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Abstract: Purpose: The treatment of childhood myopia often involves the use of topical atropine, which
has been demonstrated to be effective in decelerating the progression of myopia. It is crucial to monitor
intraocular pressure (IOP) to ensure the safety of topical atropine. This study aims to identify the
optimal machine learning IOP-monitoring module and establish a precise baseline IOP as a clinical
safety reference for atropine medication. Methods: Data from 1545 eyes of 1171 children receiving
atropine for myopia were retrospectively analyzed. Nineteen variables including patient demographics,
medical history, refractive error, and IOP measurements were considered. The data were analyzed using
a multivariate adaptive regression spline (MARS) model to analyze the impact of different factors on the
End IOP. Results: The MARS model identified age, baseline IOP, End Spherical, duration of previous
atropine treatment, and duration of current atropine treatment as the five most significant factors
influencing the End IOP. The outcomes revealed that the baseline IOP had the most significant effect
on final IOP, exhibiting a notable knot at 14 mmHg. When the baseline IOP was equal to or exceeded
14 mmHg, there was a positive correlation between atropine use and End IOP, suggesting that atropine
may increase the End IOP in children with a baseline IOP greater than 14 mmHg. Conclusions: MARS
model demonstrates a better ability to capture nonlinearity than classic multiple linear regression for
predicting End IOP. It is crucial to acknowledge that administrating atropine may elevate intraocular
pressure when the baseline IOP exceeds 14 mmHg. These findings offer valuable insights into factors
affecting IOP in children undergoing atropine treatment for myopia, enabling clinicians to make informed
decisions regarding treatment options.

Keywords: myopia; atropine; intraocular pressure; multivariate adaptive regression splines

1. Introduction

Myopia, an eye condition with increasing global prevalence, tends to progress during
childhood and adolescence. Myopia affects more than 80% of teenagers in Taiwan [1–3].
High myopia can lead to complications if left untreated. These complications include retinal
detachment, glaucoma, cataracts, myopic maculopathy, and structural changes in ocular
tissues [4]. A survey on the computer-aided diagnosis (CAD) of ocular diseases based
on swept-source optical coherence tomography (SS-OCT) has shown pathologic myopia-
induced ocular structural changes, including thinning of the retinal layers and a pigmented
ring around the optic nerve. CAD systems have shown that SS-OCT is a powerful tool for
pathological myopia analysis. [5]. These complications can lead to permanent vision loss if
not detected and treated in a timely manner [6]. Treatment options for myopia management,
such as topical atropine, are effective in slowing the progression of myopia [7].
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Earlier accommodative theories proposed that increased accommodative demand
is linked to the progression of myopia. Atropine, an anticholinergic agent, blocks the
parasympathetic acetylcholine muscarinic receptors in the sphincter pupillae muscle, lead-
ing to mydriasis and cycloplegia. Atropine is commonly prescribed for the treatment of
myopia, as it can inhibit the over-adaptation of the ciliary muscle and reduce strain on
the eye during near work. The non-accommodative theory suggests that the local retinal
effect, through its action on muscarinic receptors, slows down scleral growth by affecting
the scleral matrix [8]. However, atropine may also cause side effects, such as blurred
vision, increased sensitivity to light, and a dry mouth. Additionally, the contraindication of
topical atropine, which possibly increases intraocular pressure (IOP), is also a concern for
myopic control in children [9–13]. Regular monitoring of visual acuity, refraction, and IOP
is essential for assessing treatment effectiveness and ensuring optimal outcomes.

Our team conducted a study in 2012 using 3-year follow-up data to investigate changes
in myopic children treated with atropine. This study found no statistically significant dif-
ference between the cumulative dose or duration of atropine therapy in elevating IOP [14].
In a previous study involving children with myopia treated with atropine, we employed
machine learning (ML) models to analyze the potential impact of long-term atropine use on
IOP, considering 19 relevant factors (variables X1–X19) (Table S2) that may influence IOP.
The study found that baseline IOP was the most significant factor among the 19 variables
we considered [14]. However, previous research has only revealed that basic IOP is the most
important factor influencing end intraocular pressure (End IOP) after atropine treatment.
In this study, we aim to identify the determining value of basic IOP in the ML module and
provide information for predicting changes in IOP after atropine treatment.

