the information to six latent domains, each combining
congruent information in relation to body composition. Finally, we employed a multiple quantile
regression model to evaluate possible relationships between ANSIs (index capable of synthetizing
ANS regulation) and the latent domains indicated by EFA reflecting body composition. We observed
a clear relationship between ANS and body mass composition parameters, as indicated by both
bivariate correlations and the quantile regression result of ANSIs versus the latent domain aggregating
mainly body composition data expressed in % (p = 0.002). In conclusion, these results suggest that
specific training may elicit parallel adaptation of ANS control and body composition. The analysis of
Olympic athletes’ data allowed us to obtain a better understanding of the complex, multidimensional
factors involved in determining sport performance. The latter appears to be determined by the
simultaneous interaction not only of cardiorespiratory fitness, muscular strength and psychological
features, but also of ANS cardiovascular modulation and body composition.

Keywords: autonomic nervous system; heart rate variability; sport; exercise training; elite athletes;
performance; body composition; multivariate statistics

1. Introduction

Olympic athletes represent a unique group among top sport performers, as they work
hard for many consecutive years not just to be allowed to participate in a competition, but
to gain the first position on the podium.

We previously figured that in addition to optimal physical training, accurately quan-
tified through the assessment of aerobic fitness and maximal oxygen uptake [1], other
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elements, such as psychological features and cardiovascular autonomic regulation may
play a key role in determining a winning phenotype [2]. The assessment of body weight
and body composition, moreover, offers a different, complementary view on the factors
involved in the determination of the athletic performance, according to the specific spe-
cialty and to its weight sensitivity [3]. In fact, the description of the degree of overall
performance in athletes should also consider that well-known determinants, such as fitness
and muscular strength [4], may simultaneously interact with other factors, suggesting
that a system approach might allow a more complete understanding [5]. Furthermore,
athletic performance is highly dependent on neuropsychological skills that are trainable [6],
interact with specific hormones, such as leptin [7], and are sensitive to individual stress
levels [8]. Finally, as an integrated function, exercise is based on the dynamical interaction
of a hierarchical neural network [9], whereby the “central command” [10] co-activates both
somatic and autonomic circuits in order to maintain homeostasis [11] in the context of
changing demands from the periphery, which are specific for every sport category [12].
Moreover, a few decades ago, it became clear that a major part of this complex activity is
orchestrated by the autonomic nervous system, which could be seen as a key component of
exercise performance [13] and of cardiac adaptation to training [14].

In the last decades, analysis of the beat-by-beat variability (V) of the heart period (or
rather its inverse: heart rate, HR) gained wide acceptance as a means to obtain proxies
of autonomic regulation [15]. Heart rate variability (HRV) appears particularly useful
in sports as a means to follow various steps of training [16], as does using miniaturized
portable instruments [17]. Over the last few years, the practical use of HRV in sport [16]
has focused on time-domain variables (essentially considering various indices of HRV,
such as standard deviation), while frequency-domain techniques, such as spectral analysis,
where considered to be still of research nature [18], and in spite of the interest elicited by
the potential capacity to distinguish between the vagal and sympathetic drives [19] and
their balance [20], are particularly useful in sport [21]. This approach may also account
for the multivariate relationship between cardiovascular autonomic regulation and other
systems’ components, such as body composition (e.g., muscle mass) [22], inflammation [23],
obesity [24] or stress [25], all orchestrated by a central organization [26]. In this context,
in addition to the well-known importance of the sympathetic nervous system [27], recent
experimental studies have provided convincing evidence of a direct influence of vagal
activity on weight control [28], thus furthering the model of sympathetic and parasympa-
thetic antagonistic interaction [26] beyond cardiovascular regulation. Investigators’ interest
towards a more extensive assessment of the relationship among biochemical indicators,
body composition [3] and autonomic regulation is, however, limited [29] by technical
barriers: the lack of standardization, possible intrusiveness, variable accuracy of the eval-
uation of body composition, complexity of the assessment of autonomic regulation and
cost. Considering the autonomic nervous system, the complexity of analytical techniques
and difficulty of interpretation, in particular if mechanistically considering one index at a
time, may act as barriers to the more extensive use of HRV in practice, particularly during
dynamic conditions, such as exercise [30]. In order to overcome some of these barriers,
we introduced an integrated, unitary Autonomic Nervous System Index for sports (AN-
SIs) [31], free of age and gender bias, using a ranking evaluation (from 0–100, higher is
better) based on a large benchmark population. This index may facilitate the practical
comprehension of data derived from autonomic nervous system study, permitting an easy
use in clinical and/or sport settings; for instance, comparing ANSIs values obtained in the
same individual over time in different training statuses, or defining different autonomic
profiles characterizing different sport specialties [31]. Considering body composition, in
recent years the introduction of a simple, inexpensive and friendly technique based on
air plethysmography (BOD POD) [32,33] permits a reasonably accurate [34] assessment
of essential elements of body composition (fat mass and fat free mass, both expressed in
absolute physical units, kg, and nominal % value) to be obtained [35], employing specific
equations according to a given population [3]. In this paper we used the large Italian
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database of elite Olympic athletes [36] to verify the strength of the interplay among the
autonomic nervous system, biochemical indicators, body mass and body composition in a
system medicine approach [5].

