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Abstract: We aimed to develop and validate a machine learning model using impulse oscillometry
system (IOS) profiles for accurately classifying patients into three assessment-based categories: no
airflow obstruction, asthma, and chronic obstructive pulmonary disease (COPD). Our research
questions were as follows: (1) Can machine learning methods accurately classify obstructive disease
states based solely on multidimensional IOS data? (2) Which IOS parameters and modeling algorithms
provide the best discrimination? We used data for 480 patients (240 with COPD and 240 with asthma)
and 84 healthy individuals for training. Physiological and IOS parameters were combined into six
feature combinations. The classification algorithms tested were logistic regression, random forest,
neural network, k-nearest neighbor, and support vector machine. The optimal feature combination
for identifying individuals without pulmonary obstruction, with asthma, or with COPD included
15 IOS and physiological features. The neural network classifier achieved the highest accuracy (0.786).
For discriminating between healthy and unhealthy individuals, two combinations of twenty-three
features performed best in the neural network algorithm (accuracy of 0.929). When distinguishing
COPD from asthma, the best combination included 15 features and the neural network algorithm
achieved an accuracy of 0.854. This study provides compelling technical evidence and clinical
justifications for advancing IOS data-driven models to aid in COPD and asthma management.

Keywords: COPD; impulse oscillometry; machine learning

1. Introduction

Artificial intelligence (AI) has significant applications in respiratory medicine. For
example, it has been employed as a tool for evaluating chest computed tomography (CT)
scans for lung cancer diagnosis [1]. In addition, a deep learning algorithm has been used
for automated classification of fibrotic lung diseases in high-resolution CT scans [2]. This
deep-learning algorithm, when applied to high-resolution CT scans, has the potential to
offer cost-effective, reproducible, nearly instantaneous classification of fibrotic lung diseases
with accuracy levels comparable to those of human experts. This holds particular promise
for medical centers where thoracic imaging expertise is scarce [2].

Hwang et al. [3] have developed a deep neural network (DNN) capable of recognizing
lung cancer, tuberculosis, pneumonia, and pneumothorax in chest radiographs. It also
provides visual localization of abnormal findings. In another development, Yates et al. [4]
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created a chest radiograph triage system that employs binary classification, which catego-
rizes radiographs as “normal” or “abnormal”. Impressively, this system achieved a final
model accuracy of 94.6% for the test dataset. Furthermore, Lu et al. [5] have designed a
DNN that accurately predicts all-cause mortality over a 12-year follow-up period using
only a single plain chest radiograph. This prediction remains robust even after adjusting
for radiologists’ diagnostic findings and standard risk factors of mortality. Using cases from
the National Lung Cancer Screening Trial, Ardila et al. [6] successfully trained a DNN to
predict lung cancer risk based on current and previous chest CT scans. This DNN achieved
an area under the receiver operating characteristic curve (AUC) of 0.944 for predicting
biopsy-proven cancer in the test dataset. Impressively, the accuracy of this DNN surpassed
that of six board-certified radiologists when only the current CT scan was available and
matched that of radiologists when both current and previous CT scans were accessible
for review.

Diagnosing respiratory conditions, including asthma and chronic obstructive pul-
monary disease (COPD), entails a comprehensive approach, encompassing patient history,
physical examinations, pulmonary function tests, and, occasionally, medical imaging such
as X-ray, CT, and bronchoscopy. While airflow limitation is a shared characteristic of asthma
and COPD, their definitions are not mutually exclusive. Furthermore, these conditions are
inherently heterogeneous, leading to different prognoses and management strategies [7,8].
The accurate diagnosis and differentiation of obstructive lung diseases such as COPD and
asthma remain challenging, particularly in primary care settings where access to spirometry
may be limited [9–17].

