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Abstract: Cancer is the second major cause of disease-related death worldwide, and its accurate early
diagnosis and therapeutic intervention are fundamental for saving the patient’s life. Cancer, as a
complex and heterogeneous disorder, results from the disruption and alteration of a wide variety
of biological entities, including genes, proteins, mRNAs, miRNAs, and metabolites, that eventually
emerge as clinical symptoms. Traditionally, diagnosis is based on clinical examination, blood tests for
biomarkers, the histopathology of a biopsy, and imaging (MRI, CT, PET, and US). Additionally, omics
biotechnologies help to further characterize the genome, metabolome, microbiome traits of the patient
that could have an impact on the prognosis and patient’s response to the therapy. The integration of all
these data relies on gathering of several experts and may require considerable time, and, unfortunately,
it is not without the risk of error in the interpretation and therefore in the decision. Systems biology
algorithms exploit Artificial Intelligence (AI) combined with omics technologies to perform a rapid
and accurate analysis and integration of patient’s big data, and support the physician in making
diagnosis and tailoring the most appropriate therapeutic intervention. However, AI is not free from
possible diagnostic and prognostic errors in the interpretation of images or biochemical–clinical data.
Here, we first describe the methods used by systems biology for combining AI with omics and then
discuss the potential, challenges, limitations, and critical issues in using AI in cancer research.

Keywords: artificial intelligence; medical technology; smart health; digital health; omics technologies;
imaging; diagnosis; personalized medicine

1. Introduction

Delayed diagnoses, misdiagnoses, and missed diagnoses impact patient health and
safety, and have great societal consequences. Mistakes in diagnosis may account for up
to 60% of all medical errors and are accountable for up to 80,000 deaths in U.S. medical
centers each year [1]. Typically, clinicians have limited time to make decisions based on the
interpretation of huge amounts of laboratory, imaging, and clinical data, and this increases
the risk of underestimating (or sometimes overestimating) some data. Furthermore, subjec-
tive factors, such as personal experience and medical specialty, are potential bias factors
that influence the accuracy of diagnosis [2].

Artificial Intelligence (AI), a field of computer science used for prediction and automa-
tion, has emerged as a potential solution to promote a precision approach in healthcare and
is expected to reduce errors caused by human judgment in various medical domains [3].

Cancer is the leading cause of death in people, accounting for an estimated 10 mil-
lion deaths by 2020 [4]. It is a complex disease resulting from anomalies in physiological
processes involving genes, coding and non-coding RNAs, proteins, metabolites, and other
biomolecules [5,6]. To understand such a complex disease from its onset to its progression,
multi-omics analysis of these numerous bio-entities is required. Modern biotechnologies
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allow for the high throughput analysis of the sequence and expression of many genes (ge-
nomics and epigenomics), proteins and their post-translational modifications (proteomics,
phospho-proteomics and glycol-proteomics), RNAs (RNA transcriptomics), non-coding
RNAs (including miRNAs and long-non-coding RNAs), and metabolites (metabolomics)
from the same organism [7]. However, a platform where all these big data are integrated
to uncover correlations and synergisms among the biological pathways and processes is
required. Systems biology combines the power of AI and of multi-omics technologies for
modeling the signaling and metabolic signature of a given cancer. This is instrumental
for designing effective diagnostic and prognostic markers and novel and patient-tailored
therapeutic interventions.

Despite difficulties in providing individualized and data-driven care, advancements in
screening, diagnosis, treatment, and survival rate in cancer patients have been remarkable
in recent decades [8]. Early detection and prognosis prediction represent two crucial clinical
needs for limiting cancer progression. Body and organ computed scan methodologies, the
histopathology imaging of biopsies, and a range of blood tests for detecting biomarkers
are instrumental in the initial diagnosis process and for determining cancer staging, the
grade of malignancy, and prognosis. These approaches do not provide information on the
molecular alterations that precede and follow the onset of cancer. Molecular and omics
technologies can provide a genetic, epigenetic, and metabolic profile of the tumor that can
better define such alterations thus helping to determine the most appropriate treatment as
well as predict the response to therapy [9,10].

The development and extensive use of high-throughput technologies has ushered in
the era of biological and medical big data. This has led to the accumulation of data sets
on a large scale, thereby opening a wide range of potential applications for data-driven
methods in cancer treatment, spanning from basic research to clinical practice: molecular
tumor characterization, tumor heterogeneity, drug discovery and potential therapeutic
strategies. As a result, the data-driven research field of bioinformatics adapts data mining
techniques, such as systems biology, machine learning, and deep learning, which are
discussed in this review paper. Systems biology uses a data-driven approach to identify
important signaling pathways. The pathway-oriented analysis is extremely important
in cancer research because it helps researchers comprehend the molecular features and
heterogeneity of tumors and tumor subtypes [11]. In this context, the proper clinical care
for cancer patients can be improved by the introduction of AI in cancer detection, diagnosis,
and treatment [12–15].

