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Abstract: Asthma exacerbations are common in asthmatic children, even among those with good
disease control. Asthma attacks result in the children and their parents missing school and work days;
limit the patient’s social and physical activities; and lead to emergency department visits, hospital
admissions, or even fatal events. Thus, the prompt identification of asthmatic children at risk for
exacerbation is crucial, as it may allow for proactive measures that could prevent these episodes.
Children prone to asthma exacerbation are a heterogeneous group; various demographic factors such
as younger age, ethnic group, low family income, clinical parameters (history of an exacerbation in the
past 12 months, poor asthma control, poor adherence to treatment, comorbidities), Th2 inflammation,
and environmental exposures (pollutants, stress, viral and bacterial pathogens) determine the risk
of a future exacerbation and should be carefully considered. This paper aims to review the existing
evidence regarding the predictors of asthma exacerbations in children and offer practical monitoring
guidance for promptly recognizing patients at risk.
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1. Introduction

Asthma is the most common chronic disorder of childhood and represents a significant
health burden. The disease is characterized by chronic airway inflammation and acute
episodes (exacerbations) of reversible airway obstruction with respiratory symptoms, such
as wheezing, dyspnea, chest tightness, and coughing. Currently, asthma monitoring relies
solely on the regular assessment of respiratory symptoms and lung function. However, the
lack of a direct measurement of inflammation may result in the inappropriate recognition
of children at risk for a future asthma attack [1–4].

Asthma exacerbations are not rare in asthmatic children, even among those with
apparently reasonable disease control. Asthma attacks result in the children and their
parents missing school and work days; limit the patient’s social and physical activities;
and lead to emergency department visits, hospital admissions, or even fatal events [5–12].
Thus, the prompt identification of asthmatic children at risk for exacerbation is crucial, as it
may allow for proactive measures that could prevent these episodes [13]. Current asthma
treatment strategies have generally succeeded in controlling daily symptoms and provide
to asthmatic children a good quality of life [8]. Nevertheless, it is estimated that in the
United States, half of the children with asthma will experience at least one exacerbation per
year, while in Europe, more than one in three will have an unplanned hospital visit due to
an asthma attack [14].

Of note, children prone to asthma exacerbation are a heterogeneous group [15]; vari-
ous demographic factors such as younger age, ethnic group, low family income, clinical
parameters (history of an exacerbation in the past 12 months, poor asthma control, poor
adherence to treatment, comorbidities), Th2-type of inflammation, and environmental
exposures (pollutants, stress, viral and bacterial pathogens) determine the risk of a future
exacerbation and should be carefully considered [7,16–19].
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This paper aims to review the existing evidence regarding the predictors of asthma
exacerbations in children and offer practical monitoring guidance for promptly recognizing
patients at risk.

2. Level of Asthma Control

Poor asthma control is a standard risk indicator for asthma exacerbation [12,20–23]. For
example, children with partially controlled asthma have a 2-fold increase in the exacerbation
rates, as compared to those with controlled disease [23]. However, symptom-based tools
used to assess asthma control, such as the Asthma Control Test (ACT) and the Asthma
Control Questionnaire (ACQ), cannot offer precise predictions on the time of exacerbation.
In the study by Schatz et al., a lower ACT score was associated with an increased risk of
emergency department visits and oral corticosteroid and beta-agonist use in the following
12 months [22,24]. Conversely, in another study by Meltzer et al., each 1-point increase in
the ACQ score was associated with a 50% increase in exacerbation risk for the following two
weeks [25]. On the other hand, other studies have demonstrated that asthma exacerbations
can also occur in the context of reasonable asthma control [10,11,26]. These reports have
questioned the predictive utility of ACT and ACQ scores, demonstrating that they are not
superior to the frequency of rescue inhaler use alone [10,11,26]. In a 4-year study by Wu
et al., 14% of the participants never reported troublesome asthma symptoms, although
they had presented at least one severe exacerbation [12]. In another study of 612 asthmatic
children, 54% of those who reported good asthma control had abnormal spirometry and or
raised fractional exhaled nitric oxide (FeNO) [27]. Clearly, the factors that are associated
with poor asthma control are not the same as those associated with asthma exacerbations.
Moreover, the loss of disease control may be hard to identify by the patients and their
parents [28,29]. Socioeconomic status also plays a crucial role in the way patients perceive
and report their symptoms; in a cross-sectional study (N = 307) by Ganti et al., there was a
significant positive correlation (p < 0.001) between the ACT score and the education and
socioeconomic status of the family [30]. Nevertheless, it is generally accepted that ACT
and ACQ scores can be used as part of the routine evaluation of asthmatic children and for
assessing the risk of future exacerbations [31]. The combination of asthma symptom scores
and medication scores could improve our ability to identify children at risk of an asthma
attack in the future.

