
Citation: Elvas, L.B.; Nunes, M.;

Ferreira, J.C.; Dias, M.S.; Rosário, L.B.

AI-Driven Decision Support for Early

Detection of Cardiac Events:

Unveiling Patterns and Predicting

Myocardial Ischemia. J. Pers. Med.

2023, 13, 1421. https://doi.org/

10.3390/jpm13091421

Academic Editor: Daniele Giansanti

Received: 30 August 2023

Revised: 18 September 2023

Accepted: 19 September 2023

Published: 21 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Personalized 

Medicine

Article

AI-Driven Decision Support for Early Detection of Cardiac
Events: Unveiling Patterns and Predicting Myocardial Ischemia
Luís B. Elvas 1,2,* , Miguel Nunes 1, Joao C. Ferreira 1,2 , Miguel Sales Dias 1 and Luís Brás Rosário 3

1 ISTAR, Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisbon, Portugal;
miguel_bonacho@iscte-iul.pt (M.N.); jcafa@iscte-iul.pt (J.C.F.); miguel.dias@iscte-iul.pt (M.S.D.)

2 Inov Inesc Inovação—Instituto de Novas Tecnologias, 1000-029 Lisbon, Portugal
3 Faculty of Medicine, Lisbon University, Hospital Santa Maria/CHULN, CCUL, 1649-028 Lisbon, Portugal;

lsrosario@medicina.ulisboa.pt
* Correspondence: luis.elvas@iscte-iul.pt

Abstract: Cardiovascular diseases (CVDs) account for a significant portion of global mortality,
emphasizing the need for effective strategies. This study focuses on myocardial infarction, pulmonary
thromboembolism, and aortic stenosis, aiming to empower medical practitioners with tools for
informed decision making and timely interventions. Drawing from data at Hospital Santa Maria, our
approach combines exploratory data analysis (EDA) and predictive machine learning (ML) models,
guided by the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology. EDA
reveals intricate patterns and relationships specific to cardiovascular diseases. ML models achieve
accuracies above 80%, providing a 13 min window to predict myocardial ischemia incidents and
intervene proactively. This paper presents a Proof of Concept for real-time data and predictive
capabilities in enhancing medical strategies.

Keywords: cardiovascular diseases; myocardial infarction; pulmonary thromboembolism; aortic
stenosis; stenosis cardiology; exploratory data analysis; artificial intelligence; machine learning; data
mining; prediction

1. Introduction

Cardiovascular diseases are the leading cause of mortality worldwide. In 2020, cardio-
vascular diseases (CVDs) accounted for 17.9 million deaths, or 32% of all global deaths [1,2].
CVDs are also a leading cause of hospitalization and disability. Addressing these com-
plexities requires innovative approaches that empower medical practitioners to make
informed decisions, leading to improved patient outcomes and more effective healthcare
strategies [2]. Notably, a study by Oxford Population Health’s Health Economics Research
Centre unveiled that in 2021, cardiovascular diseases incurred a cost of EUR 282 billion
in the European Union (EU) economy [3]. This economic burden emphasizes the urgent
need for innovative approaches that enhance medical decisions and healthcare strategies,
ultimately improving patient outcomes.

In modern medical practice, physicians are confronted with intricate clinical scenarios
that demand timely and data-driven interventions [4]. In the realm of Intensive Care Units,
the ability to harness comprehensive patient data for insightful decisions has the potential
to dramatically impact patient care and enhance healthcare quality [5]. In the current
medical practice, patients have several physiologic parameters monitored—e.g., Heart
Rate, Blood Pressure, Oxymetry, Body Temperature—that raise alarms when pre specified
thresholds are crossed, which prompts diagnostic or therapeutic interventions. In this sense,
patient care is triggered after the fact, as if a car driver were driving looking at the rear
mirror. This is in contrast with other sciences and work practices, for example, Meteorology,
where prediction drives Agriculture or Navigation decisions, based on data-driven models.
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The intersection of medical technology and data science has opened new avenues for
tackling disease prediction. Machine learning, a subset of artificial intelligence, promises
to unravel intricate patterns within vast datasets. Its modeling techniques, capable of ex-
tracting meaningful insights from complex clinical information, coupled with its predictive
prowess, could reshape how cardiac diseases are diagnosed, treated, and even forecasted
and prevented.

Machine learning techniques (ML) offer a transformative paradigm in cardiovascular
healthcare, enabling the integration of diverse data sources to unveil hidden correlations,
prognostic markers, and emerging risk factors [6]. This technology has the potential
to empower clinicians with predictive tools that can anticipate adverse cardiac events,
enabling early interventions and personalized treatment strategies. Early diagnosis and
intervention are essential for improving the outcomes of patients with CVDs [7]. This
is where machine learning can play a valuable role that can be used to analyze large
amounts of data and identify patterns that would be difficult to detect by human experts [8].
ML has been shown to be effective in predicting CVDs, even in patients who have no
symptoms [9]. The precision of these models holds the potential to improve patient care,
reduce hospitalizations, and mitigate the long-term impact of cardiac diseases [9].

Our approach showcases the capabilities unlocked through structured health database
analysis from a real-world problem. In our quest to advance cardiovascular healthcare,
our study adopts an innovative approach that underscores both privacy and collaboration.
Importantly, these data were homomorphically encrypted to uphold privacy and confiden-
tiality standards. The application of Data Sharing Agreements (DSAs) ensures responsible
and compliant data sharing practices, safeguarding patient information [10].

Our commitment to enhance cardiovascular healthcare is mapped in a central research
question: “How can fusion of Exploratory Data Analysis (EDA) techniques and predictive
Machine Learning models assist medical staff in accurate clinical decision-making, and
facilitate timely medical interventions of a preventive nature?”. This pivotal question
guides our exploration into harnessing data-driven methodologies to drive innovative
solutions in the context of cardiac care.

The core objectives of our study are two-fold, aligning seamlessly with the holistic
nature of our research question. Firstly, we endeavor to unravel intricate patterns within
the multi-syndrome dataset from Hospital Santa Maria through meticulous EDA. This
analytical journey offers insights into disease-specific trends, risk factors, and underlying
relationships, thereby equipping medical professionals with a deeper understanding of
cardiovascular diseases for enhanced diagnosis, prognosis, and treatment strategies. Sec-
ondly, we are dedicated to harnessing the predictive power of machine learning models to
anticipate myocardial ischemia. By utilizing the knowledge gained from our exploratory
analysis, we aim to develop intelligent predictive models capable of forecasting cardiac
incidents with a high degree of accuracy. This predictive capability has the potential to
empower healthcare practitioners to implement preemptive measures, enabling timely
interventions that significantly impact patient outcomes.