ML methods are data-driven approaches that have gained popularity in clinical studies,
including those on myopia, in the field of ophthalmology [15–17]. Owing to the complexity
of the interaction between variables in clinical data, traditional biostatistical methods are
limited in capturing hidden information. This information contains complex multivariate
information that ML can capture more effectively than traditional methods [16,18,19].
Moreover, various ML methods such as multivariate adaptive regression splines (MARS)
can provide helpful insights regarding the captured information. MARS utilizes piecewise
linear lines for estimation when analyzing data [20,21]. With these lines, MARS can extract
optimal cutting thresholds for the factors that impact IOP’s effects on ocular health. As a
result, more insight into the factors that may affect ocular health can be extracted from the
benefits and unique information provided by MARS.

Therefore, it is crucial for healthcare providers and parents to weigh the potential
risks and benefits of atropine and monitor the health of children during treatment. As
traditional biostatistics have limitations in handling complex data structures, we integrated
ML models into our study to improve efficiency and accuracy. The MARS model was used
to establish a safe and feasible method for the clinical application of atropine for myopia
control. The goal of the current study was to evaluate the correlation between various
factors and IOP in children with myopia using MARS, and to provide more valuable and
accurate information for the treatment of myopia with atropine.

2. Methods
2.1. Machine Learning Methods

Since the benefits of ML methods have been mentioned previously, this study utilized
three well-known ML methods for End IOP prediction. These methods include MARS,
the classification and regression tree (CART), and K-nearest neighbor (KNN) [20]. MARS
is a nonparametric extension of the linear regression created by Friedman [21]. It can
capture the nonlinear relationship between variables more effectively than the classic
linear regression. MARS achieves this by utilizing piecewise linear lines known as splines.
These splines are separate linear regression slopes in distinct intervals of the independent
variable space [20–22], which is how MARS approximates nonlinearity in the data. After
MARS finds all possible splines that best describe nonlinearity in the data, these splines
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are joined together. The points at which the splines meet are the knots that indicate each
optimal cutting point of the data. Each spline alone, with its corresponding knots, creates
hinge functions that take the form of max (0, variable − knot) or max(0, knot − variable). In
addition, all hinge functions that describe a variable are known as basis functions (BF), in
which each variable may have one or more BFs. Thus, MARS first finds all the splines that
can best describe the data, and these splines are then further used to form the BFs according
to their corresponding knots. Finally, the MARS equation is a combination of all the BFs.

CART is a tree-based method that generates a tree-like regression tree that can also
capture nonlinearity in data [23–25]. The main mechanism of CART when generating
a regression tree is the use of a repetitive process to find cutoff points of each variable
that can minimize the error when splitting it into two parts. The process ends when all
the independent variables have been sorted, and the final output predictions have the
minimum errors that CART can possibly generate [24,25]. KNN is an ML method with a
simple and straightforward concept for making predictions. It mainly utilizes the concept
of finding the minimum distance to the existing k-closest data points when predicting a
new one [25,26]. Additionally, the KNN usually assigns a new value based on the average
distance of the k-nearest neighbors, and the most common methods for distance calculation
are the Euclidean or Manhattan distances [25,26].

2.2. Model Building Process

All ML methods were constructed using the following training, validation, and testing
processes. During this process, the dataset was randomly split into two parts (80% for
training and 20% for testing). Subsequently, the training portion of the data was used to
train the models. To enhance the robustness and effectiveness of machine learning (ML)
methods, hyper-parameter tuning is imperative and is achieved by employing a 10-fold
cross-validation (10f-CV) method during training phase. The 10f-CV process involved the
random and equitable division of the training data into ten folds, each constituting 10% of
the data. Subsequently, the model was trained using 9 folds (90% of the training dataset),
while the remaining fold (10% of the training dataset) served as validation. When training
the model, the 10f-CV process iterated until each fold had been used for validation, resulting
in the construction of a tuned model with the optimal hyper-parameter set. Ultimately, the
performance of the tuned model was evaluated using the testing data.