Several studies have shown that an asthma attack is by itself a strong predictor of an
exacerbation of the disease in the future. The use of oral corticosteroids and emergency
department visits or hospitalizations for symptoms related to asthma in the previous
12 months are strong and independent predictors of a future attack [9,12,18,23,32–38]. A
study by Engelkes et al. demonstrated that patients with an asthma exacerbation have
a 25% possibility of repeating the episode within the following year [32]. In a recent
systematic review, Lowden et al. confirmed that a past exacerbation is the best predictor of
a future exacerbation, regardless of the severity of the disease and the level of control [38].
The number of previous exacerbations is also important [17,37]; in the metropolitan area
of St. Louis, the probability of hospital readmission for an asthma exacerbation over
ten years increased by 30% after the first admission, 46% after a second admission, and
59% after a third admission [17]. On the other hand, Lowden et al. concluded that the
severity of an asthma exacerbation does not necessarily relate to the severity of the previous
exacerbations [38]. In any case, the asthma management plan for a given patient should
be carefully reviewed when an exacerbation occurs. Various factors, such as female sex,
higher FeNO levels, and escalating treatment, are associated with a higher exacerbation
risk and, thus, may highlight the need for a more frequent follow-up [39].

3. Lung Function Testing

Spirometry is widely used for assessing the lung function of asthmatic patients. How-
ever, the test is notoriously unable to detect abnormalities at the level of small airways, as
in the case of asthmatic children, where small airways are affected early in the course of
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the disease [40]. Thus, the existing evidence on the usefulness of spirometry in detecting
children at increased risk for asthma exacerbations is conflicting [11,33,41,42]. In a retro-
spective study of 13,842 children (100,292 observations) seen annually over 15 years, a
strong association was noted between FEV1% predicted and risk of asthma exacerbation in
the subsequent year [41]. Repeated measurements of FEV1, even if they are within the nor-
mal range, could add to the clinical risk assessment; a 10% reduction in FEV1% predicted
within three months is associated with 28% increased odds for an asthma exacerbation [43].
Reversibility to bronchodilators may reveal specific obstruction phenotypes, also related to
the risk of an asthma attack [44]. In other studies, mid-expiratory flows presented a good
predictive value for a future exacerbation, even when the baseline FEV1 was normal [45,46].

Specific peak expiratory flow (PEF) patterns may also be related to loss of asthma
control and risk of exacerbation [47]. Wide diurnal PEF variations signify loss of disease
control, while a steep PEF decline without changes in variability is observed during exac-
erbations. Studies using complex statistical methods have suggested that PEF variability
could help predict future asthma attacks in adults [48], but similar data in children are
lacking. In a study by Kim et al., PEF was lower in asthmatic children in autumn than in
winter, suggesting that seasonal variations should also be considered [49].

4. Adherence to Treatment

Poor adherence to treatment, including improper inhaled medication and/or breath-
ing chamber use techniques, is associated with an increased risk of exacerbations, hospital
admissions, and asthma-related deaths [50–52]. Children with asthma who have regular
follow-up visits present a reduced risk of asthma attacks, while inadequate follow-up
adherence relates to increased morbidity and more frequent exacerbations [53]. Addi-
tionally, incorporating patient preferences into treatment decisions (e.g., type of inhaler
device, medication dosage) seems to result in longer exacerbation-free periods, especially
for children with poor asthma control [54,55]. Interestingly, a recent study showed that
during the COVID-19 pandemic, asthma exacerbations were reduced due to decreased
exposure to environmental triggers and increased patient adherence [56]. It should be
mentioned, however, that other studies failed to confirm a significant impact of adherence
to treatment on impending asthma exacerbation in children [57,58].