Our main objective, as directed by physicians, was to explore and extract knowledge
from patient data related to three specific diseases: myocardial infarction, pulmonary throm-
boembolism, and aortic stenosis, because they serve as useful comparators for COVID-19
(coronavirus disease 2019), the newly emerged disease.

This paper illustrates the potential of AI-driven approaches to health data analysis.
While we focus on myocardial infarction, pulmonary thromboembolism, and aortic stenosis
for illustrative purposes, the underpinning principle is universally applicable, including
for patients diagnosed with COVID-19. With structured, annotated and well-prepared data
(including physiological data), these methodologies can be extended to address any other
diseases, harnessing the power of data and technology to pioneer enhanced healthcare.

In summary, our paper charts a path towards addressing cardiovascular diseases
by leveraging data analysis and predictive machine learning models. By harmonizing
advanced technology with medical insights, we equip clinicians with the tools to aid them
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in making informed accurate decisions, pre-empt risk situations, and optimize patient care
and clinical outcomes. In the rapidly advancing field of cardiovascular healthcare, our
study is a significant contribution, providing data-driven evidence-based insights that have
implications for improved patient outcomes.

2. State of the Art

In this section, we went through the existing body of knowledge in the realm of artifi-
cial intelligence (AI) applications within cardiovascular diseases. We followed the PRISMA
methodology (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) [11],
not merely as a matter of convention, but to illuminate the path we have forged in pursuit
of our research objectives. We recognize the potential for questions to arise regarding the
integration of this comprehensive literature review into our broader study. Therefore, it is
essential to clarify the rationale and significance of our approach.

The literature review within this study serves a dual role that is both foundational
and contextual. We utilize it to identify research gaps and limitations that have guided
the formulation of our research questions. Furthermore, it places our study within the
broader landscape of AI-driven healthcare, offering readers a glimpse into the evolution
and current state of the art. One of our primary objectives in conducting this literature
review was to identify critical research gaps and limitations in existing studies. These gaps,
as illuminated through our systematic review process, have played a pivotal role in shaping
the specific research questions addressed in this article. Our intention is not to overshadow
the primary focus of our research but to underscore the significance of our contributions by
addressing unresolved questions in the field.

2.1. Search Strategy and Inclusion Criteria

Conducted in July 2023, this literature review focused solely on articles and reviews
written in English, published in journals between 2018 and 2023, sourced from the Scopus
and Web of Science Core Collection databases. We removed any duplicated articles to
ensure data integrity.

To ensure clarity in our search, we constructed a comprehensive search query encom-
passing the concepts of “Machine Learning”, “Artificial Intelligence”, or “Data Mining”
applied to the context of “Decision Support System”, “Data Analytics”, or “Data Analysis”.
This search was specifically targeted at the population of “Hospital Data” or “Health Data”,
with additional filtering based on “Cardiology” or “Cardiovascular Disease”. We ended
up with the following query “(“Machine Learning” OR “Artificial Intelligence” OR “Data
Mining”) AND (“Decision Support System” OR “Data Analytic” OR “Data Analysis”) AND
(“Hospital Data” OR “Health Data”) AND (“Cardiology” OR “Cardiovascular Disease”)”.

2.2. Results

The application of the mentioned query to the said Core Collection databases retrieved
21 papers. After the acquisition of such papers, we followed the PRISMA workflow, as
depicted in Figure 1, illustrating our analysis of the reviewed articles.

Our goal was to investigate the application of Artificial Intelligence (AI) or machine
learning in Health Data, with a specific focus on heart diseases. Throughout our literature
review, we came across various topics related to this subject, and Table 1 summarizes the
key themes found in each document. Without surprise, Heart Disease Prediction emerged
as a prominent topic in this field, and the Internet of Things (IoT) also played a significant
role in data acquisition, enabling further analysis. Additionally, the Risk Assessment of
heart diseases or mortality was prevalent in the studies that were examined.
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Table 1. Topics found in literature review.

Topic Reference Number of Documents

Heart Disease Prediction [12–20] 9
IoT [12–16,21,22] 7
Risk Assessment [16–19] 4
Big Data [13,20] 2
Mortality Prediction [19] 1
Recommender Systems [23–25] 3
Clustering [26] 1
Blockchain [15] 1

A more detailed review of each document is also presented next, where article [27]
discusses the significance of data integration and introduces a diagnosis recommender
system designed to assist physicians. In the same topic, ref. [26] presents a recommender-
system solution that utilizes clustering techniques for each disease partition, including
angina, non-cardiac chest pain, silent ischemia, and myocardial infarction.

Study [15] proposes the integration of Blockchain with AI to strengthen both technolo-
gies and create a novel solution that serves the objective of providing improvements in
cardiovascular medicine.

Articles [12–14,21] use IoT sensors to capture data and then use data to predict and
diagnose heart diseases with very promising results. Refs. [20,28] discuss the development
of an optimized feature-selection algorithm designed to predict heart diseases at an early
stage. Work [29] also discuss the development of a heart disease prediction model (on
benchmarking datasets). Article [17] proposes the development of a machine learning



J. Pers. Med. 2023, 13, 1421 5 of 24

algorithm to predict myocardial infarction diagnosis using electronic health record data
readily available during Emergency Department assessments. Work [22] is a state of the
art for using the Internet of Things with quantum dots in medicine. This integration offers
advanced disease detection and personalized treatments through precise data collection.
Healthcare benefits from the Artificial Intelligence-aided IoT, which securely transmits
patient data for tailored solutions.

Work [18] discusses the establishment of early warning models to assess and prevent
diseases such as stroke, heart failure, and renal failure. The authors of [16] utilize IoT
biosensors in a machine learning-based risk-assessment approach. Ref. [19] focuses on
predicting the mortality risk of patients during or shortly after cardiac surgery using
machine learning techniques for cardiac risk assessment.

The authors of [23] present a comprehensive review that delves into the history of
artificial intelligence in medicine, exploring its contemporary and future applications in
adult and pediatric cardiology, with a focus on selected concentrations. The review also
addresses the existing barriers to implementing these advanced technologies. Furthermore,
the article concludes by discussing the notable advantages of having a recommender system
in place. Such a system would not only enhance workflow efficiency but also provide
physicians with more time to spend with their patients, leading to increased job satisfaction.
As a result, patients are expected to experience improved satisfaction as they benefit from
more face-to-face time with their physicians.