AI-based technologies applied to oncology aim at improving clinical practice, includ-
ing but not limited to the early and accurate diagnosis and prediction of personalized
outcomes (i.e., prognosis and therapy response), by acquiring a profound perception of
tumor molecular biology through the association of multiple biological parameters [16].

Artificial Intelligence in Medicine at Glance

AI is meant to mimic human cognitive abilities in elaborating the information but at a
much higher speed and with no emotional interference. The main types of AI that apply
to cancer-patient healthcare include machine learning (ML) and its evolved subtype deep
learning (DL), which can assist in making a rapid and more accurate diagnosis (based on
biochemical, clinical data, and medical imaging), in discovering and developing new drugs,
in designing personalized therapy, in predicting the therapy response, and in guiding the
robotic surgery [17,18] (Figure 1).
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Figure 1. Overview of the applications of AI to cancer diagnosis and oncology research field. The 
scheme depicts the main fields of application of AI discussed in this review. Abbreviations: com-
puted tomography, CT; gene expression models, GEMs; machine learning, ML; magnetic resonance 
imaging, MRI; nano differential scanning fluorimetry, Nanodsf; next-generation sequencing, NGS; 
positron emission tomography, PET; partial least squares analysis, PLS; ultrasound imaging, U/S. 

Current AI systems have been involved to be used in a variety of clinical settings, 
including (i) image-based computer-aided discovery and diagnosis in various medical 
specialties, (ii) the translation of genomic information for recognizing genetic variants us-
ing high-throughput sequencing technologies, and (iii) the prediction and tracking of pa-
tient’s prognosis [19,20]. Moreover, they have been implemented as well in (iv) the dis-
covery of new biomarkers by combining omics and phenotype data, (v) the detection of 
health status using biological signals (e.g., enzyme activity and protein concentration) ob-
tained from wearable devices, and (vi) the production and implementation of autono-
mous robots in medical procedures [19,20]. 

The creation of AI models that predict the properties of vast and interconnected net-
works found in living organisms would allow for a thorough examination of how signal-
ing molecules generate functional cellular reactions. Machine learning (ML) algorithms, a 
subset of AI, are capable of making decisive interpretations of large, complex data sets, 
making them an effective tool for analyzing and comprehending multi-omics data for pa-
tient-specific observations [20]. We can anticipate the remarkable growth of AI in the med-
ical field in light of the digital acquisition of high-dimensional and annotated medical 
data, the progress of ML methods, open ML data science, and advancements in computa-
tional power and storage services [20]. AI is expected to make it easier to diagnose specific 
illnesses in patients. Commonly, deep learning (DL) architectures are analogous to artifi-
cial neural networks of multiple non-linear tiers. Over the past decade, a large variety of 
DL designs have been developed depending on the input data type and the purpose of 
the research. Moreover, the assessment of the model’s efficiency has revealed that DL ap-
plication on cancer prognosis surpasses other traditional ML techniques. DL frameworks 
have also been used in cancer diagnosis, classification, and treatment by utilizing genomic 

Figure 1. Overview of the applications of AI to cancer diagnosis and oncology research field. The
scheme depicts the main fields of application of AI discussed in this review. Abbreviations: computed
tomography, CT; gene expression models, GEMs; machine learning, ML; magnetic resonance imaging,
MRI; nano differential scanning fluorimetry, Nanodsf; next-generation sequencing, NGS; positron
emission tomography, PET; partial least squares analysis, PLS; ultrasound imaging, U/S.

Current AI systems have been involved to be used in a variety of clinical settings,
including (i) image-based computer-aided discovery and diagnosis in various medical
specialties, (ii) the translation of genomic information for recognizing genetic variants using
high-throughput sequencing technologies, and (iii) the prediction and tracking of patient’s
prognosis [19,20]. Moreover, they have been implemented as well in (iv) the discovery of
new biomarkers by combining omics and phenotype data, (v) the detection of health status
using biological signals (e.g., enzyme activity and protein concentration) obtained from
wearable devices, and (vi) the production and implementation of autonomous robots in
medical procedures [19,20].

