
Citation: Zhao, K.; Grayson, J.M.;

Khuri, N. Multi-Objective Genetic

Algorithm for Cluster Analysis of

Single-Cell Transcriptomes. J. Pers.

Med. 2023, 13, 183. https://doi.org/

10.3390/jpm13020183

Academic Editor: Panagiotis

Moulos

Received: 21 December 2022

Revised: 15 January 2023

Accepted: 16 January 2023

Published: 20 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Personalized

Medicine

Article

Multi-Objective Genetic Algorithm for Cluster Analysis of
Single-Cell Transcriptomes
Konghao Zhao 1 , Jason M. Grayson 2 and Natalia Khuri 1,*

1 Department of Computer Science, Wake Forest University, 1834 Wake Forest Road,
Winston-Salem, NC 27109, USA

2 Department of Microbiology and Immunology, Wake Forest School of Medicine, Medical Center Boulevard,
Winston-Salem, NC 27157, USA

* Correspondence: natalia.khuri@wfu.edu

Abstract: Cells are the basic building blocks of human organisms, and the identification of their
types and states in transcriptomic data is an important and challenging task. Many of the existing
approaches to cell-type prediction are based on clustering methods that optimize only one criterion.
In this paper, a multi-objective Genetic Algorithm for cluster analysis is proposed, implemented, and
systematically validated on 48 experimental and 60 synthetic datasets. The results demonstrate that
the performance and the accuracy of the proposed algorithm are reproducible, stable, and better than
those of single-objective clustering methods. Computational run times of multi-objective clustering
of large datasets were studied and used in supervised machine learning to accurately predict the
execution times of clustering of new single-cell transcriptomes.

Keywords: cluster analysis; genetic algorithms; multi-objective optimization; single-cell RNA-
sequencing; transcriptomics

1. Introduction

Due to technological advances of single-cell RNA sequencing (scRNA-seq) and spatial
imaging, it is now possible to measure the gene expression (transcriptome) of individual
cells and catalog their types and states. These catalogs can be used to discover biomarkers
to diagnose, treat, and monitor human diseases and disorders [1]. The identification of
cell types is based on the prior knowledge about marker genes, which are preferentially
expressed in specific cells, tissues, or diseases. However, not all type-specific markers are
known, and cell-types must be derived directly from the distributions of gene expression in
the sequenced cells. The main idea is to cluster the transcriptomes of individual cells into
groups, such that the gene expressions of cells within each group are similar to each other,
and dissimilar to the gene expressions of cells in other groups. Cluster analysis has become
an important tool for the discovery of common and rare cell types, and for the study of
single-cell transcriptomes. Many clustering algorithms have been developed for scRNA-seq
data. They can be divided into partitional [2–7], hierarchical [8–13], graph-based [14–18],
and density-based [19,20].

Graph-based approaches use community-detection algorithms, which were origi-
nally developed for the analysis of graphs and social networks. Community-detection
algorithms focus on the structure of the network as a function of connectivity between
cells. These algorithms optimize modularity criterion, which measures the strength of
the network communities. Community-detection algorithms have been widely used in
scRNA-seq data analysis and they have been incorporated into popular software packages,
such as PhenoGraph [21], Seurat [18] and Scanpy [22]. PhenoGraph and Seurat use the
Louvain method of community-detection [23], in which they first focus on finding small
communities of cells by optimizing local modularity. Next, a new network is formed
using the small communities as nodes, and the second round of community detection

J. Pers. Med. 2023, 13, 183. https://doi.org/10.3390/jpm13020183 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm13020183
https://doi.org/10.3390/jpm13020183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0003-0240-540X
https://orcid.org/0000-0001-9031-8124
https://doi.org/10.3390/jpm13020183
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm13020183?type=check_update&version=1

J. Pers. Med. 2023, 13, 183 2 of 17

is performed. Scanpy is based on the Leiden algorithm [17], which addresses one of the
limitations of the Louvain method that leaves unconnected communities, by randomly
breaking large communities into smaller ones during the optimization. Although popular,
community-detection methods tend to overestimate the number of clusters and miss small
communities [24].

Computationally, the process of partitioning the data into distinct groups is known
as the partitional cluster analysis. Mathematically, given a dataset of single-cell tran-
scriptomes T = {~t1,~t2,~t3, ..., ~tn}, where t ∈ Rn, the objective is to find a set of k clusters,
C = {c1, c2, c3, ..., ck}, such that ci ∩ cj = ∅ and

⋃k
i=1 ci = T (Figure 1).

g1 g2 g3 g4 ... gm

t1
t2
t3
t4
t5

 ...
tn

0 34 0 0 . 5
0 9 2 0 . 1
2 34 1 25 . 0
7 10 0 4 . 0
0 1 40 0 . 2
.

34 5 0 1 . 0

dimensionality
reduction

preprocessing

 x1 ... xd

t1
t2
t3
t4
t5

 ...
tn

2.3 . 1.2
 1.7 . 2.3
1.3 . 3.4

 1.9 . 2.9
9.2 . 1.2
 . . .
 2.4 . 2.8

 x1 ... xd

C1
C2

 ...
Ck

6.2 . 5.2
 1.7 . 0.1
 . . .

 6.8 . 3.9
cluster
analysis

INPUT TRANSCRIPTOMES REDUCED DIMENSIONS CLUSTER PROTOTYPES

Figure 1. Cluster analysis of single-cell transcriptomes. Shown are the steps of cluster analysis of
high-dimensional single-cell transcriptomes, including data preprocessing and dimensionality reduction.

In cluster analysis, ground truths are not known, and therefore, the choice of the
clustering objectives is somewhat arbitrary. More often than not, there exist conflicting
objectives, and a unique clustering solution cannot be found, such that it satisfies different
objectives. For example, clustering solutions obtained by minimizing the intra-cluster
distances between cells, aim to find compact clusters. However, solutions with highly
compact clusters may not separate the clusters very well. By optimizing a different objective
criterion, such as the inter-cluster distances between cells, well-separated clusters may be
found, albeit with lesser cohesiveness.

Given the existence of multiple objectives in cluster analysis, we propose to approach
the problem as a multi-objective optimization (MOO) task and solve it using Genetic
Algorithms (GAs). In this formulation of cluster analysis, no single solution exists that can
simultaneously optimize all of the multiple objective functions. Rather, the goal of MOO
is to find a diverse set of clustering solutions called Pareto-optimal solutions or Pareto
front (Figure 2), comprising the best trade-offs between multiple objectives. A solution is
said to be Pareto-optimal if no other solution in the solution space can further improve an
objective in the objective functions space without degrading other objectives [25]. MOO
solution space may be multi-dimensional and it is mapped to the objective function space
in a one-to-one relationship.

GAs are well-known heuristics that use the concept of the survival of the fittest,
inspired by biological evolution, to search for the best solution to a problem [26,27]. They
have been successfully applied in many problem domains to find accurate approximations
of solutions of single-objective optimization problems [28–34]. In GAs, a solution to an
optimization problem is encoded in a chromosome, and its fitness value is optimized by
the algorithm. GAs iteratively improve a population of chromosomes by applying genetic
operators, such as the selection, crossover and mutation. Because GAs work by evolving
a population of chromosomes, Pareto-optimal solutions are found via non-dominated
solution sorting (NDSS) of chromosomes [35,36]. The final clustering solution is selected
from the Pareto front using a user-defined criterion that measures a goodness-of-clustering,
for example.

J. Pers. Med. 2023, 13, 183 3 of 17

 f2(x)

Objective Functions Space

Minimize intra-cluster
distances

Maximize inter-cluster
distances

x1 x1

x2x2 Pareto front

 f1(x)

Solutions Space

one-to-one
c1

ck

c1

ck

Figure 2. Cluster analysis as a multi-objective optimization problem. A solution to a cluster
analysis problem is a set of k cluster prototypes c1, . . . , ck. Solution space of two objective functions
and a corresponding objective function space are shown. Objective function f1(x) maximizes inter-
cluster distances, and f2(x) minimizes intra-cluster distances. Pareto front encompasses optimal
solutions that are not dominated by any other feasible solutions.