Globally, there is a concerted effort to maximize the advantages of artificial intelli-
gence in medicine [23], aiming to assist physicians in achieving better performance and
enhance patients’ experiences during hospitalization. However, we found a gap in the
post-diagnosis phase. Following a patient’s hospitalization, they are connected to nu-
merous medical devices and our study centers on the analysis of select data gathered
from these devices, aiming to assist physicians in comprehending typical patient behavior
post-diagnosis. Distinguishing itself from previous research, our primary emphasis lies in
maximizing the utility of existing hospital medical devices and harnessing the resultant
data in the post-diagnosis phase. Our objective is twofold: first, to identify patterns during
the post-diagnosis phase that could aid physicians in better evaluating patients’ progress;
second, we propose predicting potential cardiological complications that may arise during
the hospitalization period and impact patients’ well-being.

3. Methodology

In the pursuit of our research objectives, we employed a systematic-approach CRISP-
DM to guide the development of our study. Leveraging the comprehensive patient data
from Hospital Santa Maria, we followed a structured methodology to uncover insights
and develop predictive models. Our database, integral to this study, includes data from
512,764 patients and contains continuous clinical signals such as Temperature, Blood
Oxygen Level (SpO2), Heart Rate, and Arterial Blood Pressure. This dataset, comprising
138 tables and occupying 75 gigabytes of data, was provided under the framework of the
FCT project DSAIPA/AI/0122/2020 AIMHealth—Mobile Applications Based on Artificial
Intelligence [11]. The availability of the database for research was approved by the Ethical
Committee of the Faculty of Medicine of Lisbon, one of the project partners.

These patients were selected from the Medical Intensive Care Units of Hospital de
Santa Maria, the largest Portuguese Public Hospital, located in Lisbon. They were already
diagnosed with specific diseases, and we chose to identify or forecast myocardial ischemia, a
daunting complication, in three specific diseases—Acute Myocardial Infarction, Pulmonary
Thromboembolism, and Aortic Stenosis—that represent a spectrum of Cardiovascular
Diseases (CVDs).

This approach was informed by industry-standard frameworks like the Cross-Industry
Standard Process for Data Mining (CRISP-DM) [24]. The utilization of such methodologies
ensures a rigorous and well-organized process, aligning with best practices while allowing
us to focus on the medical significance and practical implications of our findings. Building
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upon a doctoral research initiative, Data Sharing Agreements were meticulously crafted
and signed. The implementation of homomorphic encryption, initially explored in a
previously published paper [10], imparted an additional layer of academic rigor and depth
to our methodology.

The combination of systematic methodologies, comprehensive patient data, advanced
ML techniques, and ethical considerations forms the robust foundation of our research,
enabling us to pursue a deeper understanding of cardiovascular diseases and their predic-
tive modeling.

By leveraging CRISP-DM, we aimed to develop models that are not only accurate but
also meaningful for medical professionals navigating the complexities of cardiovascular
healthcare. Within CRISP-DM, we divided our efforts into two key areas: (1) exploratory
data analysis (EDA) and (2) machine learning (ML) predictive models. This division
allowed us not only to conduct a comprehensive evaluation of the data and gain a more
thorough understanding of each disease, but also to structure this study effectively.

3.1. Exploratory Data Analysis

In Section 4 of our study, we conducted EDA for decision support purposes, during
which we analyzed each disease individually. This phase of our methodology aimed to
uncover critical insights into the progression of myocardial ischemia within the context of
three specific diseases: Acute Myocardial Infarction, Pulmonary Thromboembolism, and
Aortic Stenosis. By thoroughly examining the data through EDA, we laid the foundation
for our subsequent ML modeling efforts.

3.2. Machine Learning Predictive Models

Section 5 of our study marked the application of ML models to the diseases under
study. This phase involved the implementation and evaluation of predictive models to
identify or forecast myocardial ischemia within the specified diseases. By harnessing the
power of advanced ML techniques, we sought to provide clinicians with valuable tools for
making informed, accurate decisions, preempting risk situations, and optimizing patient
care and clinical outcomes in the rapidly advancing field of cardiovascular healthcare.

4. Exploratory Data Analysis for Decision Support

With a firm commitment to elevating patient outcomes and enhancing medical strate-
gies, this chapter embarks on a journey through the vast expanse of patient data collected
from Hospital Santa Maria. By employing exploratory data analysis (EDA) techniques, we
uncover hidden relationships, correlations, and trends that have the potential to redefine
clinical decision making in cardiovascular healthcare. This expedition seeks to reveal
nuanced intricacies that can significantly shape the course of patient care.

During the EDA phase, our primary objective was to unveil insights and hidden
patterns within the data that hold the promise of aiding in early treatment or risk assess-
ment. We concentrated on identifying patient profiles and recurrent patterns in frequently
measured physiological data, along with examination results. This phase forms the bedrock
of our research, providing a comprehensive understanding of disease-specific trends and
risk factors that underpin the subsequent predictive models.

Our primary focus was on a table called RT_Data, which contains real-time data
collected during patients’ hospital stays. This valuable table encompasses physiological
data, vital signs, and information gathered from medical devices. Among all the variables,
a few were selected by physicians to study their behavior and examine if there are any
relevant patterns for each disease. It is crucial to emphasize that while numerous columns
were available, our physicians’ colleagues meticulously handpicked the most pertinent
ones for our disease study. The most commonly recorded physiological variables, Heart
Rate, Respiratory Rate, Arterial systolic Blood Pressure, Arterial Diastolic Blood Pressure
and Mean Arterial Pressure, were chosen as they reflect the momentaneous function of the
cardiovascular and respiratory systems and their reflex regulation (see Table 2).
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Table 2. RT-Data DB table composition.

Variable Name Variable Description

RTDATADBOID Database Object ID for each collection of real-time data
CREATIONDATE Date and time of real-time data collection
RESPIRATION RATE FROM EKG Respiration Rate Value
ST SEGMENT LEAD V5 ST segment deviation from baseline in the ECG Leads V5
ST SEGMENT LEAD V4 ST segment deviation from baseline in the ECG Leads V4
ST SEGMENT LEAD V3 ST segment deviation from baseline in the ECG Leads V3
ST SEGMENT LEAD V2 ST segment deviation from baseline in the ECG Leads V2
ST SEGMENT LEAD V1 ST segment deviation from baseline in the ECG Leads V1
ST SEGMENT LEAD AVF ST segment deviation from baseline in the ECG Leads aVF
ST SEGMENT LEAD AVR ST segment deviation from baseline in the ECG Leads aVR
ST SEGMENT LEAD AVL ST segment deviation from baseline in the ECG Leads aVL
ST SEGMENT LEAD III ST segment deviation from baseline in the ECG Leads III
MEAN ARTERIAL PRESSURE 2 Mean Arterial Pressure Value
DIASTOLIC PRESSURE (ART.) 2 Diastolic Pressure Value
SYSTOLIC PRESSURE (ART.) 2 Systolic Pressure Value
HEART RATE Heart Rate Value

Additionally, we conducted a thorough examination of the diagnostic table (see Table 3),
which played a crucial role in our analysis. This table provided essential details regarding
the prescribed diagnoses for each patient, allowing us to filter and concentrate specifically
on the diagnoses corresponding to the selected diseases: myocardial infarction, pulmonary
thromboembolism, and aortic stenosis.