5. Other Patient-Related Factors

A study conducted in the United States showed that race and ethnicity play an impor-
tant role in adverse asthma outcomes since non-Hispanic black children had a greater risk
for emergency department visits and deaths due to asthma compared to their non-Hispanic
white counterparts [59,60]. Others have shown that Asian ethnicity is associated with
a lower likelihood of future asthma attacks [61], while African American race and low
socioeconomic status may increase the risk of asthma exacerbations [62,63]. However,
further studies are required to explore the exact role of the genetic background in such pop-
ulations [64]. Various socioeconomic factors determining the ease of accessing healthcare
resources may contribute equally to an increased risk of asthma exacerbations [8,65,66].
Moreover, all these factors may vary and, thus, play different roles according to the child’s
age [13].

Overweight or obesity reduces the response to inhaled corticosteroids and predisposes
one to asthma attacks. The role of chronic stress and anxiety is more complex and poorly
understood, although an increased Th2 cytokine response has been reported [67,68]. In
addition, chronic stress may lead asthmatic patients to poor adherence [69–74]. Interestingly,
maternal depression is also associated with an increased risk of asthma exacerbation in
children [75].

6. Salbutamol Overuse

A higher number of days of salbutamol use (>two days in two weeks) and a higher
number of salbutamol doses per day are strong and independent predictors of severe
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asthma exacerbation in the future [76]. Short-acting beta-agonist (SABA) overuse has
also been associated with an increased risk of death due to asthma [77]. Patients who
have learned to “control” their disease only by SABAs need special attention because
SABA overuse seems to increase bronchial hyperreactivity and induce pro-inflammatory
pathways [76,78,79]. In this regard, the monitoring of SABA use could offer better disease
control and prevent future exacerbations. In a study from Sweden, one-third of asthmatic
patients (12–45 years old) used three or more SABA canisters per year, while the risk of
asthma exacerbation was directly related to the amount of SABA used [80]. In another
study, Frey et al. have suggested that the frequent administration of SABAs (>4 times per
day) may increase the risk of asthma attacks due to the loss of beta-agonist effectiveness.
The prescription of more than three SABA canisters per year should alert healthcare
professionals to the risk of an imminent asthma exacerbation [48,77].

Long-acting beta-agonists (LABAs) are more effective in stabilizing airway tone in the
long term [48]. However, LABA monotherapy may also be associated with severe asthma
exacerbations and asthma-related death, especially in younger children [81]. Nevertheless,
the concurrent administration of LABAs with inhaled corticosteroids (ICSs), usually as a
fixed LABA-ICS combination, has been associated with the reduced rate and severity of
exacerbations and better clinical outcomes than using ICSs alone [81].

7. Biomarkers

Airway inflammation biomarkers are constantly evaluated concerning their ability to
identify Th2 inflammation. The essential role of the Th2 type of inflammation in asthma
exacerbation emerges from clinical trials of “biological” agents, such as IgE, IL-4, IL-
5, and IL-13 inhibitors [82]. The administration of these novel drugs has consistently
been associated with a significant reduction in asthma exacerbations, thus highlighting
the pivotal role of Th2 inflammation in the susceptibility to asthma attacks [82]. Novel
technologies that can be applied to multiple biological samples, such as metabolomics,
proteomics, transcriptomics, and genomics, hold particular promise for identifying patients
with poor disease control and are at risk for asthma exacerbations [82,83]. Among these
techniques, “breathomics” is of particular interest due to its non-invasive nature that offers
the possibility of frequent and repeated sampling.

Evidence on the utility of FeNO as a predictor of asthma exacerbations in children and
adolescents remains conflicting. FeNO, alone or in combination with other biomarkers,
is an essential tool for monitoring adherence and response to treatment [84–86]. In a
recent observational study, Lo et al. correlated FeNO measurements with future asthma
exacerbations and showed that higher FeNO levels could predict future asthma attacks [61].
A FeNO of ≥80 ppb has been proven useful in identifying poorly controlled asthma in
children [87]. In a small study of adults, those who experienced an asthma exacerbation
had significantly higher FeNO levels within two weeks before the event [88]. Moreover,
the investigators showed that FeNO was the only significant and independent predictor
of exacerbations compared to spirometric indices, quality of life scores, and medication
usage [88]. On the other hand, similar studies in asthmatic children found that a single
FeNO measurement is not useful in assessing the risk of an upcoming exacerbation [89,90].
In the Reducing Asthma Attacks in Children using Exhaled Nitric Oxide trial, a combined
approach based on symptom-guided asthma treatment and FeNO levels did not reduce
the asthma attacks [91,92]. Even FeNO measurements two weeks before an exacerbation
in children with severe asthma may have poor positive predictive value [93]. In another
cohort study from Ecuador, 283 children with asthma were followed for six months or until
their next asthma attack; a previous severe exacerbation was the most reliable predictor of
a future asthma attack, while the predictive ability of FeNO measurements was limited [94].
FeNO levels in children aged 0–4 years correlate well with the Asthma Predictive Index but
cannot reliably predict a future asthma diagnosis or disease exacerbations [95]. A recent
study confirmed the low predictive value of FeNO measurements even when combined
with clinical characteristics [96], while Fielding et al. demonstrated that a significant
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increase in FeNO levels between subsequent visits was associated with poor asthma
outcomes but not a higher exacerbation risk [43]. On the other hand, two recent meta-
analyses concluded that when FeNO is used to guide asthma management strategies, the
frequency of asthma exacerbations can be reduced [97,98]. The significant intrasubject
variability in FeNO values in children may have accounted for the above controversial
findings [99].