2. Materials and Methods

This observational, retrospective metabolic sub-study involved data from 583 (353 males
and 230 females; median age ± MAD (median absolute deviation): 24 ± 4 and 23 ± 4 years,
respectively; Mann–Whitney test: p = 0.842) elite athletes who took part in the selection
procedure for the 2016 Rio Olympic Games for the National Italian Olympic Committee
(CONI) [36]. The study protocol was guided by the STROBE statement [37]. Abbreviations
and definitions of variables are presented in Table 1; general anthropometric characteristics
of this population are presented in Table 2.

Table 1. List of the abbreviations and definitions of variables employed in the study.

Variables Units Definition

Alpha Index ms/mmHg Alpha index is a frequency domain index of cardiac baroreflex
BRS ms/mmHg Cardiac baroreflex sensitivity
HR beat/min Heart rate, i.e., number of cardiac beats per minute

RR mean ms RR interval obtained from a single lead ECG tachogram
RR TP ms2 RR total variance obtained from a single lead ECG tachogram

RR LFa ms2 Absolute power (a) of low frequency (LF) autoregressive spectral component
of RR variability (V)

RR HFa ms2 Absolute power (a) of high frequency (HF) spectral component of RRV
RR LFnu nu Normalized power (nu) of low frequency (LF) spectral component of RRV
RR HFnu nu Normalized power (nu) of high frequency (HF) spectral component of RRV

RR LF/HF . Numerical ratio between LF and HF spectral powers from tachogram
∆LFnu . Difference in LF power in nu between stand and rest
RR Ro . Tachogram index of self-similarity (range 0–1)

RR P_0v . Frequency of tachogram three beat pattern, no variations
RR P_2uv . Frequency of tachogram three beat pattern, unlike variations

AC msc Acceleration capacity index of the tachogram
DC ms Deceleration capacity index of the tachogram
SAP mmHg Systolic arterial pressure (resting)
DAP mmHg Diastolic arterial pressure (resting)

SAP Mean mmHg Mean values of continuous systolic arterial pressure recordings during rest
SAP TP mmHg2 Systolic arterial pressure variance (resting)

SAP LFa mmHg2 Absolute power (a) of low frequency (LF) autoregressive spectral component
of SAP variability

SAP HFa mmHg2 Absolute power (a) of high frequency (LF) autoregressive spectral
component of SAP variability

BMI Kg/m2 Body mass index
WC cm Waist circumference
BSA m2 Body surface area
FM% % Fat mass percent (BOD POD)

FFM% % Fat free mass percent (BOD POD)
Fat Mass kg Measured fat mass (BOD POD)

FatFreeMass kg Measured fat free mass (BOD POD)
Body Mass kg Measured body mass (BOD POD)

Body Volume L Volume of overall body
Chol TOT mg/dL Fasting total cholesterol (plasma)

HDL mg/dL Fasting high-density cholesterol (plasma)
LDL mg/dL Fasting low-density cholesterol (plasma)
TG mg/dL Fasting triglyceride (plasma)

GLUC mg/dL Fasting glucose (plasma)
Stress perception . Perception of stress

Fatigue perception . Perception of fatigue
4SQ . Subjective stress-related somatic symptoms questionnaire

ANSIs % Percentile ranked Autonomic Nervous System Index for sports
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Table 2. Anthropometric data: summary statistics (median ± MAD) and Mann–Whitney test.

Variables Females Males All Sig (2-Tailed)

n 230 353 583 (F vs. M)
Age (years) 23.00 ± 4.00 24.00 ± 4.00 23.00 ± 4.00 0.842
Weight (kg) 62.00 ± 6.00 79.00 ± 7.00 72.00 ± 9.00 <0.001
Height (m) 1.70 ± 0.05 1.83 ± 0.07 1.78 ± 0.08 <0.001

SAP (mmHg) 111.00 ± 6.00 125.00 ± 7.00 119.00 ± 9.00 <0.001
DAP (mmHg) 62.00 ± 4.00 65.00 ± 5.00 64.00 ± 4.00 <0.001

WC (cm) 75.00 ± 5.00 84.00 ± 4.00 81.00 ± 5.50 <0.001
BMI (kg/m2) 21.30 ± 1.23 23.29 ± 1.49 22.63 ± 1.80 <0.001

Abbreviations: Sig = MW test significance level; SAP = systolic arterial pressure; D = diastolic; WC = waist
circumference; BMI = body mass index.