Table 3. Diagnoses DB table composition.

Variable Name Variable Description

DIAGDBOID Database Object ID for each diagnosis
DIAGDESC Description of each diagnosis
DIAGTYPEDESC List of diagnoses
DIAGCODE Code associated with a particular diagnosis in the list of diagnoses

To construct comprehensive patient profiling, we gathered additional information
from the patients table in Table 4, and also from the patient’s admission table in Table 5.
The patient’s table enabled us to collect information about individual characteristics, while
the patient’s admission table provided details about patient’s weight, height, and the time
of their hospitalization. Furthermore, we consulted a separate table that stored information
about medical tests including the name of the test, the date it was conducted, and the
results of the test (Table 6).

By combining these diverse sources of data, our objective was to create a holistic
view of each patient’s medical journey and gain valuable insights into their conditions,
treatment progress, and overall health. Table 7 provides a summary of the utilized database
tables along with their respective rationales, aimed at enhancing the understanding of the
material by the readers.

Table 4. Patient DB table composition.

Variable Name Variable Description

PATIENTDBOID Database Object ID for each patient
BIRTHDATE Patient birth date
BLOODGROUP Patient blood group
SEX Patient gender
ETHNICITY Patient ethnicity
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Table 5. Admission DB table composition.

Variable Name Variable Description

ADMISSIONDBOID Database Object ID for each admission
STARTED Admission start datetime
ENDED Admission end datetime
WEIGHT Admission weight
HEIGHT Admission height

Table 6. Laboratory test DB table composition.

Variable Name Variable Description

LABTESTDBOID Database Object ID for each Laboratory Test
STARTED Datetime of test realization
ANALYSISDESC Name of analysis component
VALUE Result for analysis component

Table 7. Summary of utilized DB tables and their description.

DB Table Description No. Observations

Patients Obtain personal information
to build a patient profile 512,764

Admission How long a patient was
hospitalized 1,159,139

Diagnoses Filter by desired diseases 126,126

LabTests Extract date and result from
specific exams 8,043,764

RT_Data
Real-time data monitored
during patients’
hospitalization

30,404,477

As shown in Table 7, we were presented with a considerable volume of data gener-
ated by a real hospital. This untapped data reserve possessed the inherent potential to
significantly enhance physicians’ performance and patient care. By utilizing advanced ana-
lytical techniques, these surplus data could be transformed into valuable insights, offering
a wealth of information that can aid physicians in making more informed and accurate
clinical decisions.

To ensure our analysis focused on the desired diseases, we began by refining the
diagnosis table to include only the diagnoses that corresponded to our three target dis-
eases. However, this process proved to be more complex than initially anticipated due to
the hospital’s non-standardized data collection and generation practices. The diagnostic
entries exhibited variations in formatting, including the use of abbreviations, mixed cases
(uppercase and lowercase), and inconsistent naming conventions.

After applying our filtering criteria, all the selected entries underwent crucial validation
and verification by our team’s physicians. Their thorough review provided an additional
layer of scrutiny and assurance, enabling us to confidently proceed with our analysis.

Next, we proceeded to retrieve all the information about patients and admissions of
patients who had been diagnosed with at least one of the remaining entries in the filtered
diagnoses table. To ensure a holistic analysis, we extended our data-acquisition phase to
encompass the real-time data. We narrowed down this table to include only the patients
identified in the previous steps. For each disease, we began by merging all the information
collected about patients and admissions, and the real-time data into a (python) Pandas
DataFrame that we will now refer to as the “Hospitalization Dataset”. Subsequently, we
created additional variables, including the patients’ age, duration of admission in days,
and time of admission in minutes at each observation of the real-time data collection.
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Additionally, we retrieved medical-examination data from the LabTests table. Specifi-
cally, for all three diseases, we obtained patients’ exam results for Troponin and N-terminal
prohormone of brain natriuretic peptide (NT-proBNP) levels and we joined that informa-
tion with patients’ and admissions data for each one of the three diseases, resulting in a
dataset that we will refer to as the “Medical Tests Dataset”. Troponin and NT-proBNOP are
biological markers specific to cardiac lesion and/or strain. Troponin is a cardiac-specific
protein released when myocardium cells are injured. NT-proBNP is a pro hormone released
by the heart upon volume or pressure overload. Troponin is a marker of ischemia, so it
correlates with ST deviation, while NT-proBNP is from heart failure congestion. After
collecting all the medical test data related to NT-proBNP, we conducted an examination of
the data within our CRISP-DM data preparation stage. We performed various procedures,
such as removing duplicate entries and ensuring that the tests were conducted during the
patient’s hospitalization period. Additionally, we eliminated tests with implausible results,
such as values of 0 or negative values. Despite these efforts, upon analyzing the data for
each disease, we regret to report that the number of valid tests remained extremely low
and insignificant for us to proceed with further analysis. As a result, the Medical Tests
Dataset only included Troponin Tests and their corresponding results for each disease. The
NT-proBNP data set did not have enough data to perform a valid analysis.

Overall, we began our individual analyses with two distinct datasets for each disease.
The first dataset, referred to as “Hospitalization Dataset”, incorporated information about
patients, admissions and real-time data measured throughout their hospitalization. The
second dataset, named “Medical Tests Dataset”, comprised patient, admission, and test
result information for Troponin. As our data preparation (acquisition, cleaning and filtering)
phase was finally completed, we proceeded to better study and understand each disease.

4.1. Myocardial Infarction
4.1.1. Hospitalization Dataset

Our EDA for Myocardial Infarction included a dataset of 260 patients. Among them,
57 patients were female, and 203 patients were male. This dataset consisted of 368,285 ob-
servations, with each observation representing a real-time data collection record for an
individual patient. The age range of patients diagnosed with Myocardial Infarction varied
from 16 years (the youngest patient) to 88 years (the oldest patient). In terms of data
collection, we observed that one patient had the highest number of real-time data collection
records, with a total exceeding 23,000. This patient was hospitalized for approximately two
and a half months.

Then, we performed common data preparation procedures, such as removing dupli-
cate entries and addressing missing values. After performing the aforementioned proce-
dures, we proceeded to analyze certain parameters such as Heart Rate and Respiratory
Rate, as they are the vital signs usually collect for this disease, since their variation can
determine Ischemia.