FeNO partitioning, i.e., the measurement of FeNO at multiple exhalation flow rates,
offers valuable information on the NO concentration in the most distal airways, the so-called
alveolar NO (CalvNO) [100]. A recent study from our group explored the role of CalvNO
as a predictor for asthma exacerbations in 68 asthmatic children [101]. We found that
CalvNO levels > 7 ppb could predict asthma exacerbations in the subsequent four months
with 90.9% specificity, while a CalvNO of <4 ppb could exclude a future exacerbation
with 71.4% sensitivity. Moreover, an increase in CalvNO by 0.5 ppb between subsequent
visits could predict future exacerbations with 92% sensitivity and 92% specificity, while
the performance of ACT scores and spirometric indices (including reversibility testing)
was significantly lower [101]. Therefore, distal inflammation plays a pivotal role in asthma
exacerbations in children and should be further considered in future studies [101].

Sputum eosinophils is a cost-effective biomarker for assessing disease control in
asthmatic patients [102]. However, sputum collection may be challenging in young and
uncooperative children, while sputum eosinophils do not seem reliable in predicting future
asthma attacks [90,93,103]. Novel saliva biomarkers, such as eotaxin, IL-5, and IL-8, are
easier to collect and have shown a strong correlation with the level of asthma control [104],
but their role is still to be determined.

Measurements of volatile organic compounds (VOCs) in the exhaled breath seems
also promising, as specific VOC patterns are closely related to disease exacerbations in
asthmatic children [105–107].

Generally, blood eosinophil counts (EOSs) of >300 cells/µL have been related to trou-
blesome asthma in adults. In the Severe Asthma Research Program, EOSs > 400 cells/mL
were associated with an increased risk of exacerbation [108,109]. However, in asthmatic
children, the evidence is conflicting [110–112]. EOSs, combined with FeNO, have been
used as markers of the Th2 inflammation pathway to predict the response to treatment in
asthmatic children, with reasonable results [113–115].

Serum IL-6 was also associated with the risk of asthma exacerbation in children, but
further studies are required [116]. Plasma eosinophilic cationic protein (ECP) concentration
is a useful marker of Th2 inflammation and may help identify children at risk for recurrent
asthma attacks who could benefit from corticosteroid treatment [117]. Other biomarkers
of atopy, such as skin prick or specific IgE testing for sensitization to aeroallergens and
total serum IgE, have been utilized to assess the risk of seasonal exacerbations [118].
Mucosa-associated lymphoid tissue translocation protein 1 (MALT1) is another novel
biomarker [119].

Urinary leukotriene E4 (ULTE4) levels reflect systemic cysteinyl leukotriene produc-
tion [120,121], and, when elevated, may predict asthma exacerbations in children exposed
to tobacco smoke [122]. Also, urinary phthalate metabolites and urinary organic acids seem
to be significantly associated with imminent asthma attacks [123,124]. More inflammatory
mediators, including cytokines, chemokines, IL-5, and acidity levels, can be measured in the
exhaled breath condensate and serve as metabolomic biomarkers of asthma exacerbation in
the future [36,96].