The creation of AI models that predict the properties of vast and interconnected net-
works found in living organisms would allow for a thorough examination of how signaling
molecules generate functional cellular reactions. Machine learning (ML) algorithms, a
subset of AI, are capable of making decisive interpretations of large, complex data sets,
making them an effective tool for analyzing and comprehending multi-omics data for
patient-specific observations [20]. We can anticipate the remarkable growth of AI in the
medical field in light of the digital acquisition of high-dimensional and annotated medical
data, the progress of ML methods, open ML data science, and advancements in compu-
tational power and storage services [20]. AI is expected to make it easier to diagnose
specific illnesses in patients. Commonly, deep learning (DL) architectures are analogous to
artificial neural networks of multiple non-linear tiers. Over the past decade, a large variety
of DL designs have been developed depending on the input data type and the purpose
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of the research. Moreover, the assessment of the model’s efficiency has revealed that DL
application on cancer prognosis surpasses other traditional ML techniques. DL frameworks
have also been used in cancer diagnosis, classification, and treatment by utilizing genomic
profiles and phenotype information. Systems biology has been an effective method to
comprehend the complex molecular profile of cancers, interpret the mechanisms of tumor
progression, and allow for the amalgamation of omics data as well as the characterization
of diverse tumors [21,22].

2. Omics Data for Identifying Cancer Metabolic Biomarkers

Omics technologies allow for the in depth analysis of the molecular characteristics
of cancer at both bulk and single-cell level, providing a wealth of multi-omics data that
challenge the capability of scientists and medical doctor to combine for drawing a consistent
picture of the multilayer complexity of cancer biology. Genomic, epigenomic, transcrip-
tomic, proteomic, and metabolomic data can be elaborated using appropriate models for
making predictions about prognosis and treatment response in a patient-tailored (personal-
ized) manner [13,15,22].

2.1. Survival Models

To find cancer metabolic biomarkers, survival models have been used more fre-
quently than partial least squares (PLS) models, ML models, and gene expression modeling
(GEM) [23] (Figure 2). The Kaplan–Meier method, the log-rank test, and/or the Cox regres-
sion model are representative survival models used in cancer studies. These models are
used to describe the likelihood of survival (or survival curve) for a group of patients after
treatment, compare the survival curves of two or more treatment groups, and describe the
effects of multiple explanatory (independent) variables, profiles of gene expression, and
metabolite concentration) on survival curves, respectively. In contrast to Kaplan–Meier
models, which must discretize their data, the Cox regression model has the advantage
of processing continuous values directly, minimizing data loss [24]. In their study, based
on GEM of seven major metabolic pathways, Peng and colleagues identified 30 tumor
subtypes in 33 different cancer types (such as breast invasive carcinoma, cholangiocarci-
noma, colorectal cancer, glioblastoma multiforme, gastrointestinal tumors, lung cancer,
pancreatic cancer, and ovarian serous cystadenocarcinoma, among others) and evaluated
the clinical utility of so-called metabolic expression subtypes. For this, correlations between
metabolic expression subtypes and their corresponding prognosis were investigated us-
ing the Kaplan–Meier method, log-rank test, and Cox regression model. Consequently,
subtypes with upregulated lipid metabolism appeared to have a better prognosis than
subtypes with upregulated glycemic, nucleotide, vitamin, and cofactor metabolism. The
association of various somatic mutations in cancer driver genes with metabolic expression
subtypes has also been discovered. Two transcription factors, SNAI1 and RUNX1, were
identified from knockdown studies as potential therapeutic targets for a subtype of cancer
with upregulated carbohydrate metabolism that consistently had a poor prognosis across
cancer types [23].

2.2. PLS Models

Partial least squares regression (PLS) was initially created as a regression model
that processes numerous independent variables that are correlated and produce numerous
dependent variables, which many statistical and ML techniques cannot directly handle. PLS
models and their variations, particularly PLS-discriminant analysis (PLS-DA) are frequently
used for the analysis of omics data with a focus on metabolomics [25]. PLS-DA has been
primarily used to extract insights from large datasets of omics data, such as identifying
metabolites from metabolome data that differentiate between cancer cells in their various
statuses. PLS-DA might have an overfitting issue too, like other data mining techniques, so
it needs thorough validation, frequently performed through cross-validation [26].
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Figure 2. Overview of the omics technologies exploited in cancer diagnosis/prognosis. The scheme
depicts the main omics models currently used in biomarker identification. Abbreviations: gene
expression modeling, GEM; partial least squares analysis, PLS.

PLS-DA and its variants have been used to analyze metabolome data to identify
a variety of cancers, including breast cancer, glioma, non-small cell lung cancer, oral
precancerous cells, cervical precancerous lesions, and prostate cancer [27,28]. Among its
advantages, PLS-DA allows for the analysis of highly collinear and noisy data. Moreover,
the calibration model provides a subset of useful statistics, including prediction accuracy,
scores and loading plots. However, a potential limitation has emerged when this method
was applied to metabolomics; the use of this model by non-experts may produce inaccurate
results, owing to a lack of appropriate statistical validation [29] (Table 1).

Table 1. Summary of the main advantages and limitations of PLS models.