In our initial descriptive statistics approach, we grouped the heart rate measurements
by extracting the hourly pattern of each measurement. Our objective was to investigate
whether the time of day had any influence on the frequency of heart rate readings. To
further enrich the graph’s information, we also incorporated the gender variable to assess
any significant differences, as shown in Figure 2.

Observing Figure 2, several notable patterns emerge. Firstly, it is evident that women
tend to have higher rates of tachycardia compared to men. Additionally, an intriguing
observation is that the average heart rate appears to be higher during the nighttime period
compared to the daytime period. This fact prompted us to expand our analysis by incorpo-
rating the day of admission as an additional grouping factor for heart rate measurements.
By including this level of grouping alongside the hour and minute of each measurement,
our aim was to explore potential trends or variations in heart rate patterns throughout the
duration of the patients’ admission days, as depicted in Figure 3.
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As we can see in Figure 3, during the first 24 h of admission into the hospital, there
is a decline in the patients’ average heart rate values during the daytime period. From
8 am until lunchtime, the values progressively decrease, and from lunchtime until the
start of the nighttime period, they increase. In the subsequent days of admission, the
average value oscillates between the 80s bpm during both the day and nighttime, with
no noticeable differences. So, that phenomenon in the first 24 h of admission lead us to
another analysis where we explored with more detail the evolution of heart rate during that
period of admission. To accomplish this, we utilized the average values based on minutes
of admission, focusing specifically on the time span from minute 1 to minute 1440, which
corresponds to the first 24 h of admission. This analysis allowed us to explore how the
heart rate changes over this crucial initial period of hospitalization, as seen in Figure 4.
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Figure 4. Average Heart Rate in the initial 24 h of admission.

It’s notable to observe in Figure 4 that the average heart rate progressively decreases
until around 2 h after admission starts; this happens since patients with a Myocardial
Infarction undergo angioplasty in the first hour.

This marks the lowest average heart rate, after which it begins to increase progressively,
eventually stabilizing between 80 and 85 after 8 h of admission. This behavior of the average heart
rate could possibly be influenced by medication or medical procedures (such as percutaneous
coronary intervention), and once their effects take place, the value tends to stabilize.

Shifting our focus, another measure chosen to evaluate patients’ conditions was the
Respiration Rate (taken from thoracic impedance from EKG). Initially, we had more than
47,000 observations with this measure recorded. However, after ensuring that the value was
greater than 0, we were left with only about 39,000 records. Out of these, 36,000 measurements
were taken during the first 24 h of hospital admission. As a result, we focused our analysis
on this subset of data, as depicted in Figure 5.
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As we can see in Figure 5, the average value of the respiration rate during the first 24 h
of admission (1440 min) oscillates between 12 and 20, with a decrease to 8 occurring close
to 17 h after the admission start. Subsequently, there is an increase in the average value,
which is observed close to the 24 h mark since the admission start.

4.1.2. Medical Tests Dataset

Shifting our focus to the dataset of medical exams, we conducted an analysis to com-
prehend the progression of Troponin over time. Specifically, we examined 1546 observations
of Troponin exams.

After removing duplicate entries and applying specific filters to ensure the inclusion
of only relevant exams conducted during the hospitalization period, we successfully elimi-
nated all tests that were not administered during the specified timeframe. As a result of
these two procedures, our dataset was refined, consisting now of 1348 records for Troponin.
To analyze the Troponin exams more effectively, we grouped them based on the average
values per day of admission, Figure 6.
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The average value of Troponin starts at 1000 ng/L and exhibits a tendency to increase
during the initial days of admission, reaching a peak of more than 2500 ng/L on the
7th day, followed by an oscillating but progressively decreasing pattern. For healthy
individuals, Troponin values are expected to be lower than 14 ng/L for healthy people,
and it is evident that for patients diagnosed with myocardial infarction, these values never
return to the considered normal range even after more than 1 month from the start of their
hospital admission.

4.2. Pulmonary Thromboembolism
4.2.1. Hospitalization Dataset

For the pulmonary thromboembolism disease, we had a total of 48 patients, consisting
of 28 males and 20 females. The age range of the patients spanned from 0 years to 91 years,
with the longest hospitalization duration lasting for 322 days. The dataset with real-time
data consisted of 87,760 observations, with each row representing a real-time data collection
instance for an individual patient.

As in the previous disease, we handled duplicates by removing them, and any in-
stances of missing values were addressed by exclusion, ensuring the data’s integrity re-
mained intact.

Furthermore, we conducted an analysis of heart rate and respiration rate measures
to identify patterns that could assist physicians in understanding the evolution of these
parameters. The objective was to provide valuable insights into how these vital signs
change over time and enable healthcare professionals to take appropriate actions based on
a patient’s individual evolution compared to the typical behavior observed in the majority
of patients. Once again, we commenced our analysis by examining heart rate patterns
across hours and genders, with the aim of identifying intriguing trends, as shown Figure 7.
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Figure 7. Average Heart Rate by time and gender.

Figure 7 shows a distinction from myocardial infarction. The average Heart Rate values
tend to be tachycardic, and there is no significant difference between men and women, even
during the daytime or nighttime periods. The values oscillate between 60 bpm and 140 bpm,
with men having a few average heart rate values above 140 bpm during the nighttime period.

Then, we proceed our analysis by grouping Heart Rate values based on their day of
admission and the specific hour and minute, computing the average value for each group,
as seen in Figure 8. Subsequently, we plotted the resulting graph to examine any discernible
patterns. Our primary objective was to investigate whether a similar pattern, as observed in
Myocardial Infarction cases, would emerge. Specifically, we were interested in determining
whether there was a notable minimum average heart rate during the daytime period of day
0, which could be indicative of a common trend in both conditions.
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As depicted in Figure 8, the behavior of Heart Rate in this disease does not exhibit
similarities with Myocardial Infarction. The values, rather, indicate signs of tachycardia,
but there is no significant discernible pattern observed during different days of admission.
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Additionally, we conducted an analysis of the first 24 h of admission to investigate
whether there were any instances of minimum or decreasing average heart rate values,
Figure 9. The purpose was to ascertain whether such occurrences could be attributed to
specific medical procedures or medication administered to the patient upon admission to
the hospital.
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In Figure 9, we can observe the same trend shown in Figure 8. The average heart
rate values of patients diagnosed with pulmonary thromboembolism exhibit significant
fluctuations. Patients frequently experience tachycardia, where heart rate values during the
first 24 h can oscillate widely, ranging from under 60 to over 110 beats per minute (bpm).