As part of the preparticipation screening, all athletes underwent a complete history
and clinical evaluation, which included (i) a supine and upright indirect autonomic as-
sessment by way of autoregressive (AR) spectral analysis of RR Variability [20], (ii) a
standardized symptom-limited incremental bicycle ECG stress test, (iii) an assessment of
body composition, (iv) subjective stress symptom profiling, determined with a self-report
questionnaire that we introduced during the preparation for the Athens Olympic Games [8],
and (v) routine blood test analysis. This procedure took place at the Institute of Medicine
and Sports Science, CONI, Rome. All individuals whose data were utilized for this study
were cleared for active sports participation and were thus free from evidence of diseases or
disturbances that could interfere with results.

This study followed the principles of Declaration of Helsinki and Title 45, US Code
of Federal Regulations, Part 46, Protection of Human Subjects, Revised 13 November
2001, effective 13 December 2001, and was cleared by local Institutional Science Committee
(Istituto Medicina e Scienza dello Sport, Roma, Italy) and by Ethics Committee of University
of Milan (report dated 23 September 2019). All subjects gave their written informed consent.

2.1. Protocol

Subjects arrived at the clinic between 9.00 and 12.00 a.m., at least 2 h after eating a light
breakfast. After the initial clinical assessment, inclusive of a subjective stress evaluation
and routine biochemical analysis (a summary list is reported in Table 1), they underwent
the following tests: body composition, autonomic evaluation, incremental stepwise bicycle
exercise test.

2.1.1. Body Composition

Body composition was determined with air plethysmography, using BOD POD (Life
Measurements Inc., Concord, CA, USA). To maintain calibration within predetermined
accuracy, athletes enter the system wearing only a bathing suit and a cap. In stable resting
conditions, two measurements are obtained and their average is utilized to provide body
volume (in L), body mass (in kg) and derive % fat mass (FM) and % fat free mass (FFM)
with specific equations.

2.1.2. Autonomic Evaluation and Exercise Stress Test

All subjects were requested to avoid caffeinated beverages since waking and to keep
physical training in the preceding 24 h within intermediate levels. After a preliminary
10-min rest period in the supine position for stabilization and sensor placement, an ECG,
arterial pressure waveforms (Finometer, TNO, NL) and respiratory activity were contin-
uously recorded over a nominal 5-min period of supine rest (rest) followed by 5 min
standing up (stand). The ECG (CM5) and the respiratory signal were obtained with a
two-way radiotelemetry system (Marazza, Monza Italy). Data were acquired with a PC
at 250 samples/channel/s using a parabolic interpolation to improve R peak detection
accuracy. We used [20] an autoregressive algorithm to automatically compute power and
frequency of spectral components in the bandwidth of interest, discarding components
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of <5% power that are treated as noise [38]. The software tool was set so as to consider
components with a center frequency of 0.03–0.14 Hz as low frequency, and components
within the range 0.15–0.35 Hz as high frequency, recalling that “the HF component is
synchronous with the respiration” [20], using a high coherence between RR variability
and respiration as a confirmation. Autoregressive model generally considered parameters
from 10 to 12. Recordings of subjects with low-frequency breathing were discarded to
avoid entrainment and biased increased LF power. Additionally, recordings presenting
arrhythmias were not considered.

Moreover, athletes underwent an incremental stepwise bicycle exercise stress test
that was calibrated to last about 8–12 min, and was always performed as a last item of
the medical evaluation, in order to avoid the autonomic bias occurring after exercise. As
previously described, we employed two custom software tools: Heart Scope [38] to obtain
a series of indices of autonomic regulation through autoregressive spectral analysis of RR
variability under supine rest and during standing up [20] (see Table 1); and Dynascope [39]
to obtain acceleration and deceleration capacity [40] during exercise and recovery. Symbolic
dynamics of HRV were also assessed [41] and presented only to allow comparison with
other studies. Considering the sympathetic–parasympathetic antagonistic dynamics within
the “unbroken” unitary purpose of neural visceral regulation [26], we introduced a unitary
Autonomic Nervous System Index for sports (ANSIs) [31]. ANSIs is built as a radar
plot synthesis of a set of variables likely to individually contribute to overall cardiac
autonomic regulation in sports and thus treated as proxies of autonomic indices of RR
interval regulation [24]. ANSIs integrates the functional information related to cardiac
autonomic modulation at rest (RR, RR variance, HF nu), under gravitational stimulation
(change from rest to stand, ∆ LF nu) and during exercise (bradyslope and deceleration
capacity) [42]. Thus, all critical elements contributing to determine the cardiac autonomic
modulation profile during exercise [43] are integrated into ANSIs.