In this work, we design, implement, and validate a multi-objective GA (MOGA) for
cluster analysis of single-cell transcriptomes. We assess its performance using 48 experimental
and 60 synthetic datasets, ranging from 59 to 10,000 cells, and 2 to 64 clusters. We find
that MOGA outperforms alternative clustering algorithms, including community-detection
methods, such as Louvain-based PhenoGraph [21] and Seurat [18], and Leiden-based
Scanpy [17], in internal and external validation. Moreover, using an innovative meta-
morphic evaluation of algorithmic stability, we confirm that MOGA produces stable and
consistent clustering results. Finally, we train a machine-learning predictor to estimate
MOGA’s execution time given the system’s resources and datasets’ sizes.

2. Materials and Methods

Multi-objective clustering: Given d-dimensional transcriptomes, we aim to find k
cluster prototypes (cluster centers) by optimizing two objective functions (Equation (1))
as follows.

max/min{ f1(x), f2(x)}, x ∈ X, X ⊆ Rd (1)

f1(x) =
k

∑
i=1

ni d(zi, z̄)

f2(x) =
k

∑
i=1

∑
x∈ci

d(xi, zi)

Above, ni is the total number of cells in cluster i, k refers to the number of clusters, xi
denotes a generic cell, ci is the ith cluster, zi refers to cluster prototype, z̄ is the mean vector
of cluster prototypes, and d(x, y) is the Euclidean distance.

The first objective in this formulation is to find well-separated prototypes by maximiz-
ing the weighted sum of distances between a cluster prototype and the mean vector of all
prototypes. The second objective is to find compact clusters, by minimizing the total sum
of distances between cells belonging to the same cluster and the corresponding cluster’s
prototype. By optimizing for these two objectives, Pareto-optimal clustering prototypes are
found using MOGA.

Chromosome encoding: In MOGA, clustering solutions are encoded by the real-
valued chromosomes of size l = k × d, where k is the number of clusters and d is the
number of the dimensions of the dataset. Here, d denotes the number of Uniform Manifold
Approximation and Projection for Dimension Reduction (UMAP) components, derived
during preprocessing of the datasets, and it is set to 2. Thus, the first d values of a
chromosome represent the prototype of the first cluster and the next d values represent the
prototype of the second cluster, and so on. At the beginning of the evolution, a population

J. Pers. Med. 2023, 13, 183 4 of 17

of chromosomes is created. Each chromosome is initialized with random values, bounded
by the range of values of each dimension of the dataset.

Evolution: After the initialization of the population, fitness values of the individual
chromosomes are computed, namely f1(x) and f2(x), and evolution begins. Parent chro-
mosomes are selected using a tournament selection [37], with the tournament size equal
to 20% of the population. Specifically, 20% of chromosomes are randomly chosen from
the population pool, and the ones with the best fitness values are selected for breeding.
Chromosomes with better fitness values have a greater probability of being selected in the
tournament. The tournament selection is repeated to create a population of size P, the same
size as the initial population.

Next, a one-point crossover is applied with a fixed crossover probability. Its purpose
is to exchange the information encoded in the two parent chromosomes and generate two
offspring chromosomes. Specifically, for two chromosomes of size l, a random integer i is
generated in the range of [0, l), and the chromosomal parts after i are exchanged between the
two parent chromosomes. Next, a polynomial mutation with a fixed individual mutation
rate is used to select an offspring for mutation. Once an offspring is selected, mutation
is performed, with a fixed mutation probability and a crowding value, on every single
value of its chromosome. Specifically, the mutation operator generates new floating point
numbers within the range of values of each dimension.

Non-dominance solution sorting: After the genetic operations of crossover and muta-
tion, the parent population is merged with the offspring population, and NDSS is performed
to select chromosomes for the next iteration of the algorithm. NDSS is based on the notion
of dominance between solutions. Specifically, one solution dominates another if and only
if all objective values of that solution are no worse than the objective values of another
solution, and at least one objective value of the solution is better than the other one [38,39].
NDSS may select solutions that are very close to each other. To diversify the population,
crowding thresholds are applied to select solutions that are evenly distributed across the
entire Pareto front [38,39].

Selection of the final solution: In the last step of MOGA, the final clustering solution
is selected from the Pareto front. For each Pareto-optimal solution, Davies Bouldin Index
(DBI) is computed [40]. DBI measures clustering quality by computing the mean ratio
between the intra-cluster and inter-cluster distances over all of the clusters (Equation (2)).
DBI values range from 0 to 1, where lower values imply a better clustering quality.

DBI =
1
k

k

∑
i=1

max
j 6=i

{
Si + Sj

d(zi, zj)

}
, where Si =

1
ni

∑
xi∈ci

d(zi, xi) (2)

Above, k is the number of clusters, ni is the total number of cells in cluster i, xi denotes
a generic cell, zi refers to ith cluster prototype, and d(x, y) is the Euclidean distance between
x and y.

Hyperparameter tuning: Population size, number of generations, crowding values,
individual mutation rate, mutation probability, and crossover probability are determined
by a grid search. Notably, to ensure a fair comparison with baseline methods, including a
single-objective GA (SOGA), we tune the parameters for the second objective only, and do
not tune the parameters for the first objective (Equation (1)).

Population size and the number of iterations are tuned using the largest experimental
dataset with over 6000 single-cell transcriptomes (10X_NCI_A_cellranger3.1). Population
size is varied from 100 to 800, and the number of iterations from 1 to 400. The crossover
probability, mutation probability, and individual mutation rate are found using a published
grid-search protocol [41]. Specifically, the individual mutation rate is varied from 0.3 to 1.0,
with a step size of 0.1, mutation probability from 0.0 to 0.1, with a step size of 0.02 and from
0.1 to 0.5, with a step size of 0.1, and crossover probability from 0.5 to 1.0, with a step size
of 0.1. The mutation’s crowding values are searched from 0.1 to 1, with a step size of 0.1.

J. Pers. Med. 2023, 13, 183 5 of 17

Evaluation of cluster validity: Two validations of clustering solutions are performed,
namely internal and external validation. In internal validation, ground truths are not
known, and the quality of clustering solutions is measured using a widely-accepted internal
validity metric, the Silhouette Coefficient (Sil) [42]. Sil is the mean silhouette width of all
cells (Equation (3)), where a(xi) refers to the mean distance between cell xi from the other
cells in the same cluster, and b(xi) refers to the minimum of the mean distances of xi from all
cells in any other cluster. Sil ranges from −1 to 1, and a higher Sil implies better clustering,
with a clear separation and good cohesiveness of clusters. Notably, singletons could exist
in clustering solutions, where a single cluster only contains one data instance. Sil handles
singletons by setting Si equal to 0, where b(xi) = a(xi).

Sil =
1
n

n

∑
i=1

Si, where Si =
b(xi)− a(xi)

max{a(xi), b(xi)}
(3)

In external validation, cluster prototypes are known, and the validation measures the
accuracy of assigned cluster memberships. Two external validity metrics are used, namely
the Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI). Similarly
to Sil, they are chosen because of their wide adoption by the single-cell transcriptomics’
community. The two metrics are based on different approaches for the evaluation of
external cluster validity. ARI uses a pair-counting approach [43,44], by counting pairs of
cells that were placed in identical and different clusters. NMI measures the difference
in information shared between two clusters and it can be used to compare results with
a different number of clusters. Additionally, NMI has been shown to find nonlinear
similarities between individual data points [45]. Both NMI and ARI measure the agreement
between the predicted and known cluster memberships [46]. The values of both metrics
range from 0 to 1, with higher values implying a better agreement between the predicted
and known cluster memberships.

NMI is calculated as a ratio of two times the mutual information of two membership
lists and the sum of their entropies (Equation (4)), where I is the mutual information, H is
the entropy, and P is the probability of a membership label in a list of labels.

NMI(L, C) =
2× I(L; C)

H(L) + H(C)
, where

I(L; C) = H(L)− H(L|C), H(x) = −∑
i∈x

Pi × log2Pi
(4)

To compute ARI, a contingency table of two lists of membership labels is created,
tabulating the frequency distribution of the clusters (Equation (5)).

ARI =
∑ij (

ni j
2)− [∑i (

ni
2)∑j (

nj
2)]/(

n
2)

1
2 [∑i (

ni
2)∑j (

nj
2)]− [∑i (

ni
2)∑j (

nj
2)]/(

n
2)

, (5)

where nij is the number of times a cell occurs in cluster i of labels and cluster j of predicted
labels at the same index.