Recent research has explored the potential of AI in aiding the diagnosis and differenti-
ation of respiratory conditions. One notable study evaluated the accuracy and interrater
variability of pulmonologists in interpreting full pulmonary function tests, comparing
their performance with that of AI-based software previously developed and validated
using a substantial dataset of over 1430 historical cases. The findings demonstrated that
the AI-based algorithm outperformed pulmonologist-based diagnostic categorization in
terms of both sensitivity and positive predictive value across eight disease groups [18].
These results suggest that AI and machine learning hold promise as innovative tools for
developing diagnostic algorithms for various medical conditions, including respiratory
diseases [19].

While spirometry is considered the gold standard for assessing airflow limitation,
it has certain limitations, especially in specific patient populations such as children, the
elderly, and those with neuromuscular or behavioral challenges [20]. To address these
limitations, an alternative technique, oscillometry, has gained traction for monitoring lung
function and offers promising outcomes.

Impulse oscillometry (IOS) is a straightforward and noninvasive technique that re-
quires nothing more than a patient’s passive cooperation. This method offers a valuable
means of assessing lung function by measuring both airway resistance and airway reac-
tance [21]. By harnessing sound waves, IOS swiftly detects changes in the airways and
requires only normal tidal breathing from the patient. It operates as a variant of the forced
oscillation technique, employing pressure oscillations at a fixed frequency of 5 Hz, from
which all other relevant frequencies are derived. Pressure and flow transducers work in tan-
dem to gauge amplitude and phase differences, enabling the determination of respiratory
system impedance [22].

Several studies have explored the utility of IOS in diagnosing and evaluating obstruc-
tive lung diseases like COPD and asthma. For instance, Kanda et al. [23] demonstrated that
IOS parameters, such as respiratory resistance and reactance, could effectively differentiate
between asthma and COPD patients. Similarly, Liu et al. [24] found that IOS-derived indices
like respiratory resistance at 5 Hz (R5) and the difference between R5 and R20 (R5-R20) were
significantly associated with the severity of airflow limitation in COPD patients. Moreover,
Li et al. [25] reported that IOS parameters like R5, R20, and the reactance area (AX) were
sensitive markers for detecting airway obstruction in asthma. While these studies highlight
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the potential of IOS in respiratory medicine, the integration of IOS data with advanced
analytical techniques like machine learning remains an area of active research.

Therefore, the aim of this study was to use IOS output parameters to identify the
optimal combination of feature values and the best-performing classifier to develop an
airflow obstruction clinical diagnosis support system that will assist clinicians in accurately
diagnosing and treating patients.

2. Materials and Methods
2.1. Participants

This study collected data from outpatients of the Department of Chest Medicine in a
university-affiliated hospital in Taiwan, from 1 January 2018 to 31 December 2020. A total
of 3077 patients underwent both spirometry and IOS testing.

The diagnosis of COPD and asthma in this study was established based on the guide-
lines set forth by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) and the
Global Initiative for Asthma (GINA), respectively. According to the GOLD guidelines [26],
COPD was diagnosed in individuals with a post-bronchodilator forced expiratory volume
in 1 s (FEV1) to forced vital capacity (FVC) ratio of less than 0.70, in the presence of respira-
tory symptoms such as dyspnea, chronic cough, or sputum production. The severity of
airflow limitation was further graded based on the post-bronchodilator FEV1 as follows:
GOLD 1 (Mild) with FEV1 ≥ 80% predicted, GOLD 2 (Moderate) with 50% ≤ FEV1 < 80%
predicted, GOLD 3 (Severe) with 30% ≤ FEV1 < 50% predicted, and GOLD 4 (Very Severe)
with FEV1 < 30% predicted.

For asthma, the diagnosis was made in accordance with the GINA guidelines [27],
which require the presence of respiratory symptoms such as wheezing, shortness of breath,
chest tightness, and cough, along with variable expiratory airflow limitation. Specifically,
individuals were diagnosed with asthma if they exhibited an increase in FEV1 of more than
12% and 200 mL from baseline, either spontaneously or after bronchodilator administration,
confirming the presence of reversible airflow obstruction.