The entire process mentioned has 10 repeat rounds in this study. In addition, the mod-
els were built using the “R” software (version 4.1.2) [27] in R studio (version 1.1.453) [28];
MARS was implemented with the “earth” package (version 5.3.1) [29]; CART was con-
ducted by the “rpart” package (version 4.1.16) [30]; KNN was implemented with the
“neighbor” package (version 1.0.3) [31]; and 10f-CV was implemented with the “caret”
package (version 6.0-92) [32].

2.3. Model Performance Criteria

To evaluate the performance of the models, five metrics are used in this study: mean
absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE),
relative absolute error (RAE), root relative squared error (RRSE), and root mean squared
error (RMSE). Using multiple metrics for evaluation ensured that the performance of the
model was stable and robust. The formula for the metrics is presented in Table S1, where
Ai represents the ith actual value and Fi represents the ith predicted value. MAPE and RAE
were generated using the “MLmetrics” package (version 1.1.1) [33], while SMAPE, RRSE,
and RMSE were generated using the “Metrics” package (version 0.1.4) [34].

3. Empirical Study
3.1. Dataset

Our investigation utilized ophthalmic data obtained from the Department of Ophthal-
mology at Shin Kong Wu Ho Su Memorial Hospital in Taipei, Taiwan. The data collection
spanned from 1 January 2008 to 31 December 2008, involving a cohort of 1171 children.
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Each child’s two eyes underwent separate examinations, totaling 2342 eyes. The study
adhered to the principles of the Declaration of Helsinki, and the Institutional Review Board
of Shin Kong Wu Ho Su Memorial Hospital approved the protocol (IRB 20220706R). These
data include patient demographics such as gender, age, medical history, refractive errors,
and intraocular pressure measurements. Among 2342 eyes, 324 eyes were excluded because
the patient was younger than 3 years or older than 18 years. An additional 279 eyes were
excluded due to loss of follow-up or the presence of ocular conditions such as corneal
disease, ocular trauma, tumors, iridocyclitis, congenital cataract, glaucoma, retinal disease,
or a history of ophthalmic surgery. Furthermore, 194 eyes were excluded because of the
use of non-atropine dilators, steroids, or anti-intraocular pressure medications. Ultimately,
a total of 1545 eyes were included, with data provided by the individual eyes of 813 male
children and 732 female children. The review included medical records, refractive status,
and the duration and dose of atropine treatment during follow-up. The case identification
process mentioned in this section is shown in Figure 1.

J. Pers. Med. 2024, 14, x FOR PEER REVIEW 4 of 13 
 

 

2.3. Model Performance Criteria 
To evaluate the performance of the models, five metrics are used in this study: mean 

absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE), 
relative absolute error (RAE), root relative squared error (RRSE), and root mean squared 
error (RMSE). Using multiple metrics for evaluation ensured that the performance of the 
model was stable and robust. The formula for the metrics is presented in Table S1, where 𝐴𝑖  represents the 𝑖𝑡ℎ  actual value and 𝐹𝑖  represents the 𝑖𝑡ℎ  predicted value. MAPE 
and RAE were generated using the “MLmetrics” package (version 1.1.1) [33], while 
SMAPE, RRSE, and RMSE were generated using the “Metrics” package (version 0.1.4) 
[34]. 