Metamorphic evaluation of clustering stability: The stability of clustering results
is validated using metamorphic perturbations of transcriptomes. The purpose of this
validation is to assure that small perturbations of the input data do not change cluster mem-
berships when the perturbed transcriptomes are reclustered [47,48]. Using the scrnabench
package (version 1.0), six metamorphic perturbations of the experimental transcriptomes
are generated. They include permutation of the order of cells (MR1), modification of counts
of a single gene (MR2), duplication of a transcriptome of a single cell (MR3), permutation of
the order of genes (MR4), addition of a pseudo-gene with zero-variance expression counts
(MR5), and negation of gene counts (MR6). Metamorphic datasets are reclustered and clus-
ter validity metrics are computed and compared with the metrics of the original clusterings.

J. Pers. Med. 2023, 13, 183 6 of 17

State-of-the-art and baseline methods: MOGA is compared with three state-of-the-
art and two baseline methods. To demonstrate the value of multi-objective formulation,
MOGA is compared with SOGA, which optimizes only the second objective function
(Equation (1)). Therefore, NDSS and DBI-based selection are not performed, and the
evolution of SOGA consists of the initialization, fitness evaluation, tournament selection,
crossover, and mutation. The final solution of SOGA is encoded by a chromosome with
the best fitness value in the last iteration of the algorithm. Notably, all hyperparameters of
MOGA are set to the same values as the hyperparameters of the SOGA. Both MOGA and
SOGA are implemented using the DEAP package (version 1.3.1) [49].

Additionally, we compare MOGA with another prototype-based clustering algorithm,
KMeans, implemented in the scikit-learn package (version 1.1) [50]. All parameters are set
to their default values except for the number of iterations, which we set to 350, to match to
the number of MOGA and SOGA iterations. PhenoGraph is the state-of-the-art method
designed for cluster analysis of single-cell transcriptomes. We use Python’s implementation
of the algorithm from the PhenoGraph package (version 1.5.7) [21]. All parameters are
set to their default values. Louvain-based Seurat is ran with default parameters using the
Seurat package written in R [18], and Leiden-based Scanpy is executed using the Scanpy
package written in Python [22].

The number of clusters, k, in MOGA, SOGA, and KMeans are set as follows. In external
validation, k is known and is used as a parameter to the three algorithms. In internal
validation, the number of clusters for MOGA, SOGA, and KMeans are set to 0.3× kph, where
kph is the number of clusters that are automatically detected by the PhenoGraph package.

Datasets: Two types of single-cell transcriptomic datasets are used, namely experi-
mental and synthetic. These datasets vary in size, sparsity, dimensionality, quality, and the
availability of known cluster memberships.

To perform external validation, 60 synthetic datasets are simulated using the Splatter
package (version 1.20.0) [51]. Datasets of 10 different sizes are created, ranging from 1000 to
10,000 single-cell transcriptomes, and for each dataset’s size, the number of clusters varies
from 2 to 64. Therefore, the true prototypes of these 60 datasets are known.

In internal validation, 48 experimental transcriptomes are used. They comprise tran-
scriptomes of two cell lines, sequenced in 4 centers, using 3 technologies and 2 protocols.
The two cell lines are derived from breast cancer (cell line A) and normal B lymphocytes
(cell line B). The number of sequenced cells ranges from 59 to 6097, and the number of genes
ranges from 16,931 to 32,502, respectively. The average dataset’s sparsity is 78.2% with a
maximum of 85.4% and a minimum of 56.2% of zero-valued counts. The raw and prepro-
cessed reference datasets are freely available in the scrnabench package (version 1.0) [52].

Data preprocessing: The same standard preprocessing workflow is used to prepare
the experimental and synthetic datasets [18]. Specifically, preprocessing comprises five
steps: filtering, highly variable gene selection, transformation, scaling, and dimensionality
reduction. In filtering, cells with fewer than 200 expressed genes and genes expressed in
fewer than three cells are removed. Additionally, cells with mitochondrial content greater
than 10% are filtered out. Moreover, outlier cells and genes are removed. The mRNA
counts and gene counts are bounded by 10mean(log10(x))±2×std(log10(x)) to ensure that each
cell has meaningful expression data, where x is the total mRNA count or the total gene
count per cell.

During the selection of highly variable genes, a mean–variance relationship inherent in
single-cell data is modeled, and the top 2000 genes are selected [53]. Next, gene expression
counts are transformed using a logarithmic function and scaled such that the mean gene
expression across cells is 0, and the variance is 1. The dimensions of the datasets are next
reduced to 10 principal components by performing a principal component analysis [54].
These 10 principal components explain more than 98% of variability in all datasets. Finally,
principal components are further reduced to two dimensions by the Uniform Manifold
Approximation and Projection (UMAP) [55], and cluster analyses are performed using
these two-dimensional datasets.

J. Pers. Med. 2023, 13, 183 7 of 17

Estimation of compute time: Run-time data are collected during the experimentation,
including the datasets’ size, number of clusters, combinations of HPC resources, such as
the number of CPUs, number of tasks per node, and the number of CPUs per task. These
data are used to train a Random forest regressor [56], an ensemble tree-based algorithm
for supervised learning. The accuracy of run-time estimates is validated by training a
predictor on the simulated datasets and testing it on the reference datasets. Mean absolute
error (MSE) between the estimated and actual values is used to evaluate the accuracy of
the predictions.

3. Results

In this work, we formulate single-cell clustering as a MOO problem, and design and
implement a GA to solve it. Specifically, given a dataset of single-cell transcriptomes and
the number of clusters, k, cluster prototypes are found by maximizing the inter-cluster
distances and minimizing the intra-cluster distances.

This MOO problem is solved using a GA as follows (Figure 3). First, a population
of chromosomes is randomly initialized, such that each chromosome is encoded by k
two-dimensional real-valued prototypes. During the optimization, fitness values of chro-
mosomes are evaluated to select parents for recombination and mutation. Next, NDSS is
performed to find clustering solutions on the Pareto front. After the predefined number
of iterations is completed, the final solution is selected using DBI as the criterion, and its
chromosome is decoded to assign cells to clusters.

INITIAL
POPULATION

FINAL SOLUTION
SELECTION

MULTI-OBJECTIVE
EVOLUTIONARY OPTIMIZATION

x11...x1kx21...x2k

x11...x1kx21...x2k
Parents (P)

Selection

Recombination

Mutation

Combine P & OOffspring (O)

End

Best Solution

Yes

No

Pareto Front

x11...x1kx21...x2k

x11...x1kx21...x2k

x11...x1kx21...x2k

x11...x1kx21...x2k

x11...x1kx21...x2k

Fitness Evaluation

NDSS

Figure 3. Architecture of the multi-objective Genetic Algorithm. Shown are main steps of the pro-
posed GA. Initial population of chromosomes is randomly created and inputted to the GA optimizer.
After Pareto-optimal solutions are found, the best solution is selected using a predefined criterion.

To demonstrate the improvements of MOGA over single-objective clustering methods,
in particular over SOGA, we tuned MOGA’s parameters using one objective function only,
f2(x). We found that the algorithm converged after about 50 iterations, regardless of the
population size. However, its performance was sensitive to the size of the initial population
and the best performance was obtained with larger population sizes (Figure 4A). We also
found that GA’s performance depended on the values of the genetic operators, such as the
crossover and mutation probabilities and the individual mutation rate. Using a previously
published protocol for the grid-search of the parameter space [41], we found that the best
performance was achieved with a crossover rate of 0.8, mutation probability of 0.07, and
an individual mutation rate of 1.0, respectively. Additionally, the best crowding value for
mutation was 0.3, and this parameter controls the degree of similarity between the parents
and their offspring.

J. Pers. Med. 2023, 13, 183 8 of 17

A. B.

0 50 100 150 200 250 300 350 400
Number of Iterations

4000

4500

5000

5500

6000

Fi
tn

es
s

100
200

300
400

500
600

700
800

mutPro0.0 0.1 0.2 0.3 0.4 0.5
cxPro

0.5
0.6

0.7
0.8

0.9
1.0

indR
ate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2200

2400

2600

2800

3000

3200

3400

Figure 4. Hyperparameter tuning of population size, number of iterations, individual mutation
rate, mutation probability, and crossover probability for objective f2(x). Shown are (A) a line
plot of fitness values obtained by varying population size and number of iterations and (B) a
three-dimensional heatmap of fitness values obtained by varying mutation probability, crossover
probability, and individual mutation rate. A small fitness value is preferred.