Advantages Limitations

Ability to robustly handle more descriptor
variables Higher risk of overlooking ‘real’ correlations

Provide more predictive accuracy Sensitivity to the relative scaling of the
descriptor variables

Low risk of chance correlation

2.3. Genome-Scale Metabolic Models

Gene expression modeling (GEM) is a computational model based on the law of mass
conservation of metabolites and allows for the prediction of metabolic fluxes for entire
biochemical reactions taking place inside a cell by using numerical optimization [30,31].
Technically, GEM describes the participation of each metabolite for an entire set of biochem-
ical reactions in the form of a stoichiometric matrix and is simulated using varied forms
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of objective functions and constraints that reflect genetic and environmental conditions
of interest. As a result, GEM allows for the efficient simulation of a target cell’s metabolic
phenotypes under a wide range of genetic and environmental conditions. GEM can also
be integrated with omics data, such as RNA-seq, for building a cell-specific model and
thereafter modeling multicellular organisms. In comparison with ML models, GEMs gener-
ate more interpretable prediction outcomes that grasp a cell-specific metabolic phenotype.
GEM simulations, however, demand consideration. Due to the possibility of biologically
incorrect objective functions or constraints, it is advised to proceed with the analysis of the
predicted intracellular metabolic flux distributions from GEMs with caution. A representa-
tive issue is the use of constraints that do not accurately reflect a culture medium. Finally,
GEMs do not directly produce additional data for regulatory and signaling networks, which
are also crucial for understanding the physiology of a cell [32,33] (Table 2).

Table 2. Summary of the main advantages and limitations of GEM models.

Advantages Limitations

Explore metabolism in multiple cell types Uncertainties in the estimated parameters
regarding quantitative flux predictions

Validating or discovering biomarkers for
screening, diagnostics, prognostics, and/or

patient stratification

Ambiguous normalization of experimentally
quantified fluxes

Identify cancer-specific metabolic features that
constitute generic potential drug targets for

cancer treatment

2.4. Machine Learning Models

The classification task of disease prediction has been thoroughly studied in medical
oncology and cancer research, based on well-established machine learning algorithms for
dealing with binary or multi-class learning problems. Patient categorization would allow
for the development of ML-based predictive models capable of assessing risk stratification
with generalizable performance. Based on images and genetic data, DL models were trained
to classify and detect disease subtypes. These data-driven approaches demonstrated the
superiority of ML-based frameworks for leveraging heterogeneous datasets for improved
diagnosis and treatment [34].

2.5. Deep Neural Networks (DNNs)

Deep neural network (DNN) models are rapidly evolving and becoming more sophis-
ticated. They have been widely used in biomedical research across the board. Initially,
large-scale imaging and video data aided its development. While most biomedical data sets
are not considered big data, the rapid data accumulation enabled by NGS made it suitable
for the application of DNN models that require a large amount of training data [35]. In
2019, for example, Samiei et al. used TCGA-based large-scale cancer data as benchmark
datasets for bioinformatics machine learning research, such as Image-Net in computer
vision [36]. Following that, large-scale public cancer data sets like the TCGA encouraged
the widespread use of DNNs in cancer research [37] (Table 3).

Table 3. Summary of the main advantages and limitations of DNN models.

Advantages Limitations

Ability to handle complex data and
relationships Massive data requirement

Effective at producing high-quality results High processing and computational power

Extremely scalable because of its capacity to
analyze large volumes of data

Black box problem making them hard to debug
and understand how they make decisions



J. Pers. Med. 2023, 13, 1590 7 of 17

2.6. Graph Neural Networks (GNNs)

Graph neural networks (GNNs) have achieved great results and are being progres-
sively employed in a node classification task. It offers a strategy to acquire novel repre-
sentations of nodes by combining the features of its local neighborhood and connectivity.
Recently, some GNN-based approaches have been proposed to forecast the molecular sub-
typing of cancer. Rhee et al. created a graph convolutional network (GCN)-based model to
investigate the gene–gene alliance and information transmission for cancer subtyping [38].
Lee et al. developed a GCN model with a focus on the mechanisms to learn pathway-level
representations of cancer samples for their subtype classification [39]. Even though GNNs
are strong, it is reported that they are susceptible when the structure of the graph and
nodes’ features are polluted with noise [40]. Thus, a robust GNN model is required for the
precise and stable prediction of cancer subtypes [41] (Table 4).

Table 4. Summary of the main advantages and limitations of GNN models.