3. Empirical Study 
3.1. Dataset 

Our investigation utilized ophthalmic data obtained from the Department of Oph-
thalmology at Shin Kong Wu Ho Su Memorial Hospital in Taipei, Taiwan. The data col-
lection spanned from 1 January 2008 to 31 December 2008, involving a cohort of 1171 chil-
dren. Each child’s two eyes underwent separate examinations, totaling 2342 eyes. The 
study adhered to the principles of the Declaration of Helsinki, and the Institutional Re-
view Board of Shin Kong Wu Ho Su Memorial Hospital approved the protocol (IRB 
20220706R). These data include patient demographics such as gender, age, medical his-
tory, refractive errors, and intraocular pressure measurements. Among 2342 eyes, 324 eyes 
were excluded because the patient was younger than 3 years or older than 18 years. An 
additional 279 eyes were excluded due to loss of follow-up or the presence of ocular con-
ditions such as corneal disease, ocular trauma, tumors, iridocyclitis, congenital cataract, 
glaucoma, retinal disease, or a history of ophthalmic surgery. Furthermore, 194 eyes were 
excluded because of the use of non-atropine dilators, steroids, or anti-intraocular pressure 
medications. Ultimately, a total of 1545 eyes were included, with data provided by the 
individual eyes of 813 male children and 732 female children. The review included medi-
cal records, refractive status, and the duration and dose of atropine treatment during fol-
low-up. The case identification process mentioned in this section is shown in Figure 1. 

 
Figure 1. The algorithm of case identification. 

3.2. Variables 
We reviewed the refractive status, ophthalmic examination, medical records, and du-

ration and dosage of atropine treatment for a total of 1545 eyes, consisting of 813 male 
children and 732 female children. In Table S3, we list the demographics of 19 possible 

Figure 1. The algorithm of case identification.

3.2. Variables

We reviewed the refractive status, ophthalmic examination, medical records, and
duration and dosage of atropine treatment for a total of 1545 eyes, consisting of 813 male
children and 732 female children. In Table S3, we list the demographics of 19 possible
variables (X1–X19) connected with atropine use, which we assume may influence IOP.
Between 1 January 2008 and 31 December 2008, we measured the initial IOP and refraction
for variables X3 (Base IOP) and X4–X7, individually. The measurement of IOP was per-
formed initially on the right eye, followed by the left eye. We used noncontact tonometry
(Xpert NCT plus, Reichert, Leica Inc., New York, NY, USA), while the participants were
seated, without topical anesthesia. The refractory error was measured using a Canon RK5
autorefractor autokeratometer (Canon Inc., Ltd., Tochigiken, Japan).

Our study was a retrospective analysis that reviewed data from the patients’ first day
of medical therapy after 1 January 2005, which served as the first visit, and tracked patient
records until the last clinic visit on 30 December 2008, representing the total duration of the
study (X8). The prescribed dosages of atropine, available at 50, 25, 12.5, or 5 mg per bottle,
were calculated by multiplying the dosage of the bottle by the number of bottles prescribed
(X11), and the cumulative dosage was determined by adding all prescribed dosages during
outpatient visits within the given timeframe.

To account for the use of atropine after 1 January 2005, and prior to 1 January 2008,
we identified “previous data” (X12–X14), including previous durations, cumulative dosage,
and average dosage per month from 1 January 2005, to 31 December 2007. Statistics from
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1 January 2008 to 31 December 2008, were defined as “recruit data” (X15–X17), which included
recruitment durations, cumulative dosages, and average dosages per month. The “total
duration” (X8) included the sum of the previous duration and recruitment duration. Therefore,
the previous and recruit cumulative dosages constituted the “total cumulative dosage” (X9).
Finally, we recorded the prescribed doses of atropine at the last visit before the termination of
data collection as the “last dosage” (X18) and the prescribed frequency as the “last frequency”
(X19), which was listed as QN (every night), QON (every other night), BIW (twice a week), QW
(once a week), or 0 (none prescribed). We defined variable Y as the endpoint IOP measured
during the last hospital visit before the deadline for data collection.

3.3. Model Performance

Table 1 presents the results of the ML method used in this study. For comparison
purposes, a multiple linear regression (MLR) model was also constructed using the same
model-building process as ML. The MLR was included as a benchmark because it is a
classical regression method commonly used in many studies. As presented in Table 1, both
MLR and MARS exhibited lower errors than CART and KNN. Furthermore, MLR and
MARS performed similarly in terms of MAPE, SMAPE, and RAE, whereas MARS per-
formed slightly better than MLR in terms of RRSE (0.794) and RMSE (2.281). Additionally,
the standard deviations of MARS were low across all five metrics, indicating that MARS
was stable and reliable for the data used in this study.