We first compared MOGA’s performance to the alternative methods on 48 experimental
datasets. These recently published single-cell transcriptomic data [57] are publicly available
in the scrnabench package [52]. They comprise transcriptomes of two reference cell lines,
normal and cancer, which were sequenced by different sequencing centers and technologies
and preprocessed using different tools. Therefore, they are suitable to be used as the
reference benchmarks for the development of new bioinformatics methods.

Our results showed that MOGA outperformed the state-of-the art and baseline meth-
ods in clustering of 48 reference datasets (Figure 5A). These results were reproducible. We
repeated cluster analysis 30 times and observed that the results of all algorithms were
consistent, and the standard deviations of Sil scores were small. On average, Sil scores were
0.485 ± 0.132 for MOGA and 0.442 ± 0.059 for SOGA. Sil scores of PhenoGraph clustering
of these reference datasets were similar to the previously published results. Specifically, Sil
scores were below 0.5 for transcriptomes sequenced using 10X and around 0.5 for C1 and
ICELL8 datasets [58]. The performance of the Leiden-based community-detection method
implemented in Scanpy was on par with PhenoGraph.

Both evolutionary algorithms outperformed PhenoGraph (0.398 ± 0.098) and Scanpy
(0.396 ± 0.099), with a statistically significant difference in mean values. On average, SOGA
was no worse than KMeans (0.429± 0.045) and Seurat (0.428± 0.088), while outperforming
them in some of the reference datasets, and MOGA significantly outperformed KMeans
and Seurat across multiple reference datasets.

When Sil scores of individual reference datasets were considered, striking differences
in the performance of different algorithms were observed. The distribution of Sil scores of
KMeans was very tight, with most of the scores near the average. In KMeans clustering
results, we found two outlier datasets with Sil scores between 0.55 and 0.6. There were
more outliers in the SOGA results than in KMeans, and their Sil scores ranged between 0.55
and 0.65. We identified the same three datasets among outliers in PhenoGraph, Seurat, and
Scanpy clustering results. Their Sil scores were well above 0.65.

MOGA had the best performance in clustering of the reference datasets. In 12 out of
48 datasets (25%), MOGA had significantly better Sil scores than SOGA, KMeans, Pheno-
Graph, Seurat, and Scanpy (Table 1). Interestingly, MOGA significantly outperformed
other algorithms on transcriptomes that were sequenced using ICELL8 and C1 platforms.
Moreover, clustering performance differed for the datasets of the two cell lines. Sil scores
of MOGA were significantly higher for the cell line derived from breast cancer (cell line
A), which were sequenced using ICELL8 and C1 technologies (Figure 5B). These results
were significantly better than those reported previously. The previously reported Sil scores
were between 0.5 and 0.6 [57,58], whereas MOGA was able to find better solutions with Sil
scores above 0.8 for some of these datasets. On the other hand, Sil scores of clustering of

J. Pers. Med. 2023, 13, 183 9 of 17

10X transcriptomes were around 0.4 for both cell-lines, which was observed in previously
published results, which used Seurat to cluster cells.

ICELL8 10X C1
Technology

0.4

0.5

0.6

0.7

0.8

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Cell Line A Cell Line B

A. B.

MOGA SOGA Kmeans PhenoGraph Seurat Scanpy
Algorithms

0.3

0.4

0.5

0.6

0.7

0.8

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Figure 5. Internal validation and comparison of MOGA, SOGA, KMeans, PhenoGraph, Seurat,
and Scanpy. Shown are the box plots of (A) Sil of 48 scRNA-seq reference datasets with six algorithms
and (B) Sil scores of MOGA-based clustering by sequencing technology. Experiments are repeated
30 times, and the best Sil values of each dataset are shown. Cell line A: breast cancer; Cell line B:
normal B lymphocytes.

Table 1. Internal validity of MOGA, SOGA, KMeans, PhenoGraph, Seurat, and Scanpy. Shown
are Silhouette scores of clustering of 12 reference transcriptomes, where MOGA outperformed
other methods.

Dataset MOGA SOGA KMeans PhenoGraph Seurat Scanpy

C1_FDA_HT_A_featureCounts 0.60 0.55 0.55 0.51 0.51 0.50
C1_FDA_HT_A_kallisto 0.59 0.48 0.47 0.43 0.45 0.43
C1_FDA_HT_A_rsem 0.61 0.55 0.55 0.47 0.47 0.45
C1_LLU_A_featureCounts 0.68 0.54 0.5 0.67 0.68 0.68
C1_LLU_A_kallisto 0.69 0.54 0.49 0.68 0.70 0.69
C1_LLU_A_rsem 0.80 0.62 0.57 0.79 0.80 0.80
ICELL8_PE_A_featureCounts 0.68 0.41 0.41 0.39 0.45 0.36
ICELL8_PE_A_kallisto 0.83 0.58 0.41 0.41 0.44 0.40
ICELL8_PE_A_rsem 0.77 0.42 0.42 0.40 0.44 0.40
ICELL8_SE_A_featureCounts 0.81 0.57 0.41 0.41 0.43 0.39
ICELL8_SE_A_rsem 0.55 0.43 0.44 0.37 0.42 0.37
ICELL8_SE_A_kallisto 0.71 0.53 0.42 0.41 0.44 0.43

While KMeans, PhenoGraph, Seurat, and Scanpy rely on random initialization and
tie-breaking, SOGA and MOGA make significantly more random decisions during the
optimization, such as during the crossover and mutation, for example. Therefore, we
performed a rigorous metamorphic evaluation of the stability of clustering results [48].
We clustered each of the 48 transcriptomes in their original format and in each of the six
metamorphic formats. These metamorphic perturbations included permuting the order
of cells (MR1), modifying the counts of a single gene (MR2), duplicating one cell (MR3),
permuting the order of genes (MR4), adding a pseudo-gene with zero-variance expression
counts (MR5), and negating gene counts (MR6). We computed distributions of Sil scores
and used paired T-tests to compare these distributions with the original Sil distributions.

All algorithms, including MOGA, were stable and Sil scores of clustering with meta-
morphic datasets did not statistically differ from those obtained by clustering of the original
datasets (Figure 6). The results were reproducible across 30 repeated experiments of each
metamorphic perturbation. Moreover, we confirmed that KMeans tends to perform simi-
larly regardless of the dataset, and achieves Sil scores of around 0.4. We also confirmed that
SOGA was able to find better clustering solutions than KMeans, for some of the datasets,
with Sil scores reaching 0.6 for a few individual datasets. PhenoGraph, Seurat, Scanpy and

J. Pers. Med. 2023, 13, 183 10 of 17

MOGA, on the other hand, found better clustering solutions for several datasets, including
solutions that had Sil scores near 0.9.

A. B.

C. D.

Original MR1 MR2 MR3 MR4 MR5 MR6
Scanpy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Original MR1 MR2 MR3 MR4 MR5 MR6
MOGA

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Original MR1 MR2 MR3 MR4 MR5 MR6
Kmeans

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Original MR1 MR2 MR3 MR4 MR5 MR6
PhenoGraph

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Original MR1 MR2 MR3 MR4 MR5 MR6
SOGA

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

E. F.

Original MR1 MR2 MR3 MR4 MR5 MR6
Seurat

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Figure 6. Cluster stability in metamorphic testing. Shown are the box plots of the distributions of
the Sil of (A) MOGA, (B) SOGA, (C) Kmeans, (D) PhenoGraph, (E) Seurat, and (F) Scanpy in original
clustering as well as in metamorphic tests (MR1 to MR6). Experiments are repeated 30 times, and the
best Sil of each dataset are shown.

Given the differences in performance in clustering of different datasets, we simulated
60 synthetic single-cell transcriptomes with known cluster memberships to better study
the sensitivity of MOGA to the characteristics of the datasets, such as their size and the
number of clusters. This allowed us to evaluate both internal and external cluster validity.
Our results demonstrate that MOGA found accurate cluster prototypes regardless of the
datasets’ size (Figure 7A). Specifically, average external validity indices of 60 synthetic
datasets, NMI and ARI, were above 0.85± 0.163 and 0.77± 0.277, respectively. The average
external validity index, Sil, was above 0.72 ± 0.205, higher than the average Sil score of
experimental datasets.