The exclusion criteria were as follows:

1. Patients with other respiratory conditions or comorbidities that could significantly
affect lung function, such as lung cancer, interstitial lung diseases, or severe respira-
tory infections.

2. Patients with incomplete or missing data from either spirometry or IOS testing.
3. Patients who were unable to perform the lung function tests adequately due to

cognitive or physical limitations.
4. Healthy volunteers with a history of smoking or any known respiratory condition.

Informed consent was not obtained from individual participants in this study as it
involved a retrospective analysis of de-identified data. The dataset used in this research
underwent a thorough de-identification process that removed any direct identifiers such as
names, addresses, and social security numbers. Each participant in the dataset was assigned
a unique anonymous identifier to ensure anonymity. The study design and data access
procedures were reviewed and approved by the Feng-Yuan Hospital Ethics Committee (IRB
Approval Number: 110016). Importantly, due to the de-identified nature of the data, the
study was conducted in compliance with privacy regulations, and the results presented in
this paper are not traceable to individual participants, ensuring the utmost confidentiality
and privacy of the subjects involved.

2.2. Methods

This study referred to previous research [6–10] that suggested several machine learning
algorithms suitable for exploring and analyzing data for the diagnosis of COPD and
establishing classification prediction models. The classifiers used in this study included
the following five: neural network using the Multiple Layer Perceptron (MLP) algorithm
from sklearn; logistic regression (LR); random forest (RF); support vector machine (SVM);
and k-nearest neighbor algorithm (KNN). This study employed the data mining and
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visual analysis software Orange3 (version 3.34.0) [28] for data analysis, feature embedding,
building classification models, and predicting outcomes. It was based on IOS data and
aimed to select suitable features to establish a predictive model for distinguishing between
healthy individuals, COPD patients, and asthma patients. The research steps are shown in
Figure 1.
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2.3. Feature Combinations

Within the realm of IOS, resistance represents the in-phase component of lung impedance
and offers insights into the forward pressure within conducting airways. In contrast, reac-
tance constitutes the out-of-phase component of lung impedance, reflecting the capacitive
and inertive characteristics of the airway. Capacitance may be likened to a reflection of
airway elasticity, while inertance mirrors the mass inertial forces within the moving air
column. Reactance can be visualized as rebound resistance, akin to an echo, supplying
information about the distensible nature of the airway [29,30].

IOS testing provides a noninvasive and dynamic assessment of respiratory mechanics
through measurements of resistance and reactance. As detailed above, parameters obtained
from IOS offer valuable insights into total respiratory impedance along with central versus
peripheral airway resistance. The frequency-dependent information captured by IOS allows
characterization of optimal resonance properties and overall respiratory tissue mechanics.
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In particular, the reactance curve and its dependency on frequency reveals crucial details
on the elastic and dynamic responses of the airways. Parameters such as the reactance area
and resonant frequency facilitate the understanding of the interplay between capacitive
and inertive forces governing airway function. In addition, the differences in resistance
between low, high, and resonant frequencies enable site-specific assessment of small versus
large airways.

Therefore, IOS parameters constitute information-rich, sensitive, and comprehensive
indicators of respiratory status. The multidimensional data obtained from noninvasive IOS
testing facilitates the capture of the intricacies and complex dynamics of the respiratory
system. This wealth of embedded knowledge makes IOS parameters extremely well
suited to the building of data-driven prediction models. The availability of resistance and
reactance signatures across various frequencies enables machine learning algorithms to
learn associations and patterns key to respiratory disease diagnosis and classification. In
summary, the noninvasive, sensitive, and comprehensive nature of IOS data provides an
ideal substrate for developing robust predictive models for assisting in the diagnosis of
conditions such as asthma and COPD.