Table 1. Model Performance of MLR, MARS, CART, and KNN.

Methods MAPE
Mean (SD)

SMAPE
Mean (SD)

RAE
Mean (SD)

RRSE
Mean (SD)

RMSE
Mean (SD)

MLR 0.122 (0.01) 0.119 (0.01) 0.771 (0.03) 0.801 (0.03) 2.299 (0.14)
MARS 0.121 (0.01) 0.118 (0.01) 0.769 (0.03) 0.794 (0.03) 2.281 (0.14)
CART 0.134 (0.01) 0.128 (0.01) 0.830 (0.03) 0.853 (0.02) 2.420 (0.11)
KNN 0.135 (0.01) 0.130 (0.01) 0.844 (0.04) 0.859 (0.03) 2.436 (0.10)

Note: MLR: multiple linear regression; MARS: multivariate adaptive regression splines; CART: classification and
regression tree; KNN: K-nearest neighbor; MAPE: mean absolute percentage error; SMAPE: symmetric mean
absolute percentage error; RAE: relative absolute error; RRSE: root relative squared error; RMSE: root mean
squared error; SD: standard deviation.

3.4. Kruskal–Wallis Test

To further confirm that MLR and MARS perform similarly and outperform CART and
KNN, the Kruskal–Wallis test (KW test) was utilized to test the difference between each
metric. The KW test is a nonparametric approach to one-way analysis of variance that can
be used to compare multiple groups of data [35]. In Table 2, the KW test is used to compare
five metrics used in two different scenarios: “All model comparison,” which compares
MLR, MARS, CART, and KNN, and “Two model comparison,” which specifically compares
MLR and MARS. The test results confirm the results in Table 1, which shows that MLR and
MARS do not have statistically significant differences in any of the five metrics, whereas
MARS performs better than the other ML methods.

3.5. Variable Importance Ranking Result

As mentioned previously, because MARS has the advantage and characteristic of
capturing nonlinearity in the data by assessing knots and forming BFs to describe the data,
MARS is more suitable for use in this study for predicting End IOP than the classic MLR.
Moreover, with unique information that can only be provided by MARS, additional helpful
information that may support ophthalmologists in decision making can also be generated.
As a reminder, the model-building process used in this study is repeated 10 times, whereas
MARS ranks the importance of the input variables in each round. Thus, to find the most
suitable important variables, the importance ranking of each variable was generated by
averaging the 10-round ranking results, as shown in Table 3. As shown in the table, in each
round, the first important variable is ranked 1 by MARS, whereas the second important
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variable is ranked 2, and so on. Because 19 variables were used to build the MARS model,
all the variables that were dropped by MARS were given rankings of 19. After averaging
all the rankings of each variable, the top five important variables were found to be the
Base IOP (Aver. Rank 1), Recruit Duration (Aver. Rank 2.4), Age in years (Aver. Rank 4.8),
Previous Duration (Aver. Rank 9.3), and End Spherical (Aver. Rank 9.7). The final MARS
equation was developed based on these five important variables.

Table 2. KW test comparison results for five metrics used.

ML Methods p-Value Significant

All model comparison (MARS vs. MLR vs. CART vs. KNN)

MAPE <0.001 Yes
SMAPE <0.001 Yes

RAE <0.001 Yes
RRSE <0.001 Yes
RMSE <0.001 Yes

Two model comparison (MARS vs. MLR)

MAPE 0.7623 No
SMAPE 0.7620 No

RAE 0.7055 No
RRSE 0.7623 No
RMSE 0.8206 No

Note: MLR: multiple linear regression; MARS: multivariate adaptive regression splines; CART: classification and
regression tree; KNN: K-nearest neighbor; MAPE: mean absolute percentage error; SMAPE: symmetric mean
absolute percentage error; RAE: relative absolute error; RRSE: root relative squared error; RMSE: root mean
squared error; SD: standard deviation.