Our results also indicate that MOGA’s performance was influenced by the number of
clusters within the datasets. Specifically, MOGA had an excellent performance when the
number of clusters ranged between 2 and 8, and the number of cells ranged between 1000
to 10,000, respectively (Figure 7B). For all dataset sizes, NMI and ARI scores were 1.0 when
the numbers of clusters were 2, 4, and 8. When the number of clusters increased to 16, NMI
and ARI scores dropped to 0.95 ± 0.02 and 0.90 ± 0.04, respectively. Prediction accuracy
for the larger numbers of clusters was lower. For example, NMI values were 0.80 ± 0.04 for

J. Pers. Med. 2023, 13, 183 11 of 17

32 clusters and 0.55 ± 0.03 for 64 clusters, respectively. Interestingly, we observed greater
disagreements between NMI and ARI scores for 64 clusters. The ARI score for 64 clusters
was 0.31 ± 0.07, compared with the NMI score of 0.55 for the same number of clusters.
Similar trends were observed for the internal validity metric, Sil. Sil scores were high for
the datasets with fewer than 32 clusters (above 0.83 ± 0.02). Average Sil scores for the
datasets with 32 and 64 clusters dropped to 0.63 ± 0.05 and 0.38 ± 0.04, respectively.

NMI ARI Sil

1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
Number of Cells

0.0

0.2

0.4

0.6

0.8

M
et

ric
s

A. B.

2 4 8 16 32 64
Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

Figure 7. Internal and external validation of MOGA on synthetic datasets. Shown are the bar
graphs of NMI, ARI, and Sil of (A) 60 synthetic datasets with different number of cells and the same
number of clusters and (B) 60 synthetic datasets with different number of clusters and the same
number of cells. Experiments are repeated 30 times, and the best metrics were retained.

We point out that both internal and external validity scores of MOGA were on par or
better than the scores of alternative methods on the same datasets. For reproducibility, we
repeated each experiment 30 times and observed that the standard deviations of all metrics
were small, demonstrating good consistency of the results, despite the stochastic nature of
MOGA and SOGA.

MOGA had longer execution times than SOGA (Figure 8), and both algorithms had
longer execution times than the alternative methods. The average execution time of
SOGA was 867.86 seconds (s) for the reference datasets and 5102.99 s for the synthetic
datasets, whereas the average time of MOGA clustering was 923.79 s for the reference
datasets and 5506.43 s for the synthetic datasets. An exponential relationship existed
between the number of instances and the computational time required to cluster the
transcriptomes. As the number of instances increased, the number of basic operations in
the fitness-value evaluation increased, causing an increase of computational time. These
results were relatively stable in 30 repeated experimental runs, although the standard
deviations increased as the size of the dataset grew.

While the size of the dataset was directly related to run times, there were other
contributing factors, such as the homogeneity of single-cell transcriptomes, for example.
For instance, MOGA and SOGA required significantly longer execution to cluster datasets
with high heterogeneity, compared with more homogeneous datasets with the same number
of cells.

To address the high computational burden of MOGA, we experimented with different
combinations of resources on a High Performance Computing (HPC) cluster and paral-
lelized the computation of MOGA objectives using Python’s multiprocessing utilities. The
experiments were repeated with six different numbers of CPUs and nodes: 1, 16, 32, 64 (two
nodes), and 128 (three nodes). The execution time decreased with the additional CPUs and
stopped improving beyond 32 CPUs. In addition, it was clear that with multi-processors,
compared with a single processor, the rate of the increase of computational time became
smaller. The changes of execution times were negligible when we varied the number of
tasks per node and the number of CPUs per task, while keeping the number of CPUs to

J. Pers. Med. 2023, 13, 183 12 of 17

32. Therefore, we found the best combination of computational resources for MOGA to be
thirty-two CPUs, with four tasks per node and eight CPUs per task.

2000 4000 6000 8000
Size

5000

10,000

15,000

20,000

25,000

30,000

C
om

pu
ta

tio
na

l T
im

e
(s

ec
on

ds
)

MOGA SOGA

0 1000 2000 3000 4000 5000 6000
Size

0

500

1000

1500

2000

2500

3000

3500

C
om

pu
ta

tio
na

l T
im

e
(s

ec
on

ds
)

A. B.

Figure 8. Running time analysis of MOGA and SOGA. Shown are time comparisons of MOGA
and SOGA (A) with 48 scRNA-seq reference datasets and (B) 60 synthetic datasets. Experiments are
repeated 30 times, and the average computational time is retained.

To put these findings into a practical predictor of run time, we trained a Random forest
regressor using 432 execution logs, comprising information about datasets’ sizes, numbers
of clusters, and numbers of CPUs and the execution times, which we collected from MOGA
experiments on synthetic datasets. We then tested the regression model on the reference
datasets, and compared the predicted and the actual execution times. We found that the
MSE of predicted run times was about a minute (46.79 s). Thus, the trained ML regressor
may be used to estimate computational run times that are needed for clustering of new
datasets, given the system’s resources and the dataset’s size.

4. Discussion

Single-cell RNA sequencing technologies and bioinformatics tools for their analyses
have matured in recent years. Their sensitivity and accuracy hold promise for personalized
medicine, as new biomakers of diseases and responses to treatments are being discovered
using single-cell transcriptomics [59,60]. Central to these discoveries is the identification of
cell types and cell states. Cluster analysis, an unsupervised ML technique, has become a
method of choice for cell type identification.

Selection of the most appropriate clustering algorithm for scRNA-seq data analysis
remains challenging for the end-users and bioinformaticians. Correctness of the results is
a main concern, and their verification is difficult or infeasible because the true cell-type
labels are often not known. Additionally, the interpretation of correctness of clustering
results depends on an arbitrary choice of the clustering objective, which is used to partition
the data. However, cluster analysis is inherently multi-objective because its criteria are ill-
defined [61], and the first contribution of this work is the formulation of the prototype-based
transcriptome clustering as a MOO problem, solvable using GAs.

Interestingly, applications of MOO in single-cell transcriptomics are limited and mostly
used to find the best combination of hyperparameters for deep learning models [62] and to
impute missing values [63,64]. For instance, dropouts in single-cell transcriptomics are noto-
riously difficult to resolve. When unresolved, they propagate noise to downstream analyses
and lead to low-quality clustering results. By taking into account topological relationships
between cells, the construction of cell–cell affinity matrices can be formulated as a MOO
problem [64]. The structure learned from these matrices reduces gene expression noise
and improves downstream results. This approach has been recently extended to simulta-
neously learn three different structures within the raw and noisy data [63]. Specifically,
gene–gene similarity matrix, cell–cell similarity, and the low-rank approximation of the
data were jointly learned by tuning the parameters of these matrices using GAs. In another

J. Pers. Med. 2023, 13, 183 13 of 17

application of hyperparameter tuning, evolutionary MOO has been used to simultaneously
evolve the hyperparameters and architectures of a deep network of architectures [62].

Most directly related to our work is the use of particle swarm optimization for the
scRNA-seq data clustering [65]. Each cell was represented as a particle and raw data
were embedded onto multiple subspaces, with each subspace being clustered separately,
using a multi-objective particle swarm optimization algorithm. Comparisons with base-
line and state-of-the-art methods have been conducted for experimental datasets. The
results showed slight improvements over the state-of-the-art method, PhenoGraph. How-
ever, only nine datasets were used, and the largest dataset comprised only 5000 cells. In
this work, instead of solving a clustering problem by evolving each cell independently,
we evolve clustering solutions, and demonstrate an improved performance of our ap-
proach using 48 reference datasets and 60 synthetic datasets, ranging between 59 and
10,000 transcriptomes.

Other approaches can be also used to find solutions that balance the trade-offs between
multiple objectives. One approach is to optimize one objective function, while constrain-
ing the other objective functions [66]. Alternatively, multi-objective optimization can be
transformed into a single-objective optimization by aggregating objective functions using
a weighted sum. Optimal solutions can be updated via weight changes to find the best
weighted sum. However, it has been shown that neither method guarantees that an optimal
solution can be found [25], and the two approaches are highly dependent on the chosen
constraints and weights.