The feature values collected in this study were obtained from three data sources.
The first was IOS output data, including R5, R10, R15, R20, R25, R35, X5, X10, X15, X20,
X25, X35, Z5, VT, Rc, Rp, Fres, Ax, and R5–R20: 19 parameters in total. R5 represents
the total airway resistance, and R20 represents the central airway resistance. The normal
value should be within 150% of the expected value; in healthy people, both are very close,
meaning the peripheral airway resistance is very small, represented by R5-R20. The X value
represents the sum of elastic resistance and inertial resistance in respiratory impedance. X5
represents the peripheral elastic resistance. The difference between the predicted value and
the measured value is not more than 0.2 kPa/(L·s), which is normal. Fres represents the
resonant frequency (i.e., resonance point), which indicates that elastic resistance and inertial
resistance are equal. It is the most sensitive indicator in bronchial function examination, and
Fres in normal people does not exceed 10 Hz. AX represents the total reactance, signifying
the area under the curve across all frequencies ranging from 5 Hz to Fres. Z5Hz is a
parameter in IOS testing, representing the impedance of the respiratory system, measured
at a frequency of 5 Hz. Respiratory impedance is a complex parameter that includes
resistance (R) and reactance (X), which respectively represent the resistance to airflow and
the elastic properties of the airways [23,29,30].

Specifically, Z5Hz indicates the total impedance of the respiratory system in response
to external vibrations at a frequency of 5 Hz. The significance of this value lies in assessing
the overall condition of the airways, including both central and peripheral components.
Typically, the numerical values of Z5Hz fall within a positive range and can be used to
evaluate the ventilation and elastic properties of the respiratory system. Rc (central airway
resistance) represents the resistance of the central airways, including the trachea and large
bronchi. A higher Rc value suggests greater resistance in the central airways, which may
indicate some issues with the central airways [25].

Rp (peripheral airway resistance) represents the resistance of the peripheral airways,
reflecting the resistance in the small airways such as small bronchi and alveoli. A higher
Rp value suggests greater resistance in the peripheral airways, which may indicate issues
with small airways or peripheral airways [25].

The second data source comprised the physiological characteristics of the participants,
including age, gender, height, weight, and four other items.

The third included four derived parameters from IOS data based on recommendations
from previous studies: R20 actual/predicted ratio; X5 predicted–actual difference; and
Rc–Rp and Rp–Rc. Rc–Rp is the difference between Rc and Rp, often referred to as Rc–Rp.
It is used in IOS testing to evaluate the difference in resistance between different parts of
the airways, including central and peripheral airways. When Rc–Rp is larger, it indicates
that the resistance in the central airways is relatively higher compared to the resistance
in the peripheral airways, which may suggest issues or narrowing in the central airways.
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Conversely, when Rc–Rp is smaller, it suggests that the difference in resistance between
central and peripheral airways is smaller, indicating a more uniform condition of the
respiratory system.

Different feature combinations were then assembled based on different rationales,
ultimately resulting in six combinations (Table 1). Combination A included only the 19 IOS
output parameters to evaluate whether IOS data alone could build a robust prediction
model without other influences. Combination B combined the nineteen IOS items with the
four physiological parameters, as clinicians incorporate both data types for COPD/asthma
diagnosis. Combination C selected seven key IOS measures (R5, R20, X5, Z5, Fres, Ax, and
R5–R20) cited in previous studies, supplemented by the four derived IOS parameters, to
give a total of eleven features. Combination D added the four physiological variables to
C. Combination E combined the nineteen IOS outputs with the four derived IOS features.
Combination F included all twenty-seven features from the three data sources.

Table 1. Six combinations of features in the study.

Combination IOS Data
(N = 19)

Selected IOS Data
(N = 7)

Physiological
Data (N = 4)

Conversion
of IOS Data

(N = 4)
Total

A v 19
B v v 23
C v v 11
D v v v 15
E v v 23
F v v v 27

Note: A total of 19 features were extracted from the IOS output data. Of these, seven features—R5, R20, X5,
Z5, Fres, Ax, and R5–R20—were considered crucial for the diagnosis of COPD based on previous studies.
N = numbers of features. v = data source included in the features combination.