Table 3. Ten-round MARS variable importance ranking results.

Variables\Rounds R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Aver.

Gender 19 19 19 19 19 19 19 19 19 19 19
Age in years 3 7 3 3 2 5 3 9 7 6 4.8

Base IOP 1 1 1 1 1 1 1 1 1 1 1
Base Spherical 6 19 8 19 7 19 19 5 5 5 11.2

Base SE 19 19 19 19 19 19 7 4 19 19 16.3
End Spherical 19 19 7 19 6 6 6 3 8 4 9.7

End SE 4 6 6 19 19 19 11 7 9 19 11.9
Total Duration 19 3 19 19 4 4 5 19 19 19 13

Total Cumulative Dosage 19 19 19 19 19 19 19 8 19 19 17.9
Total Average Dosage per month 19 19 19 19 9 19 19 19 19 19 18

Total Prescribed Bottles 19 19 19 19 19 19 19 19 4 19 17.5
Previous Duration 7 4 19 19 3 3 4 12 3 19 9.3

Previous Cumulative Dosage 19 19 19 4 19 19 19 6 19 19 16.2
Previous Average Dosage Per Month 19 19 5 19 19 19 10 10 6 2 12.8

Recruit Duration 2 2 2 2 5 2 2 2 2 3 2.4
Recruit Cumulative Dosage 19 5 4 19 19 19 8 11 10 19 13.3

Recruit Average Dosage Per Month 19 19 19 19 19 19 19 19 19 19 19
Last Dosage 19 19 19 19 19 19 19 19 19 19 19

Last Frequency 5 19 19 19 8 19 9 13 19 19 14.9

Note: Aver.: Average.

3.6. MARS Results

The MARS model built using the five identified important variables followed the same
modeling process mentioned in Section 2.2, in which the final equation was based on the
best MARS model in 10 rounds. Table 4 lists the BFs and corresponding coefficients from
the best MARS model. As mentioned previously, each variable may have one or more
BFs; therefore, according to the table, Age in years has two BFs (BF1 and BF2); Base IOP
has two (BF3 and BF4); End Spherical has one (BF5); Previous Duration has three (BF6,
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BF7, and BF8); and Recruit Duration has one (BF9). By combining all nine BFs and their
corresponding coefficients, the MARS equation can be written as:

End IOP = 15.02 + 0.09 × BF1 − 0.65 × BF2 − 0.8 × BF3 + 0.54 × BF4 + 0.76 × BF5 − 2.19 × BF6
−0.38 × BF7 + 0.39 × BF8 + 0.15 × BF9

Table 4. BFs of the best MARS model built with the five important variables.

Corresponding Equations of the Model

Equation Coefficients

Intercept — 15.02
BFs
BF1 Max(0, Age in years—6.4) 0.09
BF2 Max(0, Age in years—14.0) −0.65
BF3 Max(0, 14.0—Base IOP) −0.80
BF4 Max(0, Base IOP—14.0) 0.54
BF5 Max(0, −6.0—End Spherical) 0.76

BF6 Max(0, 0.9—Previous
Duration) −2.19

BF7 Max(0, Previous
Duration—0.9) −0.38

BF8 Max(0, Previous
Duration—2.5) 0.39

BF9 Max(0, Recruit Duration—7.6) 0.15
Note: BF: Basis function.

The use of the MARS equation is straightforward; it follows a concept similar to that of the
classic linear regression. When the MARS equation is used, each variable and its corresponding
BFs should be considered simultaneously. For example, suppose Age in years has a value
of 7, both BF1 and BF2 should be considered, so both of them will input 7 into the hinge
function. After calculation, BF1 yields the result of 0.6 (Max(0.7− 6.4) = 0.6), while BF2 yields
the result of 0 (Max(0.7− 14) = Max(0,−7) = 0). Then, the corresponding coefficient will
multiply the results of the BFs, which yields results of 0.054 (BF1 × 0.09 = 0.6 × 0.09 = 0.054)
and 0 (BF2×−0.65 = 0×−0.65 = 0). All variables follow the same concept as the example;
thus, the predicted End IOP will be the combined value of all the BFs results multiplied by
their corresponding coefficients and adding the intercept.