Advantages Limitations

Rapid processing of massive data Limited to a fixed number of points

Reliable performance in mining deep-level
topological information Time and space complexity are higher

Extracting text relationship and reasoning the
structure of graphics and images

Less handling of edges of graphs based on
their types and relations

3. Computational Models for the Prediction of Cancer Metabolic Biomarkers

Single-cell sequencing allows for the study of the molecular changes occurring in
individual cells within the tumor mass. Nonetheless, attributing a specific cellular anno-
tation (in terms of cell type or metabolic state) is challenging, in particular to distinguish
cancer cells in single-cell or spatial sequencing experiments. The information provided
by high-throughput single-cell sequencing provides not only the description of distinct
cellular annotations but also the functional annotation of single cells, for example the esti-
mation of the differentiation potential, vulnerability to metabolic changes, and a prediction
of cellular crosstalk [42]. However, the use of this technology also raises computational
difficulties [43]. One of the major challenges in single-cell data analysis is to attribute a cell
annotation to each cell analyzed [44]. The magnitude of the generated datasets renders the
manual annotation processes unfeasible, whereas the peculiarities of data generation have
stimulated the spread of novel and creative classification methods [45]. This limitation is
particularly found in datasets coming from cancer tissues, in which the variability in the
transcriptomic states does not conform to traditionally defined cell types [46,47].

In addition to the genome data, the transcriptome, proteome, and metabolome data
offer snapshots of a cell’s phenotype space. As shown by PCAWG58 and TCGA59, which
also provide transcriptome data in addition to genome data, the transcriptome, particularly
RNA sequencing (RNA-seq), is the most frequently generated omics data among these. To
perform more complex transcriptomic analyses, bulk RNA-seq has evolved into single-cell
RNA-seq (scRNA-seq) and spatial RNA-seq. To enable a greater understanding of cell
phenotypes, massive amounts of proteome and metabolome data are being generated for
various human cells [48,49]. The Human Metabolome Database (HMDB) and Human
Protein Atlas (HPA) are representative databases for the human proteome and metabolome,
respectively. Integrative omics analysis has gained importance since these omics data are
complementary to one another, and multiple omics data are frequently generated for a
target cell [50,51].

Several studies have combined NGS data with ML to propose a novel data-driven
methodology in systems biology [52]. Several network-based ML models have been im-
plemented to analyze cancer data and aid in the understanding of novel mechanisms in
cancer development [53,54]. Furthermore, the use of DNN models for large-scale data
analysis enhanced the accuracy of computational models for the prediction of the muta-
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tional landscape, molecular subtyping and drug repurposing [55–58]. A growing number
of DNN-based applications have recently integrated multi-omics and systems biology data
into the learned models. Such approaches aim to apply the DNN model to well-established
biomedical knowledge, thereby improving our understanding of diseases and therapeutic
effects in novel ways [59,60].

A common aim of NGS data analysis in cancer research is the identification of po-
tential biomarkers that are predictive of specific cancer types or subtypes. A variety of
bioinformatics tools and ML models, for example, aim to identify a molecular signature
that is significantly altered in cancer cells on a genomic, transcriptomic, or epigenomic level.
Statistical and ML methods are typically used to identify the best set of biomarkers, such
as single nucleotide polymorphisms (SNPs), mutations, or differentially expressed genes
that are important in cancer progression. Previously, those markers had to be discovered or
validated using time-consuming in vitro analysis. As a result, systems biology provides in
silico solutions to validate such findings by utilizing biological pathways or gene ontology
data [61].

4. AI in Cancer Prognosis

Detecting and predicting the course of the disease are key components to controlling
tumor enlargement and providing adequate treatment to cancer patients. With the un-
derstanding that cancer can affect individuals differently, AI has been utilized to isolate
subgroups within the patient population based on prognosis and survival data. Aside from
segmentation, AI has pinpointed biomarkers that can indicate the recurrence of the disease.
AI has been implemented to prognosticate high-risk neuroblastoma patients. Utilizing com-
bined gene expression and copy number variations, an unsupervised learning algorithm
called auto encoder determined significant features, which were then used for division
into two clusters [62]. In a separate study, Francescatto et al. employed the integrative
network fusion framework together with an ML classifier to distinguish features that could
differentiate between distinct outcomes of patients [63].

DL-based neural networks have also been applied to breast cancer survival prognosis.
To prevent overfitting effects due to the vast size of omics data, the SALMON survival
analysis algorithm operates on eigengene matrices of co-expression network modules.
To enhance robustness, it brings together traditional cancer biomarkers and multi-omics
information and pinpoints key feature genes and cytobands [64]. The use of a DL-based
algorithm allows for the combination of the information from the same gene across different
types of omics data, thus resulting in a successful and insightful analysis [65].

5. AI in the Identification of Therapeutic Targets

A subset of alternative network approaches to identifying cancer targets are provided
by network-based biology analysis algorithms. More importantly, because different algo-
rithms can look at network data from different angles, they can compensate for each other
to provide accurate biological explanations [66].