Shifting our focus to the Respiration Rate, we had more than 6500 valid observations.
To ensure data integrity, we performed certain procedures, such as removing observations
where the value of the respiration rate was equal to or lower than 0 (impossible values
in this context). By applying these data cleaning procedures, we aimed to maintain the
accuracy and reliability of the dataset for further analysis. Figure 10 presents the average
respiration rate from EKG in the first 24 h of admission.
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After approximately 5 h of hospitalization, the average value of respiration rate
starts to exhibit significant fluctuations. During the initial 5 h, the average value remains
relatively stable, around 15. However, after this period, the average respiration rate shows
oscillations, varying between 5 and 30 in certain instances. This observation suggests that
the respiration rate tends to become more erratic as the time since admission progresses.

4.2.2. Medical Tests Dataset

In terms of medical tests, we conducted a review to ensure we had a significant number
of Troponin tests performed on patients diagnosed with pulmonary thromboembolism.
The same procedures described in myocardial infarction were applied to ensure we had
only relevant and valid tests and after careful examination, we aimed to retain 219 tests out
of the total 244. Then, we grouped Troponin values based on the day of admission when
the examination was conducted, and calculated the average value for each day, which is
shown in Figure 11.
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As observed in Figure 11, the average value of troponin initially increases, similarly to
what is seen in myocardial infarction cases. However, after two days of admission, it starts
to decrease with occasional minor increases. Notably, the highest average value of Troponin
recorded was slightly below 500 ng/L, which contrasts with myocardial infarction cases
where values reached 2500 ng/L.

4.3. Aortic Stenosis
4.3.1. Hospitalization Dataset

As with the previous diseases, we began by presenting some descriptive statistics
of the data under study. The dataset comprised 794,694 observations of real-time data
collected from 660 patients, where 370 were male and 290 female. The ages of the patients
ranged from 0 years to 93 years. Notably, the patient with the longest hospitalization period
was admitted for 925 days, from 9 February 2017 to 23 August 2019.

After applying the same procedures as before, we conducted an analysis of the heart
rate and respiration rate signals.

As this disease had a substantial number of patients, with a relatively even distribution
among genders, we first examined the average heart rate based on the hour and minute of
measurement, as well as considering the patients’ gender; see Figure 12.

We can notice almost no difference between the genders in terms of the average heart
rate values. The analysis indicates that both male and female patients with this disease
exhibit similar trends in their heart rate patterns. It is also intriguing to observe a pattern
that was previously noted in myocardial infarction but is not as prominent in pulmonary
thromboembolism. The average heart rate values tend to be lower during the daytime
period compared to the nighttime period, where the highest value from the daytime period
almost corresponds to the lowest average heart rate value from the nighttime period.



J. Pers. Med. 2023, 13, 1421 16 of 24

J. Pers. Med. 2023, 13, x FOR PEER REVIEW 17 of 26 
 

 

 
Figure 11. Average Troponin values by day of admission. 

4.3. Aortic Stenosis 
4.3.1. Hospitalization Dataset 

As with the previous diseases, we began by presenting some descriptive statistics of 
the data under study. The dataset comprised 794,694 observations of real-time data 
collected from 660 patients, where 370 were male and 290 female. The ages of the patients 
ranged from 0 years to 93 years. Notably, the patient with the longest hospitalization 
period was admitted for 925 days, from 9 February 2017 to 23 August 2019. 

After applying the same procedures as before, we conducted an analysis of the heart 
rate and respiration rate signals. 

As this disease had a substantial number of patients, with a relatively even 
distribution among genders, we first examined the average heart rate based on the hour 
and minute of measurement, as well as considering the patients’ gender; see Figure 12. 

 
Figure 12. Average Heart Rate by time and gender. 

We can notice almost no difference between the genders in terms of the average heart 
rate values. The analysis indicates that both male and female patients with this disease 
exhibit similar trends in their heart rate patterns. It is also intriguing to observe a pattern 
that was previously noted in myocardial infarction but is not as prominent in pulmonary 
thromboembolism. The average heart rate values tend to be lower during the daytime 

Figure 12. Average Heart Rate by time and gender.

This fact led us to investigate the influence of the daytime period on the average heart
rate values, the results of which are shown in Figure 13. By analyzing the heart rate data
during daytime periods, we sought to discern potential patterns or variations that could
shed light on how this specific time of day may impact the average heart rate in patients.
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Aortic stenosis exhibits a similar behavior to myocardial infarction. Those suffering
from myocardial infarction are submitted to Angioplasty while patients suffering from
aortic stenosis are admitted and in the next day have a scheduled procedure Transcuta-
neous Aortic Valve Implantation (TAVI) with sedation and or anesthesia. On the first day of
admission (day 0), during the daytime period, the lowest average value of their heart rate
is noted. From 8 am onwards, their heart rate starts decreasing (when they are submitted to
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TAVI), and throughout the daytime period, it never reaches the average value of heart rate
seen during the nighttime period on the first day of admission. Subsequently, in the follow-
ing days, the heart rate values show greater stability, both within each day and between the
daytime and nighttime periods. Even in comparison with pulmonary thromboembolism,
most of the data for aortic stenosis exhibits remarkable stability, except for the observed
phenomenon on the first day of admission. The heart rate values demonstrate a consistent
pattern over time, indicating relatively steady and consistent behavior in most cases. Our
efforts were then focused on studying the first 24 h of admission, as depicted in Figure 14,
to understand if it showed a similar behavior to myocardial infarction, where the average
heart rate decreases and reaches its lowest value approximately one and a half hours after
the admission starts.
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Figure 14. Average Heart Rate in the initial 24 h of admission.

Once again, Figure 14 presents a behavior quite like myocardial infarction in aortic
stenosis patients. The average heart rate starts decreasing after admission and reaches its
lowest value at approximately 2 h. Subsequently, the heart rate gradually increases until it
reaches around 75 bpm. Over the remainder of the first 24 h, the average heart rate remains
stable, fluctuating between 75 and 80 bpm. This consistent and characteristic pattern
of heart rate changes in the initial 24 h of admission resembles the behavior typically
seen in myocardial infarction cases. The behavior of heart rate in aortic stenosis and
myocardial infarction is quite similar when compared to pulmonary thromboembolism,
where tachycardia is more prevalent globally. However, unlike in the former cases, there is
not a significant gradual decrease or increase in heart rate values.

Shifting our focus to the Respiration Rate, we analyzed the values from the first 24 h
of admission, Figure 15. Out of the total 63,000 observations, a substantial majority of
57,000 observations were specifically from the first 24 h of admission.