Figure 2 illustrates a visual representation of how the crucial variables impact the End
IOP. As shown in the figure, each panel contains the variable and its corresponding BFs. For
each variable, the knots from the hinge function are the joint points of the splines, which
correspond to the information listed in Table 4. In panel A, age 6.4 and 14 are the knots of
the variable Age in years; prior to age 6.4, there is no difference in End IOP. After the age
of 6.4, End IOP increases until age 14 years, after which it begins to decrease. In panel B,
value 14 is the knot for the Base IOP, in which End IOP decreases when the Base IOP values
are lower than 14, and increases when the Base IOP values are greater than 14. In panel C,
End IOP remains the same and does not increase until End Spherical value is lower than
−6. In panel D, values 0.9 and 2.5 are the knots for Previous Duration. First, using a value
of 0.9 as the datum point, the End IOP decreases when the value of the Previous Duration
is lower than 0.9, whereas it also decreases when the values are between 0.9 and 2.5. The
End IOP increases when the value of the Previous Duration is greater than 2.5. In panel
E, End IOP remains the same and does not increase until the values of Recruit Duration
surpass 7.6. Based on the information obtained from the MARS model, its significance in
ophthalmology is discussed in detail in the Discussion section.
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Figure 2. Influence of important variables on End IOP. Panel (A): Age in years; Panel (B): Base IOP;
Panel (C): End Spherical; Panel (D): Previous Duration; Panel (E): Recruit Duration.

4. Discussion

Topical atropine is commonly prescribed for controlling myopia in school-aged chil-
dren until approximately 16 years of age, and its gradual discontinuation is recommended
as myopia stabilizes [36]. Potential complications associated with topical atropine revolve
around its capacity to induce an elevated IOP to pupil dilation. Long-term monitoring of
IOP by clinical practitioners is crucial [37]. Figure 2 shows that our MARS model identified
age, base IOP, previous duration of atropine treatment, and Recruit Duration of atropine
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treatment as significant factors affecting End IOP. Panel A shows that individuals aged
6.4–14 years who use atropine exhibit an increase in End IOP with increasing age, which
corresponds to the age range in which atropine is commonly used clinically. According
to the study by Sihota et al. [38], the mean age of this population is 6.68 (±3.28%) years,
with a mean IOP of 12.02 (±3.74) mmHg. Age and IOP were positively correlated (r = 0.49),
and IOP only reached adult levels only after 12 years of age. Moussa et al. also observed
a positive correlation between age and IOP in children aged 2 months to 12 years, with a
mean IOP of 11.5 (±2.34) mmHg. [39]. However, in another cohort study among elderly
Chinese adults, a nonlinear increase in IOP with individuals age was observed [40]. In our
study, we collected data on myopic children who had used atropine, and we observed a
positive correlation between End IOP and age in the 6–14-year-old age range. However, this
correlation was less significant after 14 years of age. The MARS assessment revealed that
age was the third most influential variable on the effect of atropine on IOP. Furthermore, our
study revealed that the End IOP of 15.08 (±2.86) mmHg in the atropine-using population
was slightly higher than the average IOP reported in previous studies involving children.
This difference could be attributed to the slightly older age (10.53 ± 2.54 y/o) of the sample
population in our study and the effects of the medication, both of which are important
clinical considerations [38,39]. Regarding the natural course of IOP growth, there was a
positive correlation between children’s IOP and age, whereas adults’ IOP did not show
such changes, regardless of race. The population using atropine coincides with the age of
childhood growth; therefore, it is important to note whether the increase in IOP is not only
influenced by age itself, but also by the medication causing elevated IOP.