2.1.3. Subjective Somatic Stress Symptoms

As in a prior study [8], all subjects completed a self-administered questionnaire with
Likert scales about: (i) the appraisal of overall stress and (ii) fatigue perception from
0 (“no perception”) to 10 (“highest perception”); (iii). The subjective stress-related somatic
symptoms questionnaire (4S-Q), inquires about 18 somatic symptoms accounting for the
majority of somatic complaints. For scoring purposes, responses were coded from 0 (“no
feeling”) to 10 (“a strong feeling”); thus, the total score ranged from 0 to 180 [8].

2.2. Statistics

Statistical analyses were performed on the variables listed in Table 1 according to
a non-parametric and exploratory approach. Descriptive data were reported as median
± MAD, and the significance of differences between the two gender groups was tested
through the non-parametric Mann–Whitney (MW) test (2-tailed). Nominal significance
level was set at 0.05. The subsequent analysis was performed in three steps.

(1) Spearman correlation matrices of a representative subset of the study variables
were computed separately for males and females. We employed a color-coding schema
to highlight the strength of significance between individual indices and facilitate appreci-
ation of clustered correlations. The correlation coefficient (r) for all the distinct pairwise
comparisons within the two groups is reported in Figure 1a,b.
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ANSIs −0.682 0.682 −0.402 0.408 0.509 0.154 0.642 −0.635 0.666 −0.656 −0.524 −0.250 0.574 0.007 0.020 −0.144 0.034 −0.070 −0.021 0.219 −0.085 −0.010 −0.098 0.119 −0.206 −0.211 0.230 1
HR RRMean RR Ro Alpha I. RR TP RR LFa RR HFa RR LFnu RR HFnu RR LF/HF RR P_0v AC DC SAP SAP TP GLUC Chol TOT LDL TG HDL WC BodyMass BMI FatFreeMass FatMass FM% FFM% ANSIs

p ≤ 0.05 0.01 0.001

Figure 1. (a). Spearman correlation matrix of autonomic, biochemical and body composition in females. (b) Spearman correlation matrix of autonomic, biochemical
and body composition in males. Color-coded Spearman correlation matrix of selected autonomic and metabolic indices in Olympic athletes, separately computed for
females (top panel) and males (bottom panel). Notice that both correlation (r in each cell) and significance level (color-coded cells) are indicated.
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(2) In addition, we applied Exploratory Factor Analysis (EFA) (with the principal
component extraction method and varimax rotation) [44] to synthesize the amount of
information carried by the multitude of relevant experimental variables (23 in all plus
gender) that were selected from Table 1 considering their informative clinical content. As
previously described [45], EFA produced a smaller number of uncorrelated common latent
factors, corresponding to latent domains, from the entire set of the considered variables
without assuming any a priori assumptions on the data. We kept in analysis the first
common factors such that they reproduced together at least 70% of the total variance, as
indicated by the Variance Accounted For measure (VAF, in %), and, singularly, not less
than 5% of the total variance. These common factors were then interpreted using the factor
loadings (i.e., correlation coefficients between factors and variables) greater than or equal
to 0.4 in absolute value. If a single variable appeared to correlate highly with more than
a single factor (latent domain), it was attributed to the latent domain with which it had
the highest loading. The latent domains thus obtained may suggest hypotheses about the
nature of the modeling data structure and attribute a physiological meaning to groups
of variables.

(3) Finally, we employed a multiple quantile regression model [46] to evaluate possible
relationships between ANSIs (a proxy of autonomic nervous system control), considered
as the dependent variable with the median as the quantile to be predicted, and the latent
domains indicated by EFA, regarded as the model independent variables. In particular, we
provided approximate estimates of the latent domain effect sizes based on the standardized
beta coefficients and the Pseudo R2 index.

Computations were performed with commercial statistical packages (SPSS v 28, IBM,
Armonk, NY, USA; Excel, Microsoft 365, Microsoft, Redmond, DC, USA).

3. Results

Table 1 reports the abbreviations and definitions of variables employed in this study.
Table 2 reports summary anthropometric data for the entire study population. Notably,

age was essentially the same in the two gender groups (p = 0.842), while, as expected, weight,
height, arterial pressure, waist circumference and body mass index were significantly
greater in males (p < 0.001).

Table 3 also reports summary data regarding body composition, as determined by air
plethysmography (BOD POD, see Methods). As expected, all indices differed significantly
(p < 0.001) in the two gender groups. In particular, males showed a smaller FM% and
higher FFM% and a directionally similar result regards absolute (Kg) fat mass and fat free
mass. Body mass, body volume and BSA (body surface area) were, as customary, greater in
the male group.