3. Results
3.1. Model Performance

After a pulmonologist matched each patient’s basic information to their medical his-
tory, the diagnosis of COPD and asthma was established based on the guidelines set forth
by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) and the Global Ini-
tiative for Asthma (GINA), respectively, as described in the Materials and Methods section.
The study included a total of 564 participants. Of these, 240 were patients diagnosed with
COPD, 240 were patients diagnosed with asthma, and 84 were healthy non-smoking volun-
teers from the hospital who served as controls. Of these data samples, 80% (452 samples)
were used as the training set and the remaining 20% (112 samples) were later used as the
test set to evaluate model accuracy. Three predictive models were developed and evaluated
using impulse IOS data and machine learning algorithms for the classification of respira-
tory diseases such as COPD and asthma. The first model differentiated between healthy
individuals and patients with chronic obstruction diseases. The second model identified
individuals as either healthy or having a respiratory disease. The third model differentiated
between COPD and asthma patients. Five supervised learning classifiers were tested:
neural networks, KNN, random forest, logistic regression, and SVM. Each model was
trained and tested across the six input feature combinations (A–F), allowing performance
assessment with IOS outputs alone versus the addition of physiological parameters and
derived IOS measures.

3.1.1. Model I: Screening Healthy Volunteers and Patients with COPD and Asthma

For differentiating disease from health (Model I), the neural network classifier achieved
the highest average multi-class accuracy of 72.4%, ranging from 66.1% (Combination A with
only IOS outputs) to 78.6% (Combination D with selective IOS parameters and physiological
data). The AUC metric similarly indicated the superiority of the neural network with
over 86.7% accuracy on average. Compared to IOS outputs alone, the augmentation of
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features increased accuracy, confirming the clinical relevance of knowledge of the patient’s
physiology for screening applications (see Table 2).

Table 2. Performance of prediction Model I for identifying healthy individuals, COPD patients, or
asthma patients.

Feature Combination A

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.815 (0.747, 0.883) 0.661 0.661 0.661 0.661
KNN 0.778 (0.706, 0.805) 0.571 0.571 0.574 0.571
RF 0.751 (0.675, 0.827) 0.527 0.504 0.528 0.527
LR 0.771 (0.698, 0.844) 0.571 0.566 0.567 0.571
SVM 0.758 (0.683, 0.833) 0.607 0.602 0.605 0.607

Feature Combination B

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.924 (0.889, 0.959) 0.777 0.777 0.777 0.777
KNN 0.828 (0.762, 0.894) 0.714 0.709 0.716 0.714
RF 0.861 (0.803, 0.919) 0.661 0.643 0.649 0.661
LR 0.912 (0.872, 0.952) 0.750 0.726 0.743 0.750
SVM 0.917 (0.880, 0.954) 0.786 0.778 0.795 0.786

Feature Combination C

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.822 (0.756, 0.888) 0.670 0.670 0.673 0.670
KNN 0.736 (0.663, 0.810) 0.607 0.599 0.620 0.607
RF 0.735 (0.662, 0.809) 0.545 0.539 0.647 0.545
LR 0.783 (0.714, 0.852) 0.625 0.617 0.615 0.625
SVM 0.738 (0.665, 0.811) 0.527 0.507 0.535 0.527

Feature Combination D

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.911 (0.872, 0.950) 0.786 0.783 0.792 0.786
KNN 0.863 (0.805, 0.921) 0.750 0.747 0.749 0.750
RF 0.867 (0.811, 0.923) 0.714 0.685 0.719 0.714
LR 0.901 (0.859, 0.943) 0.750 0.727 0.732 0.750
SVM 0.898 (0.855, 0.941) 0.777 0.769 0.774 0.777

Feature Combination E

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.818 (0.750, 0.886) 0.679 0.678 0.683 0.679
KNN 0.761 (0.686, 0.836) 0.607 0.606 0.620 0.607
RF 0.760 (0.685, 0.835) 0.527 0.509 0.521 0.527
LR 0.791 (0.723, 0.859) 0.625 0.621 0.621 0.625
SVM 0.803 (0.733, 0.873) 0.679 0.676 0.684 0.679