Regarding the base IOP, Panel B showed that when the base IOP was below 14 mmHg,
the use of atropine was negatively correlated with the End IOP, indicating relative safety.
However, when the Base IOP is at or above 14 mmHg, there is a positive correlation between
atropine use and End IOP. This emphasizes the need for caution when administering
atropine to children with a Base IOP greater than 14 mmHg. This may be related to the
effect of atropine on the fibrous scleral layer as reported by Phric et al. [41]. Atropine
thickens the scleral fibrous layer and slightly thins the scleral cartilaginous layer, thereby
controlling the progression of myopia by preventing axial elongation. Therefore, when
atropine is administered to children with a Base IOP greater than 14 mmHg, who may be
older or have more severe myopia, extra caution is required in clinical practice.

In this study, the MARS analysis revealed that the Base IOP exerted the greatest impact
on the End IOP of children treated with atropine for myopia. Similarly, in a previous
study using ML with XGBoost, Base IOP was found to be a significant predictor of the End
IOP [14]. In our current study on the use of atropine in the treatment of myopic children,
more precise calculations revealed that, when the Base IOP was greater than 14 mmHg, it
had a positive correlation with End IOP. The trend in the End IOP was even more significant
as the Base IOP increased. These results can serve as safety guidelines for physicians when
using atropine in clinical practice.

The Diopter (D) of End Spherical measurement also showed a positive correlation
with End IOP, especially when exceeding −6 D in Panel C. Moreover, when the degree
falls between −6.5 D and −8.0 D, the correlation coefficient increases from 0.38 to 1.52,
indicating a stronger positive relationship between the degree and the End IOP. Close
monitoring of myopic children with degrees ranging from −6.5 D to −8.0 D using atropine
is advised. However, certain highly myopic populations may exhibit a slightly elevated
IOP, which could be further exacerbated by the use of atropine. The MARS’s prediction
formula revealed that the mean degree had a positive correlation coefficient of 0.76 with
End IOP, ranking fifth among the 19 discussion factors. Therefore, it is advisable for clinical
practitioners to closely monitor the possible rise in IOP when treating children with myopia
with degrees ranging from −6.5 D to −8.0 D using atropine.

Panel D revealed that previous duration ranked fourth among the 19 discussion factors
in the MARS model. In terms of the previous duration, after approximately 0.9 months of
atropine use, IOP reached a peak, with subsequent changes being potentially lower due to
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the adaptive response of the eye tissue to the medication. Therefore, follow-up visits are
recommended after 0.9 months of atropine treatment to monitor changes in IOP.

The Recruit Duration of atropine treatment also exhibited a positive correlation with
End IOP in myopic children in Panel E. Prolonged treatment may lead to a noticeable
increase in End IOP, highlighting the importance of closely monitoring IOP in such cases.
The findings indicated that, after 7.6 months of treatment, there was a noticeable increase in
the End IOP, which suggests a potential trend of elevated IOP in children receiving atropine
treatment for a prolonged period. For instance, a child treated with atropine for nine months
showed an increase in IOP of 0.21 mmHg ((9 − 7.6)× 0.15 = 0.21) compared to the initial
measurement. In order of importance, the MARS analysis ranked Base IOP as the most
influential factor on End IOP, followed by Recruit Duration as the second most significant
variable. Therefore, it is crucial for clinical practitioners to closely monitor changes in
IOP in children with myopia undergoing long-term atropine treatment, particularly as the
treatment duration increases.

Although our study provides valuable insights into predicting End IOP using ML
algorithms, there are some limitations to consider. The generalizability of the study may
be limited by the specific dataset used, and further validation of new datasets is necessary.
Additionally, other important variables not included in the analysis may have enhanced
the predictive performance of the model. Therefore, considering additional variables is
recommended for future research.

5. Conclusions

We integrated ML models, specifically MARS, to identify the top five most important
variables for predicting End IOP in atropine treatment for myopic children: Base IOP,
Recruit Duration, Age in years, Previous Duration, and End Spherical. The analysis
using MARS revealed that the most significant variable affecting End IOP was Base IOP,
emphasizing that a Base IOP of 14 mmHg is the most critical threshold influencing End
IOP in myopic children with atropine control.
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