Once again, we observed new evidence of a behavior similar to myocardial infarction
in aortic stenosis patients. The average values of Respiration Rate rarely exceeded the limits
considered normal for healthy individuals, which typically fall within the range of 12 to
20 breaths per minute. Pulmonary thromboembolism did not exhibit a markedly different
behavior, but it did surpass the anticipated values on multiple occasions.
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4.3.2. Medical Tests Dataset

Analyzing the Troponin tests, we first filtered these exams to ensure they were con-
ducted within the hospitalization period. Out of the total Troponin tests, 2872 exams were
considered valid and were included in the analysis. Then, we followed a similar approach
to before by grouping the values of tests based on the admission day when they were
conducted. Subsequently, we calculated the average value of Troponin for each day, as seen
in Figure 16.
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Conversely, the values of Troponin in aortic stenosis patients across the day of admis-
sion are not similar to Troponin figures in myocardial infarction patients, contrasting in their
heart rate and respiration rate. In aortic stenosis, the average Troponin value reaches its
highest point after 5 days of admission and then gradually decreases but remains relatively
stable until the 24th day of admission. Unlike myocardial infarction, the Troponin values in
aortic stenosis patients never reach levels as high as 1000 ng/L. Even when compared with
pulmonary thromboembolism, the behavior of troponin differs. In aortic stenosis cases,
the highest value is only reached after 5 days, whereas in pulmonary thromboembolism, it
occurs earlier. By the 12th day, troponin levels in pulmonary thromboembolism drop below
200 ng/L, whereas in aortic stenosis, this value is only achieved after 25 days of admission.
The distinct behavior of Troponin in aortic stenosis patients is noticeably different.
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5. Machine Learning Predictive Models—Myocardial Ischemia Prediction

Moving beyond the Exploratory Data Analysis, our focus shifted to the machine
learning (ML) modeling phase, where our aim was to predict myocardial ischemia. This
predictive capability allows us to anticipate critical events and provide physicians with the
tools necessary for early interventions. The overarching purpose of our data analysis was
to aid physicians in making well-informed and accurate decisions, ultimately enhancing
patient outcomes, and elevating the overall quality of care.

To initiate our predictions, we employed the Hospitalization Dataset for each of
the three diseases. This dataset includes variables known as ST Segment Lead that are
represented as float values, which can be either positive or negative. Myocardial ischemia
can be detected using ST segment modification, this being an established marker of cardiac
injury without cellular death. It may happen as part of an unfavorable evolution of the
disease or therapeutic insufficiency. We evaluated these values using the ST-segment-T
wave criteria [25], which is suggestive of myocardial ischemia (MI). The criteria for ST-
elevation and ST-depression are distinct, and for each variable under study, specific rules
were applied to determine the presence of myocardial ischemia. For each disease, we
analyzed each record and verified whether, according to the values of our ST-Segment
variables and the aforementioned criteria, myocardial ischemia was present or not. A
Boolean variable was created to represent the phenomena. Table 8 presents the number of
observations (rows) in the Hospitalization Dataset, the number of diagnosed patients, the
number of patients that had MI and the number of observations with myocardial ischemia
for each disease under study. Please note that these patients were admitted to the hospital
with cardiac diseases and were measured with a non-regular frequency of 1–5 min, which
could explain the higher number of cases of myocardial ischemia.

Table 8. Presence of myocardial ischemia (MI) for each disease.

Disease No. Observations No. Patients Patients’ w/MI No. Observations w/MI

Myocardial Infarction 368,285 260 254 144,273
Pulmonary
Thromboembolism 87,760 48 22 17,357

Aortic Stenosis 794,694 660 649 394,967

Starting our predictions, the initial idea was to utilize shift variables to attempt a pre-
diction of whether a patient would experience myocardial ischemia in the future. For each
ST variable, the Heart Rate variable and the MI variable, we selected the past values (lag)
based on the autocorrelation of the patient with the most observations. Since the dataset
contained multiple records for various patients, it was crucial to check the autocorrelation
for only one patient to ensure accurate predictions of myocardial ischemia based on shift
values for that specific patient. We performed this procedure for each one of the three
diseases under study, utilizing the respective Hospitalization Dataset. Autocorrelation, in
essence, quantifies the extent of similarity between a variable and its past values across
various time intervals. The interdependence over time within the dataset can substantially
impact the performance of a model. A noticeable autocorrelation could suggest a strong
temporal relationship between ST Segment measurements or MI occurrences at different
points in time. This indicates that the current ST Segment value could potentially be influ-
enced by its own historical values. In the domain of predictive modeling, autocorrelation
plays a pivotal role in refining the accuracy of predictions. This phenomenon enables us to
utilize past values effectively to formulate forecasts for the future.

Based on the observations in Figure 17 and the autocorrelation graphs for all ST
Segment variables, Heart Rate and MI, we selected a lag of 13 and created the respective
shifted variables. It is important to note that lag 13 could represent 13 min or more,
considering the irregular frequency of data collection, which could range from 1 to 5 min.
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Categorical variables, such as ethnicity, sex, or blood group, were converted into
dummy variables. Afterward, we calculated the correlation between each variable and our
target variable, myocardial ischemia, and selected the ones with the highest correlation,
as shown in Table 9. Of these selected variables, Troponin was discarded since it has no
predictive value; as troponin is an indicator of cellular necrosis, it is not included in the
analysis of ischemia (since it only appears a posteriori).

Table 9. Variables used in models by disease.

Myocardial Infarction Pulmonary
Thromboembolism Aortic Stenosis Global Model

Height Height Shift_Myocardial_Ischemia Age
Age Weight Shift_Heart_Rate Shift_Myocardial_Ischemia
Shift_Myocardial_Ischemia Age Shift_Segment_Lead_AVL Shift_Segment_Lead_AVL
Shift_Segment_Lead_AVL Shift_Myocardial_Ischemia Shift_Segment_Lead_AVR Shift_Segment_Lead_III
Shift_Segment_Lead_AVF Shift_Heart_Rate Myocardial_Ischemia Ethnicity_Caucasian
Shift_Segment_Lead_III Shift_Segment_Lead_AVL Myocardial_Ischemia
Ethnicity_Caucasian Shift_Segment_Lead_AVF
Myocardial_Ischemia Shift_Segment_Lead_III

Ethnicity_Caucasian
Sex_Female
Myocardial_Ischemia

In addition to this selection, we also included PatientDboid (the primary key for the
patients DB table), to conduct further analysis. We also combined all the data from the
hospitalization datasets for the three diseases to create a global model. The same procedures
were conducted as with each individual disease.

For each disease, after selecting the variables to include in the model, we decided
to split the data between train and test sets based on patients. We randomly selected
one patient within the top five with the most rows for each disease and used them for
the test set, while excluding them from the training set. Afterward, we dropped the
PatientDboid column and created separate sets of X and Y for both the training and test
datasets. For the global model, we randomly split the data into training and test sets using
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an 80–20 proportion. The algorithms we employed for the machine learning modeling were
Random Forest, Naïve Bayes, and Neural Network. We constructed a Neural Network with
two hidden layers, each consisting of 1024 and 512 neurons, respectively. The activation
function used in both hidden layers was ReLU (Rectified Linear Unit), while the output
layer employed the Sigmoid activation function. For optimization, we utilized the Adam
optimizer and the binary cross-entropy loss function.