Studies based on genome-wide association have revealed the existence of susceptibility
variants that are specifically related to exacerbations and differ from those generally related
to asthma. A cadherin-related family member gene variant (CDHR-3) has been linked to
recurrent severe asthma exacerbations in preschool children of European descent [125],
while the 17q21 locus and the ADRB2 gene (especially its Glu27 variant) are consistently
associated with asthma attacks in asthmatic children and adults [5,126]. A recent meta-
analysis demonstrated a significant association between a single-nucleotide polymorphism
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in FLJ22447 (rs2253681) and severe asthma exacerbations [127]. Furthermore, three mi-
croRNA models (miR-146b, miR-206, and miR-720) that could predict exacerbations in
asthmatic patients receiving inhaled corticosteroids have been detected [128]. Reduced
responsiveness to SABAs, especially in those using long-acting beta-agonists (LABAs),
has been associated with polymorphisms in the beta-2 adrenoceptor gene [129]. Finally,
nasal airway transcriptomic analysis demonstrated that higher baseline Th2/Th1-interferon
ratios can predict asthma attacks [130]. Future studies should explore the full spectrum of
such genetic variabilities, with larger sample sizes, better representation of racial/ethnic
diversity, and a more precise definition of asthma exacerbation.

8. Environmental Exposures

Environmental exposures, including aeroallergens, viral and bacterial pathogens,
environmental pollutants, and stress, largely drive asthma exacerbations [131]. Atopic
individuals, in particular, have the most significant risk when they are exposed to the
aeroallergen to which they are sensitized [132]. The association between viral respiratory
tract infection and asthma exacerbations is well established in childhood [133]. For example,
in a study by Murray et al., this association tremendously increased the likelihood of an
asthma exacerbation [134–136]. Such patients remain vulnerable to asthma attacks during
respiratory infections even if the level of disease control is good [47]. Human rhinovirus
(HRV) infection seems to be the most significant trigger of asthma exacerbations in children,
and as such, it might be used as a “biomarker” for imminent asthma attacks. A study from
Germany before the COVID-19 pandemic demonstrated that 41% of the children who expe-
rienced an exacerbation had a positive test result for HRV, while 14% were positive for the
respiratory syncytial virus (RSV) [137,138]. Interestingly, HRV was particularly prevalent
among asthmatic and atopic patients (56% and 66%, respectively) [137,138]. Respiratory
microbiota and specific bacteria–host interactions may also determine the risk of asthma
exacerbations. Several Moraxella and Haemophilus members may enrich viral respiratory
illnesses during the fall season, leading to subsequent exacerbations [139]. These episodes
seem to have a regular peak after returning to school from their summer holidays, i.e., in
September for the Northern hemisphere and in January for the Southern [135,140–142].

Asthma exacerbations also present a second peak around the end of the hay fever
season [143]. A 10-year-long study from Italy demonstrated that asthma exacerbations
had seasonal peaks during autumn and spring. Pollens; wind speed; rainfall; and SO2,
NO, O3, and NO2 levels were strongly associated with asthma exacerbations in those
children [144–146]. Meteorological factors are important modulators in asthmatic children
and adults [147,148]. During the COVID-19 pandemic, the most important factors that
reduced asthma attacks were the decreased exposure to environmental triggers (e.g., the
time spent at home) and the increased adherence to treatment [56,149]. Thus, identifying
environmental factors associated with asthma exacerbations could lead to prompt pharma-
cological interventions [143,150] and offer the possibility of reducing exposure to specific
triggers [151,152].

Air pollution is another crucial risk factor for children living in urban areas [153–159].
In the study by Zhang et al., who examined 17,227 pediatric asthma admissions during the
2015–2016 period in Chinese urban areas, a strong relationship emerged between hospital
visits and nitrogen dioxide (NO2) ozone (O3), and particulate matter of at least 2.5 mm
(PM2.5) levels [160]. A similar study, also from China, confirmed that PM2.5, sulfur dioxide
(SO2), and NO2 atmospheric concentrations were significantly associated with asthma
attacks [161]. The effects of SO2 were more potent in the cold season and those of NO2
during the warm months, while preschool children were more susceptible to increased
SO2 levels [161]. In the same line, a relevant meta-analysis concluded that NO2, SO2,
and PM2.5 levels predispose to future asthma attacks in both children and adults [162].
Interestingly, even short-term exposure to high concentrations of air pollutants may signifi-
cantly increase the risk of asthma exacerbations [163]. Short-term exposure is associated
with reduced interferon beta (IFN-b) expression in the airway epithelium, facilitating viral
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replication [164–166]. Tobacco smoke exposure, either first- or second-hand, has similar
effects and may also trigger severe exacerbations [167]. In a prospective study of asthmatic
Thai children, daily PM2.5 exposure to levels above 12 mcg/m3 was associated with asthma
exacerbation within the next three days [168]. Accumulating evidence suggests that long-
term exposure to air pollution, especially traffic-related air pollution (TRAP), can contribute
to new-onset asthma in children and adults [169–171]. Four main mechanisms have been
described: oxidative stress damage, airway remodeling, the activation of inflammatory
pathways and immunological responses, and the enhancement of respiratory sensitization
to aeroallergens [171].