Feature Combination F

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.909 (0.869, 0.949) 0.768 0.766 0.765 0.768
KNN 0.842 (0.780, 0.904) 0.705 0.702 0.706 0.705
RF 0.858 (0.800, 0.916) 0.661 0.643 0.654 0.661
LR 0.914 (0.875, 0.953) 0.759 0.740 0.755 0.759
SVM 0.909 (0.869, 0.949) 0.777 0.770 0.787 0.777

Note: CA refers to classification accuracy, which represents the proportion of correctly classified instances. Preci-
sion is the ratio of true positives to instances classified as positive. In this context, it represents the proportion of
correctly identified “normal” cases among all instances classified as “normal.” Recall, also known as sensitivity or
the true positive rate, is the ratio of true positives to all instances that are actually positive. In this context, it repre-
sents the proportion of truly “normal” individuals among all individuals identified as “normal”. F1 score is the
weighted harmonic mean of precision and recall and provides a balanced measure of their combined performance.
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3.1.2. Model II: Detecting Respiratory Abnormalities

Model II performed better overall in identifying healthy cases, with the neural network,
again, being superior at 90.8% average accuracy. Combinations B and F attained over 92%
accuracy by additionally capitalizing on age, gender, height, and weight measures. Logistic
regression and SVM classifiers also achieved strong performance with over 87% accuracy
when physiological covariates were present. This robustness demonstrates the potential of
using IOS data and machine learning to detect respiratory abnormalities for triaging and
referral (see Table 3).

Table 3. Performance of prediction Model II for identifying healthy individuals or patients with
respiratory disease (COPD or asthma).

Feature Combination A

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.953 (0.934, 0.972) 0.902 0.595 0.894 0.902
KNN 0.865 (0.809, 0.921) 0.875 0.872 0.869 0.875
RF 0.867 (0.811, 0.923) 0.866 0.838 0.845 0.866
LR 0.871 (0.816, 0.926) 0.866 0.829 0.852 0.866
SVM 0.931 (0.900, 0.962) 0.884 0.871 0.871 0.884

Feature Combination B

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.942 (0.912, 0.972) 0.929 0.927 0.926 0.929
KNN 0.819 (0.752, 0.886) 0.893 0.883 0.883 0.893
RF 0.850 (0.789, 0.911) 0.866 0.829 0.852 0.866
LR 0.894 (0.852, 0.936) 0.866 0.829 0.852 0.866
SVM 0.928 (0.897, 0.959) 0.911 0.899 0.909 0.911

Feature Combination C

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.916 (0.879, 0.953) 0.893 0.883 0.883 0.893
KNN 0.795 (0.726, 0.864) 0.875 0.868 0.865 0.875
RF 0.824 (0.757, 0.891) 0.857 0.831 0.830 0.857
LR 0.843 (0.781, 0.905) 0.839 0.789 0.774 0.839
SVM 0.869 (0.813, 0.925) 0.848 0.816 0.812 0.848

Feature Combination D

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.906 (0.866, 0.946) 0.893 0.883 0.883 0.893
KNN 0.874 (0.819, 0.930) 0.884 0.882 0.881 0.884
RF 0.828 (0.761, 0.895) 0.857 0.812 0.833 0.857
LR 0.876 (0.821, 0.931) 0.848 0.794 0.801 0.848
SVM 0.880 (0.826, 0.934) 0.884 0.871 0.871 0.884

Feature Combination E

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.957 (0.938, 0.976) 0.911 0.908 0.907 0.911
KNN 0.861 (0.805, 0.917) 0.893 0.887 0.885 0.893
RF 0.859 (0.802, 0.916) 0.848 0.816 0.812 0.848
LR 0.890 (0.847, 0.933) 0.857 0.812 0.833 0.857
SVM 0.928 (0.897, 0.959) 0.884 0.871 0.871 0.884