Interactome data can be organized and represented in the form of network structures
to explain the molecular mechanisms underlying carcinogenesis, where the nodes are
biological entities (genes, proteins, mRNAs, and metabolites) while the edges represent
the associations–interactions between them (gene co-expression, signaling transduction,
gene regulation, and physical interaction between proteins) [67,68]. AI algorithms could
efficiently process biological network data by implementing classification, clustering, and
prediction tasks in biological networks using machines or programs that enhance human
intelligence [69]. As a result, AI algorithms will be able to elucidate the complexity of
cancer behavior that rely on the interactions between genes and their products in biological
network structures [70], allowing us to better understand carcinogenesis and identify novel
anti-cancer targets [71].

One of the fundamental needs of precision oncology is anticipating therapy response
for a patient population. The advantages of ML strategies have been tried for treatment
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response displaying and expectation following both center-based and component choice-
based strategies [72]. The profound neural system-based examination has been used to
predict therapy response. MOLI, a multi-omics late mix strategy in light of a profound
neural system, consolidates somatic transformation, and duplicates number variation
and quality articulation information to anticipate medication reaction conduct. MOLI is
additionally utilized for board medication information, and information on medications
with a similar target [73].

The Support Vector Machine (SVM) and the Leave-One-Out Cross-Validation (LOOCV)
models have been employed to detect significant changes in RNA and miRNA transcrip-
tomics data between from pancreatic ductal adenocarcinoma specimens and normal tissues.
These features (selected RNAs and miRNAs) in combination with miRNA target expression
data were further exploited to identify efficient diagnostic markers that were validated
in other distinct datasets and biologically interpreted by pathway analysis of the corre-
sponding target genes [74]. Moreover, ML-based analysis has been utilized to discover
specific anticancer drug targets for breast tumors [75]. The characteristic genes extracted
from multi-omics data of breast cancer with the aid of capsule network-based modeling
were compared with well-known oncogenes, and novel genes were identified [76].

Recently, a comprehensive examination of nine cancers has demonstrated that pro-
teomics data combined with gene expression, miRNAs expression and genomics is more
effective in predicting the responsiveness of drugs and molecules specifically designed
to target them. This research was conducted across 58 cell lines over nine cancers with
Bayesian Efficient Multiple Kernel Learning (BEMKL) models [72]. This confirms the
robustness of multi-omics data analysis across cancer types.

6. AI Clinical Application

The DELFI technology, which uses a blood test to indirectly evaluate the packing of
DNA in the nucleus of a cell by assessing the bulk and amount of cell-free DNA present
in the flow from various regions of the genome, is one example of AI in clinical prac-
tice. Cancer cells release DNA into the bloodstream when they die. DELFI uses ML to
investigate millions of cell-free DNA pieces for unusual design in order to distinguish
the occurrence of cancer. The strategy provides a perspective on cell-free DNA known
as the “fragmentome” and only requires low-coverage genome sequencing, allowing the
technology to be economically affordable in a screening setting [77].

The DELFI methodology finds that patients who were later diagnosed positive for
cancer had a wide fluctuation in their fragmentome profiles, while those who had a negative
cancer diagnosis had predictable fragmentome profiles. Overall, the technique was able to
distinguish more than 90 percent of patients with lung cancer (including those with early
stages) and displaying different subtypes [78].

Another study focused on glioblastoma, whose diagnosis is based on resection or
biopsy which can be especially arduous and perilous in the case that the tumor mass is
located in a deep position. Moreover, tracking cancer progression also necessitates repeated
biopsies that are often impracticable. Consequently, there is an urgent requirement to
identify biomarkers to diagnose and follow-up glioblastoma evolution by limiting the
invasive approaches. Recently, an innovative cancer detection method has been developed
based on plasma denaturation profiles obtained by a novel use of differential scanning
fluorimetry. By comparing the denaturation profiles of blood samples collected from glioma
patients and from healthy subjects, the researchers demonstrated that ML-based algorithms
can automatically distinguish the cancer patients from the healthy individuals (with a
precision around 92%). Additionally, this high-throughput workflow can be applied to any
type of cancer and may represent a potent pan-cancer diagnostic and monitoring tool that
requires only a plain blood test [79].

Among the limitations of the current approaches, tissue biopsy presents a fixed
overview of the tumor that fails to record the intratumor distinguishment and dynamic
changes occurring during carcinogenesis, also determined by clonal pressure caused by the
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applied medication [80]. On top of that, it is an invasive procedure, which usually cannot
be performed multiple times on request, making this system unfeasible to be conducted
as a regular practice for cancer patients’ long-term supervision and treatment adjustment.
The emergence of liquid biopsy has been a revolutionary development for the current
clinical practice, offering great potential to improve the management of ongoing cancer
patients for the diagnosis, prognosis, and tailoring of treatment. This approach presents the
advantage of being a minimally invasive procedure that utilizes tumor-derived materials
obtained from several body fluids, such as peripheral blood, urine, pleural liquid, saliva,
or ascites [81]. This solution is not limited by space or time, and it supplies clinically
meaningful information related to both primary and metastatic malignant lesions. Among
the components of tumor-derived materials that can be analyzed by liquid biopsy, circulat-
ing tumor cells, cell-free circulating nucleic acids, and extracellular vesicles are the most
extensively studied and characterized cancer markers and are used for various objectives,
for instance, the early detection of cancer, staging, prognosis, drug resistance, and minimal
residual disease [82].