The main advantages of the MOO formulation of clustering and the proposed MOGA
are demonstrated in better performance in the cluster analysis of 48 recently published
reference datasets. In 12 out of 48 datasets, MOGA found significantly better results than
the original publication [57,58], in particular in datasets of a cancer cell line (cell line A)
sequenced using C1 and ICELL8 technologies. Notably, MOGA’s results on 10X dataset are
similar to those reported previously and those found by the KMeans, PhenoGraph, Seurat,
and Scanpy. These results are interesting, in particular because MOGA outperformed the
state-of-the-art PhenoGraph, Seurat, and Scanpy, which were developed specifically for
scRNA-seq cluster analysis [17,18,21]. Visual examination of these 12 datasets confirmed
the advantage of MOO for scRNA-seq data, whose underlying structure is unknown prior
to clustering. These 12 datasets, unlike the other reference datasets, had two well-separated
clusters of cells, and these two big clusters were well captured by MOGA. KMeans, SOGA,
and community-detection methods, such as PhenoGraph, Seurat, and Scanpy, optimize for
cohesiveness or modularity. MOGA, on the other hand, optimizes for both separation and
cohesiveness (Equation (1)) and achieves better results on these 12 datasets.

In the second contribution of this study, we confirmed the accuracy, stability, and
consistency of MOGA solutions and rigorously compared them to solutions found by
KMeans, PhenoGraph, and SOGA. Cluster stability analysis is rarely performed in scRNA-
seq studies. Due to the lack of a principled mechanism for the verification of the correctness
of the clustering result, two validation techniques are typically used, namely external
and internal validation. While these validation methods have convenient metrics for the
comparison of new clustering algorithms, end-users may be more interested in clustering
results that are meaningful and useful to their specific application domain. End-users may
have specific expectations about changes in the clustering results in response to changes
in the dataset. For example, a common expectation is that clustering results improve
after the removal of noise or after data imputation, or that clustering results should not
change if the order of the transcriptomes is permuted. In these scenarios, it is important
to assure algorithmic stability of new clustering methods. In this work, we presented and
utilized an orthogonal approach to the evaluation of internal and external cluster validity,
namely metamorphic evaluation [47,48], and demonstrated that MOGA produced stable
and reproducible clustering results.

The design and the implementation of MOGA involved a grid-search for the best
hyperparameters, and several decisions had to be made about encoding and genetic opera-

J. Pers. Med. 2023, 13, 183 14 of 17

tors. In this study, we decided upon the most intuitive design choices, such as real-valued
encoding of the chromosomes, tournament and NDSS operations, a one-point crossover,
and a polynomial mutation. These choices were most suitable to our application domain;
however, many variants of selection, crossover, and mutation exist [67], which can be
introduced into future versions of our MOGA. During hyperparameters’ tuning, while we
did not observe any dependency between the dataset’s size and performance, we noted
that internal and external validity metrics depended on the number of clusters for all
algorithms, including MOGA. Specifically, we observed lower ARI, NMI, and Sil scores
when the number of clusters changed from 16 to 64. Visual examination of clustering
results of these synthetic datasets showed greater overlaps between clusters compared with
synthetic datasets with fewer clusters. To handle datasets with overlapping clusters, future
extensions of MOGA will involve support for fuzzy clustering [68].

Some limitations of MOGA involve the high computational burden and the propensity
of GAs to be trapped at local minima, thus finding optimal solutions for a subset of
transcriptomes only. Premature convergence of GAs is a well-known limitation [69,70],
which can be addressed in the future versions of MOGA, using adaptive adjustment of the
mutation probability, for example. The second limitation of MOGA is its computational
speed, which we were able to partly remedy by the parallel evaluation of fitness functions
of individual chromosomes. We also timed MOGA’ execution times on an HPC cluster to
better understand the dependency between the execution time and system’s resources. In
our third contribution, we used these data from the run-time analyses to train a supervised
ML estimator of MOGA’s execution times for a given combination of resources and dataset
sizes. Our ML-based estimator has a small error of 46.79 s, and can be used to plan
future experiments.

In summary, our three contributions demonstrate that the multi-objective cluster
analysis of single-cell transcriptomes may be accurately and robustly performed using
Genetic Algorithms, and its computational run-times may be predicted based on the
system’s resources and datasets’ sizes. This work opens up new directions for the practical
applications of multi-objective cluster analysis of single-cell transcriptomes to better guide
biomarkers’ discovery.

Author Contributions: Conceptualization, J.M.G. and N.K.; methodology, N.K.; software, K.Z.
and N.K.; validation, K.Z. and N.K.; formal analysis, K.Z., J.M.G. and N.K.; resources, J.M.G. and
N.K.; data curation, K.Z. and N.K.; writing—original draft preparation, K.Z.; writing—review and
editing, K.Z., J.M.G. and N.K.; visualization, K.Z.; supervision, N.K.; project administration, N.K.;
funding acquisition, J.M.G. and N.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Reference datasets are available from scrnabench package: https:
//github.com/NWhitener/scrnabench, accessed on 1 December 2022. Synthetic datasets and code
are available at https://github.com/SheltonZhaoK, accessed on 1 December 2022.

Acknowledgments: This research was partially supported by the Pilot Award from the Wake Forest
Center for Biomedical Informatics (J.G. and N.K.) and the Wake Forest Summer Research Fellowship
Award (K.Z.). The authors acknowledge the Distributed Environment for Academic Computing
(DEAC) at Wake Forest University for providing HPC resources that have contributed to the research
results reported within this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

https://github.com/NWhitener/scrnabench
https://github.com/NWhitener/scrnabench
https://github.com/SheltonZhaoK

J. Pers. Med. 2023, 13, 183 15 of 17

Abbreviations
The following abbreviations are used in this manuscript:

ARI Adjusted Rand Index
DBI Davies Bouldin Index
GA Genetic Algorithm
ML Machine Learning
MOGA Multi-Objective Genetic Algorithm
MOO Multi-Objective
MSE Mean Square Error
NDSS Non-dominance Solution Sorting
NMI Normalized Mutual Information
Sil Silhouette Coefficient
SOGA Single Objective Genetic Algorithm

References
1. Rood, J.E.; Maartens, A.; Hupalowska, A.; Teichmann, S.A.; Regev, A. Impact of the Human Cell Atlas on medicine. Nat. Med.

2022, 28, 2486–2496. [CrossRef]
2. Yau, C. pcaReduce: Hierarchical clustering of single cell transcriptional profiles. BMC Bioinform. 2016, 17, 140.
3. Yang, L.; Liu, J.; Lu, Q.; Riggs, A.D.; Wu, X. SAIC: An iterative clustering approach for analysis of single cell RNA-seq data. BMC

Genom. 2017, 18, 9–17. [CrossRef] [PubMed]
4. Kiselev, V.Y.; Kirschner, K.; Schaub, M.T.; Andrews, T.; Yiu, A.; Chandra, T.; Natarajan, K.N.; Reik, W.; Barahona, M.; Green,

A.R.; et al. SC3: Consensus clustering of single-cell RNA-seq data. Nat. Methods 2017, 14, 483–486. [CrossRef] [PubMed]
5. Marco, E.; Karp, R.L.; Guo, G.; Robson, P.; Hart, A.H.; Trippa, L.; Yuan, G.C. Bifurcation analysis of single-cell gene expression

data reveals epigenetic landscape. Proc. Natl. Acad. Sci. USA 2014, 111, E5643–E5650. [CrossRef] [PubMed]
6. Zhang, H.; Lee, C.A.; Li, Z.; Garbe, J.R.; Eide, C.R.; Petegrosso, R.; Kuang, R.; Tolar, J. A multitask clustering approach for

single-cell RNA-seq analysis in recessive dystrophic epidermolysis bullosa. PLoS Comput. Biol. 2018, 14, e1006053. [CrossRef]
7. Grün, D.; Muraro, M.J.; Boisset, J.C.; Wiebrands, K.; Lyubimova, A.; Dharmadhikari, G.; van den Born, M.; Van Es, J.; Jansen, E.;

Clevers, H.; et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 2016, 19, 266–277.
[CrossRef]