Table 10 presents the results, highlighting the best-performing algorithm for each dis-
ease. We evaluated the performance of each algorithm using all four standard classification
evaluation metrics (F1-Score, Accuracy, Precision, Recall). Additionally, the table includes
the number of records in the training and test sets for each disease.

Table 10. Performance of algorithms by disease.

Disease Algorithm F1-Score Accuracy Precision Recall

Myocardial Infarction Random Forest 0.81 0.82 0.81 0.80
# Train Set: 356,905 Naive Bayes 0.81 0.82 0.81 0.81
# Test Set: 8023 Neural Network 0.86 0.82 0.86 0.86
Pulmonary Thromboembolism Random Forest 0.92 0.94 0.92 0.91
# Train Set: 80,685 Naive Bayes 0.73 0.75 0.73 0.82
# Test Set: 6595 Neural Network 0.87 0.94 0.87 0.87
Aortic Stenosis Random Forest 0.83 0.87 0.84 0.83
# Train Set: 778,744 Naive Bayes 0.83 0.86 0.83 0.83
# Test Set: 9365 Neural Network 0.91 0.87 0.91 0.92
Global Model Random Forest 0.86 0.86 0.86 0.86
# Train Set: 990,756 Naïve Bayes 0.84 0.84 0.84 0.84
# Train Set: 247,690 Neural Network 0.84 0.85 0.84 0.83

As evident from the results in Table 10, the best-performing algorithms achieved
impressive scores close to 90% for each evaluation metric, indicating their good predictive
capabilities in identifying myocardial ischemia with a time lag of 13. These highly promis-
ing outcomes offer strong encouragement for the subsequent stages of implementation, as
the algorithms demonstrated the potential to assist physicians in real time in providing
timely advice regarding myocardial ischemia occurrence and forecast in patients.

When comparing the global model with the disease-specific models, the results are
not as impressive, if we think of the first case. However, the global model is more versatile
as it is not solely trained on data from one disease. It is also important to mention that each
model can be applied to patients with any disease, with the only requirement being the
data specified in Table 9 for the chosen model. These innovative results underscore the
significance of further steps in refining and deploying the algorithms in clinical settings.
The potential benefits of such predictive models are immense, as they can aid healthcare
professionals in proactively managing, forecasting and offering personalized care to patients
at risk of myocardial ischemia.

6. Discussion

In this section, we engage in a comprehensive discussion of the findings and impli-
cations of our study, while also acknowledging the limitations and ethical considerations
inherent in AI-driven healthcare research.

In the context of our research question, “how can fusion of Exploratory Data Analysis
(EDA) techniques and predictive machine learning models assist medical staff in accurate
clinical decision-making and facilitate timely medical interventions of a preventive nature?”,
we presented charts for our use cases in three specific diseases—acute myocardial infarction,
pulmonary thromboembolism and aortic stenosis—that represent a range of studied CVDs.
We employed machine algorithms to predict MI within a 13 min window, for patients
diagnosed with these studied diseases. The implementation of a global model with all the
patients (without filtering by disease), where we achieved 86% for each evaluation metric,
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demonstrates its ability to generalize. The best result for predicting MI was achieved when
trained and evaluated for patients suffering from Pulmonary Thromboembolism and Aortic
Stenosis. Our ability to forecast myocardial ischemia incidents with these levels of accuracy,
particularly within a 13 min window, holds promising implications for timely medical
interventions and improved patient outcomes.

As with any research endeavor, it is essential to acknowledge the limitations of our
study. We confronted the challenges posed by the lack of standardization in data col-
lection procedures and the prevalence of unstructured clinical information in Electronic
Medical Records. These limitations impacted the accuracy and generalizability of our
predictive models, and we recognize the need for ongoing efforts to enhance data quality
and standardization.

The use of AI in healthcare necessitates a robust consideration of ethical implications.
We acknowledge our access to the clinical data of patients admitted to the Intensive Care
Units of Hospital de Santa Maria, in the framework of FCT project DSAIPA/AI/0122/2020
AIMHealth, and the work [10], where DSAs were signed and homomorphic encryption
was implemented. These ethical safeguards protected patient privacy and confidentiality
while enabling critical research.

In the spirit of continuous improvement, we will engage in self-critique by identifying
areas for enhancement and future research directions. Our exploration of myocardial
ischemia prediction, while promising, remains a singular facet of AI applications in cardio-
vascular healthcare. We advocate for a broader exploration of AI’s potential in addressing
various cardiovascular diseases, and on behalf of the study that was conducted [10], we will
focus on further enhancing the robustness and generalizability of our predictive models by
integrating data from multiple hospitals and medical institutions. This collaborative ap-
proach aims to encompass a broader patient population and provide a more comprehensive
understanding of cardiovascular diseases.

7. Conclusions

Our exploratory data analysis of the three studied diseases enables physicians to
grasp patterns in Heart Rate, Respiration Rate, and Troponin values. Going forward, they
can compare data from new patients with the established behavioral norms derived from
previous patients diagnosed with the same disease. We believe that this approach enables
physicians to gain a more profound understanding of the recovery status and spend more
time with patients that show different behaviors. For future work, we suggest conducting
an analysis of additional medical tests, such as NT-proBNP.

In our study, it is also noteworthy to observe that aortic stenosis and myocardial infarc-
tion exhibit certain similarities, which stand in contrast to pulmonary thromboembolism.
The most prominent evidence lies in Heart Rate, where in both diseases, the average value
progressively decreases after admission, reaching its lowest point approximately 2 h after
admission before beginning to rise again.

In this paper, we presented another valuable AI tool, which performed the prediction
(forecast) of myocardial ischemia. Our literature review uncovered no relevant studies
addressing the use of machine learning to assist physicians in evaluating the progression
of patients’ conditions post-diagnosis, showing the relevance of this study. If physicians
were alerted 13 min in advance that a patient might experience myocardial ischemia, with
an accuracy of around 90%, they could take proactive measures rather than reactive ones,
and we believe our AI modeling tool can lead them in that direction. Upon refinement, this
model may be further tested prospectively to predict ischemia and arrhythmia in monitored
cardiac patients. We would like to point out, in addition, that we have shown that our ma-
chine learning model can be applied to any other disease, with the sole requirement being
that the patient must be connected to a medical device that collects ST Segment Variables.

It is also important to mention that applying exploratory data analysis to other diseases
could provide a better understanding of their progression, but it must be performed within
a singular analysis.
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