Another AI approach is the PinPoint test, a cost-effective AI-driven blood test for
cancer that is meant to upgrade rapid cancer referral paths. The test is found on an
algorithm that uses ML to investigate regular constituents, as well as the patient’s age and
sex. It can calibrate and combine these individual variables into one solid and highly precise
result, such as the likelihood that a patient has cancer [83]. The PinPoint test has been
crafted as a decision support tool to give medical professionals the data they need to better
sort patients when they initially present with symptoms. Those with high risk can be given
precedence for speedy examination in secondary care, while those with the lowest risk can
be securely excluded from the “2 week wait” pathway for further discussion with their
physicians [84]. This strategy of pinpointing those at the greatest risk for prioritization will
promote early detection, contribute to a more dependable pathway, and assist in decreasing
post-pandemic delays [85].

7. AI imaging in Cancer Diagnosis

In the field of cancer imaging, AI displays a great utility in three main clinical tasks:
tumor detection, characterization, and monitoring [86]. The localization of objects of interest
in radiographs is referred to as detection, and it is a subset of computer-aided detection
(CADe). AI-based detection tools can be used to reduce observational errors and serve as a
first line of defense against omission errors [87].

Characterization in general includes tumor segmentation, diagnosis, and staging.
It can also include a disease-specific prognosis as well as outcome prediction based on
specific treatment modalities. Segmentation determines the extent of abnormalities and can
range from simple 2D measurements of the maximum in plane tumor diameter to more
involved volumetric segmentations that assess the entire tumor as well as any surrounding
tissues. This information could be exploited for future diagnostic purposes as well as for
calculating the appropriate dose administration during radiation planning. AI has the
capability to significantly improve the efficiency, reproducibility, and reliability of tumor
measurements through automated segmentation. In computer-aided diagnosis (CADx)
systems, systematic processing of quantitative tumor features is used, allowing for more
reproducible descriptors. In the case of inconsistencies in interpretation by different human
readers, CADx systems have been used to diagnose lung nodules in thin-section CT and
prostate lesions in multiparametric MRI [88].

Staging is another aspect of tumor characterization in which tumors are classified into
predefined groups based on the size and spread of the tumor mass, thus providing infor-
mation regarding the expected clinical course and for the decision of the most appropriate
treatment strategies [89]. The application of AI-based methods to cancer imaging allows
for the estimation of tumor size, shape, morphology, texture, and kinetics. Additionally, the
use of dynamic assessment of contrast uptake on MRI enables physicians to characterize
the tumor mass in terms of heterogeneity, phenotypes of spatial features and dynamic
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characteristics [90]. Another variable taken in consideration from AI-based tools is entropy,
a mathematical descriptor of randomness that provides information on how heteroge-
neous the pattern is within the tumor, thereby describing the heterogeneous pattern of
vascular system uptake (contrast uptake) within tumors imaged on contrast-enhanced
breast MRI. As demonstrated by the NCI’s The Cancer Genome Atlas (TCGA) breast cancer
dataset, such analyses could reflect the heterogeneous nature of angiogenesis and treatment
susceptibility [91].

DL systems have been used to simultaneously detect and classify prostate lesions.
For training convolutional neural networks (CNNs) for prostate cancer diagnosis by MRI,
both de novo training [92] and the transfer learning of pre-trained models [93] have been
successful. The implementation of CNNs models with anatomically aware features has
been shown to improve their performance [94,95]. In addition to MRI, AI techniques for
prostate cancer classification have shown promising results by integrating ultrasound data,
specifically radiofrequency. Again, both traditional ML and DL approaches were used to
train classifiers to estimate the grading of prostate cancer by exploiting temporal ultrasound
data [96].

8. Critical Issues, Challenges, and Limitations

The accuracy and consistency of AI systems are frequently restricted by their training
data and the hardware used. We must keep in mind that AI can make mistakes in some
situations because its decision-making ability is predictive and probabilistic. As a result,
there are no clear regulations or guidelines in place to determine who is legally liable
when AI malfunctions occur or causes issues while providing a service. Another factor
to take in consideration is that most of the places where the potential of AI in healthcare
has been evaluated are basically high-income and resource-driven areas. When used in
low-income countries with a shortage of well-trained physicians and oncological specialists,
AI-based prediction tools are expected to have a greater impact and increment the success
of cancer treatment.