Table 3. Common indicators of body composition: summary statistics (median ± MAD) and Mann–
Whitney test.

Variables Females Males All Sig (2-Tailed)

FM% (%) 19.35 ± 3.55 11.10 ± 3.00 13.50 ± 4.90 <0.001
FFM% (%) 80.65 ± 3.55 88.80 ± 3.00 86.40 ± 5.00 <0.001

Fat Mass (kg) 11.91 ± 3.10 8.65 ± 2.94 10.05 ± 3.35 <0.001
FatFreeMass (kg) 50.51 ± 4.47 69.43 ± 6.90 61.80 ± 9.67 <0.001
Body Mass (kg) 62.57 ± 6.08 78.46 ± 7.77 72.60 ± 9.30 <0.001

Body Volume (L) 59.13 ± 5.80 73.40 ± 7.35 68.44 ± 8.72 <0.001
BSA (m2) 1.72 ± 0.11 2.00 ± 0.13 1.89 ± 0.16 <0.001

Abbreviations: Sig = MW test significance level; BSA = body surface area.

Considering major metabolic indicators (Table 4), total and HDL cholesterol were
lower and glucose was higher in males, although remaining always within normal ranges.
Regarding subjective indices of stress (Table 4), both self-reported indices of stress and
fatigue were similar in the two groups; conversely, the 4SQ (subjective stress-related somatic
symptoms) score was lower in males. These data were not processed further. They are
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only presented to demonstrate a low involvement of the stress mechanisms in this healthy
subpopulation of elite athletes.

Table 4. Major metabolic and subjective stress indicators: summary statistics (median ± MAD) and
Mann–Whitney test.

Variables Females Males All Sig (2-Tailed)

Chol TOT (mg/dL) 182 ± 22 168 ± 20 173 ± 22 <0.001
HDL (mg/dL) 74 ± 10 61 ± 9 66 ± 10 <0.001
LDL (mg/dL) 93 ± 18 91 ± 18 92 ± 18 0.989
TG (mg/dL) 64 ± 13 64 ± 17 64 ± 15 0.624

GLUC (mg/dL) 92 ± 4 95 ± 4 94 ± 4 <0.001
Stress perception (.) 2 ± 2 2 ± 2 2 ± 2 0.120

Fatigue perception (.) 3 ± 2 3 ± 2 3 ± 2 0.387
4SQ (.) 17 ± 14 12 ± 11 14 ± 12 0.006

Abbreviations: Sig = MW test significance level; Chol TOT = total cholesterol; HDL = high-density lipoprotein;
LDL = low-density lipoprotein; TG = triglyceride; GLUC = glucose; 4SQ = subjective stress-related somatic
symptoms questionnaire.

The gender difference appeared more nuanced by observing autonomic indices (Table 5).
Nevertheless, as expected [47], males were characterized by an increased RR LFnu, a
reduced RR HFnu, an increased arterial pressure (SAP mean) and a slightly reduced Alpha
Index as compared to females, suggesting an autonomic nervous system cardiac regulation
shifted towards an enhanced sympathetic modulation. No significant difference was noted
in ANSIs: this index was built, in fact, in order to correct for gender and age differences,
rendering it more suitable to be used to define possible relationships among autonomic
nervous system control and other parameters such as, in the present study, data deriving
from body composition evaluation and biochemical data.

Table 5. Cardiac autonomic indices: summary statistics (median ± MAD) and Mann–Whitney test.

Variables Females Males All Sig (2-Tailed)

HR (bpm) 59.70 ± 7.23 57.73 ± 6.37 58.28 ± 6.57 0.029
RR mean (ms) 1005.02 ± 120.85 1039.38 ± 112.94 1029.57 ± 116.14 0.029
RR TP (ms2) 3672.69 ± 1902.73 3356.49 ± 1610.03 3493.89 ± 1716.71 0.374
RR LFa (ms2) 638.86 ± 339.92 918.18 ± 505.07 784.14 ± 446.78 <0.001
RR HFa (ms2) 1484.47 ± 1008.77 918.61 ± 615.45 1120.38 ± 761.38 <0.001
RR LFnu (nu) 30.94 ± 12.62 42.86 ± 15.20 38.43 ± 14.59 <0.001
RR HFnu (nu) 62.94 ± 14.45 50.75 ± 15.39 56.24 ± 15.37 <0.001

RR LF/HF 0.48 ± 0.28 0.86 ± 0.49 0.68 ± 0.41 <0.001
Alpha Index
(ms/mmHg) 27.80 ± 8.93 22.80 ± 7.98 24.80 ± 8.51 <0.001