Improving the air quality to prevent future asthma exacerbations and new cases of
asthma in children would require solid governmental efforts. Until then, the continuous
monitoring and online availability of air pollutant concentration and relevant meteorolog-
ical data should be considered [172–174]. Informatics and wearable sensor technologies
may further assist in collecting biometric data to understand pediatric asthma triggers and
design appropriate and personalized monitoring and prevention strategies [163,175].

9. Risk Scores

Admittedly, a single marker for assessing the risk of asthma exacerbations is challeng-
ing to identify. Thus, current research focuses on combining risk factors into composite
scores using advanced analytic methods, such as machine learning, to improve the risk
stratification and recognition of the most vulnerable children [176,177]. These approaches
are based on the systematic monitoring of known clinical and lung function exacerbation
predictors, also offering the possibility of including widely available biomarkers (e.g., EOS,
FeNO) or even air pollutant concentrations and relevant meteorological data [177].

A multidisciplinary, multi-factorial, and personalized approach is mandatory
when managing pediatric asthma [13,178,179]. Current guidelines focus on the stepwise
escalation/de-escalation of drug therapy to achieve improved control and reduce the risk
of exacerbations. Therefore, the prompt identification of symptoms and the longitudinal
monitoring of physiologic parameters (including lung function) are important. Huffaker
et al. applied the passive nocturnal monitoring of heart rate, respiratory rate, and body
movements by using a contactless bed sensor in a small cohort of asthmatic children
(n = 16). Asthma symptoms and ACT scores were reported every two weeks. The investi-
gators reported that nocturnal physiologic changes correlated well with asthma symptoms,
suggesting that nocturnal physiologic monitoring could represent an objective tool for
assessing disease control and predicting asthma exacerbations [180]. In a big cohort of
28,196 patients, Hatoun et al. recognized ten potential predictors that were subsequently
included in an asthma exacerbation risk (AER) score [181]. The AER score is calculated
monthly by healthcare professionals to identify children at risk for asthma exacerbation
within the following year [181]. Another score, the test for respiratory and asthma control
in kids (TRACK), has been designed to apply in preschoolers with acute wheezing episodes
within the first five days of the event [182]. It has been reported that TRACK predicts
a subsequent severe exacerbation (emergency department visit and/or need of systemic
corticosteroids) within the next three months; for each 10-unit decrease in TRACK, the
probability of a future exacerbation increases by 38% [182].

An advanced monitoring tool, the myAirCoach system, which includes an inhaler
adapter, an indoor air-quality monitor, a physical activity tracker, a portable spirometer,
a personal FeNO device, and a dedicated smartphone app, has been shown to improve
asthma control and the quality of life of asthmatic patients [183,184]. The Biomedical
Real-Time Health Evaluation (BREATH) platform is a similar tool that focuses on pediatric
patients [185]. Although much work remains to be carried out about measurement collec-
tion and standardization, analyzing these data series using machine learning algorithms
holds promise for developing reliable personalized predictive tools [186–189].



J. Pers. Med. 2024, 14, 20 8 of 16

10. Conclusions

Pediatric asthma is a multifactorial, complex, and dynamic disease, and as such,
it cannot be monitored using classical clinical tools or simple biomarkers. The ideal
method for predicting the loss of disease control and imminent asthma exacerbations
should be based on the combination of patient data (e.g., demographics, symptom-based
scores, etc.), lung function measurements, various Th2 inflammation biomarkers (e.g., EOS,
FeNO, “omics”, etc.), and environmental exposures (e.g., aeroallergen and air pollutant
concentrations, meteorological data, etc.). Machine or deep learning techniques should
be used to analyze these big-data series further and ensure reliable and personalized
predictions in the context of different disease subtypes. The above approach is summarized
in Figure 1. Standardizing the criteria to diagnose asthma exacerbation is equally critical;
both loose and stringent definitions of asthma attacks may lead to false associations,
thus impeding the generalizability of the prediction models. Finally, an important future
aim should be establishing an international pediatric exacerbation network that would
significantly facilitate data collection and comparison, as well as assessing innovative
technologies and applying relevant predictive strategies in clinical practice.
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