The improvement in the AI interpretation is a crucial step toward mitigating this risk
and providing a decision-making rationale. One limitation is represented by the lack of
a human verification step in the process unless a physician supervises the AI system. As
a result, no one expects AI to entirely replace medical professionals. AI-based precision
medicine will be critical for cancer treatment in the future. Living databases will exploit
extremely complex models capable of making a personalized therapy selection, estimation
of the drug dose, follow-up schedule, and so on. However, the transition from artificial
narrow intelligence to artificial general intelligence will result in the automation of all the
steps involved in cancer prediction, diagnosis, and treatment.

Despite its numerous benefits, AI presents several challenges and constraints that
hinder it from fully functioning in cancer research. Particularly, three layers of complex-
ity must be considered: (i) cancer is a highly heterogeneous organoid-like structure that,
at the time of diagnosis, is made up of many different cancer subclones embedded in a
stroma (the tumor microenvironment) that itself contributes to cancer progression; (ii) as
cancer progresses, tumor evolution leads to increased intratumor heterogeneity so that
by the time therapy is started, the targeted cancer may not respond; (iii) cancers with
the same molecular and histological signatures behave differently in each single patient
because of individual epigenetic and immunological modulations [97–99]. Thus, the fi-
nal clinical outcome will depend on the complex interplay between the cancer (with its
multiple subclones) and the tumor microenvironment (which includes the stroma com-
position and the inflammatory and immune response), and, finally, the general patho-
physiological condition of the patient (e.g., the body mass, the adipose tissue mass, the
nutrition status, the psychological status, the immune status, etc.). This poses an important
limit to the capability of AI in predicting the therapy efficacy and the prognosis, which
once again stresses the fundamental role of the clinician that cannot be substituted by
an algorithm.
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The new era of innovation brings with it many challenges that should be overcome
to drastically improve oncology procedures at several levels. The lack of inclusive and
different datasets for training represents a significant obstacle to the widespread adop-
tion of AI algorithms and decision-support systems in cancer care. Most of the powerful
AI models require a large sample size to efficiently train the tool. Although there are
dimensionality reduction and feature selection methods for addressing these aspects,
proper implementation is critical for achieving better and reliable results. The number
and type of data annotated influences the constructions of algorithms, and an imbal-
ance in data from patients differing for gender, age, race, nutritional state, lifestyle, and
environment will affect AI and ML training. Thus, the lack of sensible data may in-
crease the risk of missed diagnosis. Therefore, experts are fundamental in data curation
and data annotation to provide reliable datasets to be used for training AI classifier and
predictors models.

In medical data sets, particularly in the case of cancer data, classes are typically
distributed unequally. The continuous use of AI- and ML-based tools for diagnosis and
treatment decisions can be risky due to distributional shifts, which means that target data
may not match the ongoing patient data employed to train the model, resulting in incorrect
outputs. Predictions made by AI at the time of diagnosis likely changes during the course
of the therapy and the evolution of the disease along with changes in patient’s habit (style
of life, diet, medications, etc.).

Changes in technology, healthcare, and population, such as the gene pool, are likely
to have an impact on the relationship between the data items. The actual application of
AI models in clinics is not being actively considered. The predictions achieved with these
models frequently require validation in the clinical practice to assist medical experts in
confirming diagnosis decisions.

Significant issues regarding data availability and interpretability caused by AI’s “black
box” process, in parallel with the emergence of an inherent bias toward limited cohorts
that reduces the reproducibility of AI models and perpetuates disparities in the healthcare,
collectively prevent the widespread application of AI in clinics. Additionally, the distribu-
tion of AI-based technologies in many developing countries may be hampered by a lack of
knowledge in computing algorithms and technologies of the physicians.

Taken together, the clinically relevant achievements discussed in the present review
need to become more solid to be translated into the right treatment for the right patient.
Hence, the rapidly ongoing evolution of AI-based medical data analysis will significantly
improve the treatments in cancer.

9. Conclusions and Perspectives

In this paper, we present an overview of the models applied in diagnosing and
identifying therapeutic targets, and we discussed the challenges and future perspectives
of AI in cancer research (Figure 3). As the power and potential of AI are increasingly
demonstrated, in the coming future several other biomedical fields may exploit the use
of AI in their routine clinical practice. AI methodologies’ accuracy and predictive power
must be significantly improved, as well as demonstrated efficacy comparable to, or better
than, human experts in controlled studies [100]. Up to now, AI shows early promising
results in the management of several disease conditions, but more efforts in prospective
trials and in the education of physicians, technologists, and physicists are needed before
it can be widely used. Although there will always be a “black box” for human experts to
view AI-generated results, data visualization tools are becoming more widely available
to provide some visual understanding of how algorithms make decisions [101]. It is to be
stressed that AI is meant to complement the medical doctor facilitating his work, but it will
not replace the medical doctor.
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