BRS (ms/mmHg) 24.70 ± 9.47 21.16 ± 8.82 22.15 ± 9.03 0.007
RR Ro (.) 0.22 ± 0.06 0.23 ± 0.07 0.22 ± 0.06 0.076

SAP Mean (mmHg) 110.84 ± 10.12 125.58 ± 9.79 118.86 ± 11.02 <0.001
SAP TP (mmHg2) 13.12 ± 7.64 24.64 ± 14.16 19.97 ± 11.96 <0.001
SAP LFa (mmHg2) 1.81 ± 1.13 2.82 ± 1.79 2.33 ± 1.48 <0.001
SAP HFa (mmHg2) 0.92 ± 0.50 1.14 ± 0.68 1.03 ± 0.59 0.086

∆ LF (nu) 45.47 ± 13.28 39.09 ± 15.60 42.65 ± 14.51 0.002
ANSIs (%) 49.81 ± 25.95 50.58 ± 24.04 50.28 ± 25.00 0.692
RRP_0v (.) 8.80 ± 5.22 14.00 ± 7.50 11.50 ± 6.34 <0.001

RRP_2uv (.) 31.62 ± 10.51 26.47 ± 9.98 28.38 ± 10.15 <0.001
AC (ms) 2.95 ± 0.52 3.12 ± 0.59 3.05 ± 0.57 0.006
DC (ms) 3.47 ± 0.93 2.96 ± 0.96 3.16 ± 0.98 0.032

Abbreviations: Sig = MW test significance level; HR = heart rate; TP = total power, i.e., variance; LF = low
frequency; a = absolute value; nu = normalized units; HF = high frequency; BRS = baroreflex sensitivity;
Ro = regularity index; SAP = systolic arterial pressure; ANSIs = Autonomic Nervous System Index for sport;
RRP = symbolic pattern; AC = acceleration capacity; DC = deceleration capacity.
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The two Spearman correlation matrices reported in Figure 1a for females and 1b
for males, show the strength of the bivariate relationships among the indices of cardiac
autonomic regulation (both considering all the single indices derived from the analysis
and considering the unitary ANSIs), arterial pressure, indices of body composition and a
relevant set of biochemical indices.

A color-coded presentation highlights that, more evidently in males, autonomic indices
(HR, RR Mean, RR Ro, Alpha Index, RR TP, RR LFa, RR HFa, RR LFnu, RR HFnu, RR
LF/HF and RR P_0v) showed a significant correlation with body composition indices (in
particular, FM%, FFM%, fat mass). ANSIs correlated with % indices of fat and fat free mass,
and, in addition, with HDL and glycaemia. In females, a significant correlation between
autonomic indices and body composition/metabolic indicators was apparent, particularly
for the baroreflex Alpha Index and ANSIs (with FM% and FFM%).

Figure 2 depicts the results of EFA: this approach to data analysis captures more than
70% of information embedded in the data set, as expressed by the total variance. The
23 variables selected from the autonomic modulation analysis, body mass composition and
biochemical analysis, together with gender (0 = female, 1 = male), linked to six different
common factors (latent domains) of progressively decreasing strength (from 15.03% for
factor 1 to 9.81% for factor 6). Of these, the first three factors each explained more than
12% of the total variance and might thus be considered of major importance. The scree plot
(upper panel, Figure 2) proved that the remaining factors from number seven onwards were
negligible. It may be noted that: the first factor (15.03% VAF) aggregated all dimensionless
HRV-derived variables (expression of frequency domain analysis of HRV). The second factor
(14.04% VAF) aggregated gender and other parameters that, as expected, are influenced
by it (HDL cholesterol, waist circumferences, BMI, and above all, raw values of body
mass, in kg). The third factor (12.60% VAF) aggregated body composition data expressed
in % and fat mass in Kg. The fourth factor (10.88% VAF) aggregated indices of HRV
power expressed in absolute values (expression of time domain analysis of HRV). The fifth
factor (10.87% VAF) aggregated all other biochemical parameters, while the sixth factor
(9.81% VAF) aggregated the remaining variables.

Finally, Table 6 reports a synthesis of the multiple quantile regression analysis of
ANSIs versus the six latent domains as given by the extracted common factors. It should
be noted that in addition to a significant relationship, as expected, with latent domains 1, 4
and 6 (all aggregating variables derived from HRV analysis), latent domain 3 (aggregating
mainly body composition data expressed in %) was also significantly linked to ANSIs.
Latent domains 2 and 5 instead were not significantly linked with ANSIs. Moreover, the
latent domains 6 and 1, considered in this order, proved to have the largest effect sizes on
ANSIs, given their highest values of standardized beta coefficients (in absolute value) and
∆Pseudo R2.
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Figure 2. Exploratory Factor Analysis (EFA) of major autonomic and metabolic variables in Olympic
athletes. Top panel: Scree plot. Bottom panel: color-coded representation of the rotated factor loadings.
Colored cells depict clusters of variables based on their link with the extracted common factors, which
represent the primary latent domains to consider. These domains (ordered in decreasing sense
according to the individual VAF) are interpreted through the factor loadings as follows: oscillatory
(latent domain 1, yellow), body mass and gender (latent domain 2, grey), body composition (latent
domain 3, pink), amplitude (latent domain 4, blue), biochemistry (latent domain 5, ocher) and pulse
(latent domain 6, light blue).
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Table 6. Multiple quantile regression model of ANSIs against biochemical, body composition and
autonomic latent domains in Olympic athletes: estimation and significance test for the latent domain
effect sizes.