8. Zeisel, A.; Muñoz-Manchado, A.B.; Codeluppi, S.; Lönnerberg, P.; La Manno, G.; Juréus, A.; Marques, S.; Munguba, H.; He, L.;
Betsholtz, C.; et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 2015, 347, 1138–1142.
[CrossRef]

9. duVerle, D.A.; Yotsukura, S.; Nomura, S.; Aburatani, H.; Tsuda, K. CellTree: An R/bioconductor package to infer the hierarchical
structure of cell populations from single-cell RNA-seq data. BMC Bioinform. 2016, 17, 363. [CrossRef]

10. Lin, P.; Troup, M.; Ho, J.W. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol.
2017, 18, 1–11. [CrossRef]

11. Zhang, J.M.; Fan, J.; Fan, H.C.; Rosenfeld, D.; Tse, D.N. An interpretable framework for clustering single-cell RNA-Seq datasets.
BMC Bioinform. 2018, 19, 1–12. [CrossRef] [PubMed]

12. Olsson, A.; Venkatasubramanian, M.; Chaudhri, V.K.; Aronow, B.J.; Salomonis, N.; Singh, H.; Grimes, H.L. Single-cell analysis of
mixed-lineage states leading to a binary cell fate choice. Nature 2016, 537, 698–702. [CrossRef] [PubMed]

13. Li, H.; Courtois, E.T.; Sengupta, D.; Tan, Y.; Chen, K.H.; Goh, J.J.L.; Kong, S.L.; Chua, C.; Hon, L.K.; Tan, W.S.; et al. Reference
component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 2017,
49, 708–718. [CrossRef]

14. Ntranos, V.; Kamath, G.M.; Zhang, J.M.; Pachter, L.; Tse, D.N. Fast and accurate single-cell RNA-seq analysis by clustering of
transcript-compatibility counts. Genome Biol. 2016, 17, 112. [CrossRef]

15. Wang, B.; Zhu, J.; Pierson, E.; Ramazzotti, D.; Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based
similarity learning. Nat. Methods 2017, 14, 414–416. [CrossRef] [PubMed]

16. Xu, C.; Su, Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 2015,
31, 1974–1980. [CrossRef] [PubMed]

17. Traag, V.A.; Waltman, L.; Van Eck, N.J. From Louvain to Leiden: Guaranteeing well-connected communities. Sci. Rep. 2019,
9, 1–12. [CrossRef]

18. Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M., III; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zagar, M.; et al.
Integrated analysis of multimodal single-cell data. Cell 2021, 184, 3573–3587. [CrossRef]

19. Jiang, L.; Chen, H.; Pinello, L.; Yuan, G.C. GiniClust: Detecting rare cell types from single-cell gene expression data with Gini
index. Genome Biol. 2016, 17, 1–13. [CrossRef]

20. Qiu, X.; Mao, Q.; Tang, Y.; Wang, L.; Chawla, R.; Pliner, H.A.; Trapnell, C. Reversed graph embedding resolves complex single-cell
trajectories. Nat. Methods 2017, 14, 979–982. [CrossRef]

http://doi.org/10.1038/s41591-022-02104-7
http://dx.doi.org/10.1186/s12864-017-4019-5
http://www.ncbi.nlm.nih.gov/pubmed/28984204
http://dx.doi.org/10.1038/nmeth.4236
http://www.ncbi.nlm.nih.gov/pubmed/28346451
http://dx.doi.org/10.1073/pnas.1408993111
http://www.ncbi.nlm.nih.gov/pubmed/25512504
http://dx.doi.org/10.1371/journal.pcbi.1006053
http://dx.doi.org/10.1016/j.stem.2016.05.010
http://dx.doi.org/10.1126/science.aaa1934
http://dx.doi.org/10.1186/s12859-016-1175-6
http://dx.doi.org/10.1186/s13059-017-1188-0
http://dx.doi.org/10.1186/s12859-018-2092-7
http://www.ncbi.nlm.nih.gov/pubmed/29523077
http://dx.doi.org/10.1038/nature19348
http://www.ncbi.nlm.nih.gov/pubmed/27580035
http://dx.doi.org/10.1038/ng.3818
http://dx.doi.org/10.1186/s13059-016-0970-8
http://dx.doi.org/10.1038/nmeth.4207
http://www.ncbi.nlm.nih.gov/pubmed/28263960
http://dx.doi.org/10.1093/bioinformatics/btv088
http://www.ncbi.nlm.nih.gov/pubmed/25805722
http://dx.doi.org/10.1038/s41598-019-41695-z
http://dx.doi.org/10.1016/j.cell.2021.04.048
http://dx.doi.org/10.1186/s13059-016-1010-4
http://dx.doi.org/10.1038/nmeth.4402

J. Pers. Med. 2023, 13, 183 16 of 17

21. Levine, J.H.; Simonds, E.F.; Bendall, S.C.; Davis, K.L.; Amir, E.a.D.; Tadmor, M.D.; Litvin, O.; Fienberg, H.G.; Jager, A.; Zunder,
E.R.; et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell 2015,
162, 184–197. [CrossRef] [PubMed]

22. Wolf, F.A.; Angerer, P.; Theis, F.J. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 2018, 19, 1–5.
[CrossRef] [PubMed]

23. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory
Exp. 2008, 2008, P10008. [CrossRef]

24. Petegrosso, R.; Li, Z.; Kuang, R. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Brief.
Bioinform. 2020, 21, 1209–1223. [CrossRef] [PubMed]

25. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001.
26. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence; Complex Adaptive Systems, A Bradford Book: Cambridge, MA, USA, 1992.
27. Fogel, D.B.; Fogel, L.J. An introduction to evolutionary programming. In Proceedings of the Artificial Evolution; Alliot, J.M., Lutton,

E., Ronald, E., Schoenauer, M., Snyers, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; Lecture Notes in Computer Science,
pp. 21–33.

28. Khuri, S.; Bäck, T.; Heitkötter, J. An evolutionary approach to combinatorial optimization problems. In Proceedings of the 22nd
Annual ACM Computer Science Conference on Scaling Up: Meeting the Challenge of Complexity in Real-World Computing
Applications, Phoenix, AZ, USA, 8–10 March 1994; pp. 66–73.

29. Bhandari, D.; Murthy, C.D.; Pal, S.K. Genetic algorithm with elitist model and its convergence. Int. J. Pattern Recognit. Artif. Intell.
1996, 10, 731–747. [CrossRef]

30. Gliesch, A.; Ritt, M.; Moreira, M.C.O. A genetic algorithm for fair land allocation. In Proceedings of the Genetic and Evolutionary
Computation Conference, London, UK, 7–11 July 2017; Association for Computing Machinery: New York, NY, USA, 2017;
GECCO ’17, pp. 793–800.

31. Wang, J.; Luo, P.; Zhang, L.; Zhou, J. A Hybrid Genetic Algorithm for Weapon Target Assignment Optimization. In Proceedings
of the 2nd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, Phuket, Thailand, 23–25 March
2018; Association for Computing Machinery: New York, NY, USA, 2018; ISMSI’18, pp. 41–47.

32. Burak, J.; Mengshoel, O.J. A multi-objective genetic algorithm for jacket optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion, Lille, France, 10–14 July 2021; Association for Computing Machinery: New
York, NY, USA, 2021; GECCO’21, pp. 1549–1556.

33. Barbareschi, M.; Barone, S.; Bosio, A.; Han, J.; Traiola, M. A Genetic-algorithm-based Approach to the Design of DCT Hardware
Accelerators. ACM J. Emerg. Technol. Comput. Syst. 2022, 18, 50:1–50:25. [CrossRef]

34. Peng, C.; Wu, X.; Yuan, W.; Zhang, X.; Zhang, Y.; Li, Y. MGRFE: Multilayer Recursive Feature Elimination Based on an Embedded
Genetic Algorithm for Cancer Classification. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 18, 621–632. [CrossRef]

35. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

36. Kim, M.; Hiroyasu, T.; Miki, M.; Watanabe, S. SPEA2+: Improving the performance of the strength Pareto evolutionary algorithm
2. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Birmingham, UK, 18–22 September
2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 742–751.

37. Goldberg, D.E.; Korb, B.; Deb, K. Messy Genetic Algorithms: Motivation, Analysis, and First Results. Complex Syst. 1989,
3, 493–530.

38. Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [CrossRef]

39. Jain, H.; Deb, K. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting
Approach, Part II: Handling Constraints and Extending to an Adaptive Approach. IEEE Trans. Evol. Comput. 2014, 18, 602–622.
[CrossRef]

40. Coelho, G.P.; Barbante, C.C.; Boccato, L.; Attux, R.R.F.; Oliveira, J.R.; Von Zuben, F.J. Automatic feature selection for BCI: An
analysis using the davies-bouldin index and extreme learning machines. In Proceedings of the The 2012 International Joint
Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012; IEEE: Brisbane, QLD, Australia, 2012; pp. 1–8.

41. Hassanat, A.; Almohammadi, K.; Alkafaween, E.; Abunawas, E.; Hammouri, A.; Prasath, V.B.S. Choosing Mutation and Crossover
Ratios for Genetic Algorithms—A Review with a New Dynamic Approach. Information 2019, 10, 390. [CrossRef]

42. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,
20, 53–65. [CrossRef]

43. Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 1971, 66, 846–850. [CrossRef]
44. Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218. [CrossRef]
45. Vinh, N.X.; Epps, J. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction

for chance. J. Mach. Learn. Res. 2010, 11, 2837–2854.
46. Studholme, C.; Hill, D.L.G.; Hawkes, D.J. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit.

1999, 32, 71–86. [CrossRef]

http://dx.doi.org/10.1016/j.cell.2015.05.047
http://www.ncbi.nlm.nih.gov/pubmed/26095251
http://dx.doi.org/10.1186/s13059-017-1382-0
http://www.ncbi.nlm.nih.gov/pubmed/29409532
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1093/bib/bbz063
http://www.ncbi.nlm.nih.gov/pubmed/31243426
http://dx.doi.org/10.1142/S0218001496000438
http://dx.doi.org/10.1145/3501772
http://dx.doi.org/10.1109/TCBB.2019.2921961
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1109/TEVC.2013.2281534
http://dx.doi.org/10.3390/info10120390
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1080/01621459.1971.10482356
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1016/S0031-3203(98)00091-0

J. Pers. Med. 2023, 13, 183 17 of 17

47. Segura, S.; Fraser, G.; Sanchez, A.B.; Ruiz-Cortés, A. A Survey on Metamorphic Testing. IEEE Trans. Softw. Eng. 2016, 42, 805–824.
[CrossRef]

48. Yang, S.; Towey, D.; Zhou, Z.Q. Metamorphic Exploration of an Unsupervised Clustering Program. In Proceedings of the 2019
IEEE/ACM 4th International Workshop on Metamorphic Testing (MET), Montréal, QC, Canada, 26 May 2019; IEEE: Montreal,
QC, Canada, 2019; pp. 48–54.

49. Fortin, F.A.; Rainville, F.M.D.; Gardner, M.A.; Parizeau, M.; Gagné, C. DEAP: Evolutionary Algorithms Made Easy. J. Mach. Learn.
Res. 2012, 13, 2171–2175.

50. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

51. Zappia, L.; Phipson, B.; Oshlack, A. Splatter: Simulation of single-cell RNA sequencing data. Genome Biol. 2017, 18, 174.
[CrossRef] [PubMed]

52. Whitener, N. Scrnabench: A Package for Metamorphic Benchmarking of scRNA-seq Data Analysis Methods; GitHub: San Francisco, CA,
USA, 2022.

53. Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M.; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R.
Comprehensive Integration of Single-Cell Data. Cell 2019, 177, 1888–1902. [CrossRef] [PubMed]

54. Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901,
2, 559–572. [CrossRef]

55. McInnes, L.; Healy, J.; Saul, N.; Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw.
2018, 3, 861. [CrossRef]

56. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
57. Chen, X.; Yang, Z.; Chen, W.; Zhao, Y.; Farmer, A.; Tran, B.; Furtak, V.; Moos, M.; Xiao, W.; Wang, C. A multi-center cross-platform

single-cell RNA sequencing reference dataset. Sci. Data 2021, 8, 1–11. [CrossRef]
58. Chen, W.; Zhao, Y.; Chen, X.; Yang, Z.; Xu, X.; Bi, Y.; Chen, V.; Li, J.; Choi, H.; Ernest, B.; et al. A multicenter study benchmarking

single-cell RNA sequencing technologies using reference samples. Nat. Biotechnol. 2021, 39, 1103–1114. [CrossRef]
59. Fina, E. Signatures of Breast Cancer Progression in the Blood: What Could Be Learned from Circulating Tumor Cell Transcriptomes.

Cancers 2022, 14, 5668. [CrossRef]
60. Moore, C.M.; Seibold, M.A. Possibilities and Promise: Leveraging advances in transcriptomics for clinical decision making in

allergic diseases. J. Allergy Clin. Immunol. 2022, 150, 756–765. [CrossRef]
61. Handl, J.; Knowles, J. An Evolutionary Approach to Multiobjective Clustering. IEEE Trans. Evol. Comput. 2007, 11, 56–76.

[CrossRef]
62. Li, X.; Zhang, S.; Wong, K.C. Deep embedded clustering with multiple objectives on scRNA-seq data. Brief. Bioinform. 2021,

22, bbab090. [CrossRef] [PubMed]
63. Jin, K.; Li, B.; Yan, H.; Zhang, X.F. Imputing dropouts for single-cell RNA sequencing based on multi-objective optimization.

Bioinformatics 2022, 12, 3222–3230. [CrossRef] [PubMed]
64. Liu, Q.; Luo, X.; Li, J.; Wang, G. scESI: Evolutionary sparse imputation for single-cell transcriptomes from nearest neighbor cells.

Brief. Bioinform. 2022, 23, bbac144. [CrossRef] [PubMed]
65. Liu, Q.; Zhao, X.; Wang, G. A Clustering Ensemble Method for Cell Type Detection by Multiobjective Particle Optimization.

IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 14, 1545–5963. [CrossRef] [PubMed]
66. Hwang, C.L.; Masud, A.S.M. Multiple Objective Decision Making—Methods and Applications; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 1979; Volume 164.
67. Sipper, M.; Fu, W.; Ahuja, K.; Moore, J.H. Investigating the parameter space of evolutionary algorithms. BioData Min. 2018, 11, 2.

[CrossRef]
68. Das, S.; Chaudhuri, S.; Das, A.K. Cluster analysis for overlapping clusters using genetic algorithm. In Proceedings of the 2016

Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Kolkata,
India, 23–25 September 2016; pp. 6–11.

69. Rocha, M.; Neves, J. Preventing premature convergence to local optima in genetic algorithms via random offspring generation.
In Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems,
Cairo, Egypt, 31 May–3 June 1999; Springer: Berlin/Heidelberg, Germany, 1999; pp. 127–136.

70. Oliva, D.; Rodriguez-Esparza, E.; Martins, M.S.R.; Abd Elaziz, M.; Hinojosa, S.; Ewees, A.A.; Lu, S. Balancing the Influence of
Evolutionary Operators for Global optimization. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC),
Glasgow, UK, 19–24 July 2020; pp. 1–8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSE.2016.2532875
http://dx.doi.org/10.1186/s13059-017-1305-0
http://www.ncbi.nlm.nih.gov/pubmed/28899397
http://dx.doi.org/10.1016/j.cell.2019.05.031
http://www.ncbi.nlm.nih.gov/pubmed/31178118
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.21105/joss.00861
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1038/s41597-021-00809-x
http://dx.doi.org/10.1038/s41587-020-00748-9
http://dx.doi.org/10.3390/cancers14225668
http://dx.doi.org/10.1016/j.jaci.2022.08.016
http://dx.doi.org/10.1109/TEVC.2006.877146
http://dx.doi.org/10.1093/bib/bbab090
http://www.ncbi.nlm.nih.gov/pubmed/33822877
http://dx.doi.org/10.1093/bioinformatics/btac300
http://www.ncbi.nlm.nih.gov/pubmed/35485740
http://dx.doi.org/10.1093/bib/bbac144
http://www.ncbi.nlm.nih.gov/pubmed/35512331
http://dx.doi.org/10.1109/TCBB.2021.3132400
http://www.ncbi.nlm.nih.gov/pubmed/34860653
http://dx.doi.org/10.1186/s13040-018-0164-x

	Introduction
	Materials and Methods
	Results
	Discussion
	References