Latent Domain Standardized B
Coefficient (*) t (**) Significance (**) ∆Pseudo

R2 (***)

1 −0.545 −13.170 <0.001 0.171
2 0.064 1.533 0.126 0.004
3 −0.130 −3.080 0.002 0.012
4 0.254 6.251 <0.001 0.049
5 0.029 0.584 0.559 0.001
6 0.615 14.247 <0.001 0.204

Model quality measures: Pseudo R2 = 0.397; Mean Absolute Error (MAE) = 14.883
Note: The meaning of the six latent domains (represented by the extracted common factors) is provided below

Figure 2. (*) Standardized beta coefficients β̂∗
j are computed with the general formula: β̂∗

j = β̂ j
σ̂j
σ̂y

, where β̂ j is the
coefficient estimate for factor j in the multiple quantile regression, σ̂j is the standard deviation of factor j, which is
equal to 1 by construction, and σ̂y = 28.7423 is the computed standard deviation of ANSIs. (**) Student t-test is
based on the asymptotic normality of the parameter estimators. Significant regression coefficients are in bold.
(***) The ∆Pseudo R2 index is defined as: ∆Pseudo R2 = Pseudo R2 (modall)—Pseudo R2 (mod-j), where Pseudo
R2 (modall) refers to the model containing all the six latent factors, while Pseudo R2 (mod-j) refers to the model
that excludes factor j from the independent variable set, j = 1, . . . , 6.

4. Discussion

In this retrospective, observational, proof of concept investigation on Olympic athletes,
we observed a clear correlation between autonomic nervous cardiac modulation indices
and body mass composition parameters, as indicated by both the Spearman correlation
matrix computed for single cardiac autonomic variables and variables derived from the
analysis of body composition, as well as by the quantile regression result of ANSIs versus
the latent domain aggregating mainly body composition data expressed in % (factor 3).

4.1. ANSIs as a Proxy of Cardiac Autonomic Regulation in Athletes

The study of cardiac autonomic modulation using a simple, non-invasive method-
ology, may offer great chances in a clinical setting. Nevertheless, many methodolog-
ical/interpretative [48] pitfalls in the last decades have hindered this opportunity. In
particular, the common use of multiple indicators considered as indices of either vagal or
sympathetic cardiac functionality (see e.g., [15]) in the absence of an integrated approach
may hamper a reliable inference on underlying neural mechanisms. Consequently, it is
often only experts who can appreciate the physiological or pathophysiological role of
cardiac neural (dys) regulation either in clinical (where ANS might play a role in multiple
important conditions: from sudden coronary death to obesity or cancer) or physiological
settings (e.g., in determining athletes’ competition results) [2]. Moreover, we may also
consider that in exercise/sport settings, one specific variable (the total variance of RR
interval variability, in this paper defined as RRTP), being easy to detect (particularly when
using 24-h ECG recordings), caught most of the attention of researchers/clinicians. This
variable, considered as a marker of vagal cardiac modulation, may well reflect the effect of
aerobic training, while it may not be suitable for unveiling the changes in the autonomic
nervous system cardiac control characterizing high intensity training and top performances,
conditions that are characterized by a shift towards sympathetic dominance in neural
cardiac regulation [2,21]. Keeping all these considerations in mind, we planned to obtain
an index of autonomic cardiac regulation in sports (ANSIs) that would be free from gender
and age bias, integrating in a single index proxy information on supine rest, standing up
and exercise domains [31], and that could be simple to apply in a practical setting (clinical
or physiological). Accordingly, the various cardiac autonomic markers were integrated
into a unitary proxy by way of a radar plot. Furthermore, the use of a percentile ranking
permitted an individual evaluation within the reference population [47]. Summarizing, the
unitary index (ANSIs) we adopted attributes a measure of performance (0–100, higher is
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better) of cardiac autonomic regulation to every athlete. For simplicity, only autoregressive
spectral analysis [38] and dynamic evaluation [42]-derived indices were employed, in the
context of a simplified cybernetic dual-fed back model [49]. Of particular interest is that
ANSIs, which is built considering only variables derived from heart rate variability, corre-
lated well with Alpha Index (a marker of the overall gain of cardiac baroreflex sensitivity)
both in male and female athletes. These data are corroborated by previous data of our
group [45], which showed a strong correlation between a similar index (ANSI) and cardiac
baroreflex sensitivity (Alpha Index) in a relatively large general population. These data
suggest that proxy indices estimated from RR variability analysis (such as ANSIs) may be
useful to derive information that correlates to cardiac baroreflex sensitivity, which plays
an important role in exercise training, with economic and organizational advantages not
requiring the need to record blood pressure variability continuously.

4.2. Body Composition in Olympic Athletes

Knowledge of body composition is a key element of metabolic assessment, especially
in athletes [33], where frequent accurate measures [34] are the key aspects of training
assessment. Accordingly, we based our investigation on a simple measuring method (BOD
POD) with low intrinsic error (±3%) in order to obtain accurate estimates of body fat
categories and body fat distribution for both genders [50] in a large cohort of elite athletes
of different sport disciplines. This aspect might be considered a point of critical strength of
the present study, taking into account the importance of studying body composition, using
state of the art non-invasive methodology, in a large (n = 583) population of elite (they all
took part in the selection procedure for Olympic games) athletes of both genders. To the
best of our knowledge, previously published papers only considered either a small number
of athletes or non-elite athletes, or employed less accurate methodologies [33,51–53].

4.3. Relationship between Body Composition and Autonomic Cardiac Regulation

The link between body composition and autonomic cardiac regulation may be of great
practical interest: both these areas are intertwined in determining athletes’ performance
and their clinical assessment might be of interest to optimize it. With aerobic training
there is a loss of fat and an increase in proxies of vagal cardiac control [54]. A role of the
parasympathetic nervous system in weight control is also suggested by recent experimental
findings [28], while a multitude of studies, conversely, focused on the simpler relationship
of BMI with indices of cardiovascular sympathetic activity [55]. Relatively few studies have
addressed the role of body composition [56] showing that a greater share of fat correlates
with an increased sympathetic cardiac index. In this study, we had the possibility to
investigate, in a large cohort of elite athletes of different sport disciplines, body composition
employing the best non-invasive technology. In the present study, we observed a clear
correlation between neural autonomic cardiac modulation and body mass composition
parameters, as indicated by both the Spearman correlation matrix (Figure 1) and the
quantile regression result of ANSIs versus the latent domain 3, which aggregated mainly
body composition data expressed in % (Table 6). Many mechanisms may be considered in
order to explain the link between ANS and body composition both in the general population
and in athletes. In this latter case, we may consider irisin [57] as a link between metabolism
and exercise or improved autonomic regulation [58]. On the contrary, ANSIs did not show
any significant relationship with factor 2 (which aggregated HDL cholesterol, BMI, waist
circumference, body mass and free fat mass expressed in kg) and with factor 5 (which
aggregated biochemical parameters). These data may reflect, from one side, the small
extension of the biochemistry data range and, from the other side, the health status of
this peculiar healthy population. Instead, the observed correlation between indices of
autonomic cardiac regulation and indices of body composition (Figure 1) may suggest that
a specific training may elicit parallel adaptation either in ANS cardiac control or in body
composition, thus underlining the complex multivariate relationship among cardiovascular
autonomic regulation and other systems’ components and the need to consider all of them.
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4.4. Limitations

Some limitations of our study should be acknowledged. First, our findings are derived
from Olympic athletes and thus cannot be easily extrapolated to normal untrained individ-
uals. Second, our study is based on a retrospective analysis of data previously collected for
other purposes. Their collection, however, was standardized, so that it might be possible
to replicate the results of our analysis since the data we have considered were obtained
from the clinical procedure employed routinely for the yearly preparticipation assessment
of Olympic athletes in Rome. Moreover, in this article we focus only on the relationship
between ANS and body composition. Actually, there are other important factors that
lead athletes to increase their performance such as, for instance, cardiorespiratory fitness,
muscular strength and psychological features, which all interact simultaneously.

5. Conclusions

In this investigation on Olympic athletes, we observed a clear correlation between
neural autonomic cardiac modulation and body mass composition parameters, suggesting
that specific training may elicit parallel adaptation in cardiac ANS modulation and in
body composition. This observation, albeit preliminary, may add some knowledge to
be potentially considered in order to help athletes to improve their performance close to
cardiorespiratory fitness, muscular strength and psychological features. Moreover, this
observation can support the growing amount of data showing an important link between
the autonomic nervous system and metabolic controls, a link which may be important
to better understand the increased risk of chronic non-communicable disease present in
overweight/obese subjects.
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