Feature Combination F

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.946 (0.917, 0.975) 0.920 0.916 0.916 0.920
KNN 0.821 (0.754, 0.888) 0.893 0.887 0.885 0.893
RF 0.863 (0.806, 0.920) 0.866 0.829 0.852 0.866
LR 0.901 (0.859, 0.943) 0.866 0.829 0.852 0.866
SVM 0.931 (0.900, 0.962) 0.911 0.899 0.909 0.911

3.1.3. Model III: Diagnostic Differentiation between Asthma and COPD

Model III involved more challenging multi-class differentiation between the obstruc-
tive diseases COPD and asthma. The performance of the metrics was understandably lower
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compared to that of the previous screening applications but still achieved mean accuracies
over 70% for identifying individual diseases using only noninvasive IOS data. The neural
network and logistic regression classifiers were most effective, benefiting more from the
feature sets augmented with physiological parameters and IOS derivations than did the
KNN, random forest, and SVM models. This indicates greater learning capacity of certain
algorithms for diagnostic classification from multidimensional inputs (see Table 4).

Table 4. Performance of prediction Model III for identifying COPD patients or asthma patients.

Feature Combination A

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.751 (0.674, 0.828) 0.646 0.644 0.657 0.646
KNN 0.635 (0.552, 0.718) 0.573 0.569 0.586 0.573
RF 0.755 (0.679, 0.831) 0.667 0.665 0.678 0.667
LR 0.762 (0.686, 0.838) 0.688 0.686 0.700 0.688
SVM 0.619 (0.535, 0.703) 0.635 0.636 0.637 0.635

Feature Combination B

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.902 (0.863, 0.941) 0.833 0.833 0.844 0.833
KNN 0.851 (0.790, 0.912) 0.802 0.801 0.821 0.802
RF 0.883 (0.830, 0.936) 0.771 0.767 0.808 0.771
LR 0.902 (0.863, 0.941) 0.802 0.800 0.829 0.802
SVM 0.897 (0.854, 0.940) 0.823 0.822 0.843 0.823

Feature Combination C

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.763 (0.688, 0.838) 0.698 0.693 0.725 0.698
KNN 0.685 (0.606, 0.764) 0.615 0.611 0.630 0.615
RF 0.723 (0.645, 0.801) 0.667 0.667 0.668 0.667
LR 0.750 (0.674, 0.826) 0.677 0.670 0.709 0.677
SVM 0.672 (0.591, 0.753) 0.625 0.624 0.624 0.625

Feature Combination D

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.899 (0.858, 0.940) 0.854 0.854 0.861 0.854
KNN 0.865 (0.809, 0.921) 0.802 0.802 0.807 0.802
RF 0.869 (0.813, 0.925) 0.781 0.779 0.807 0.781
LR 0.900 (0.860, 0.940) 0.812 0.811 0.836 0.812
SVM 0.901 (0.861, 0.941) 0.823 0.822 0.837 0.823

Feature Combination E

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.753 (0.677, 0.829) 0.677 0.672 0.702 0.677
KNN 0.695 (0.616, 0.774) 0.646 0.640 0.671 0.646
RF 0.762 (0.686, 0.838) 0.688 0.685 0.705 0.688
LR 0.778 (0.704, 0.852) 0.688 0.680 0.725 0.688
SVM 0.703 (0.623, 0.783) 0.698 0.693 0.725 0.698

Feature Combination F

Classifier AUC (95%C.I) CA F1 Precision Recall

MLP 0.890 (0.846, 0.934) 0.854 0.854 0.866 0.854
KNN 0.866 (0.810, 0.922) 0.792 0.791 0.807 0.792
RF 0.881 (0.828, 0.934) 0.781 0.778 0.815 0.781
LR 0.902 (0.863, 0.941) 0.802 0.800 0.829 0.802
SVM 0.899 (0.858, 0.940) 0.812 0.812 0.829 0.812
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3.2. Feature Importance

Figures 2–4 illustrate the top 10 most important features when the highest-performing
neural network classifier was used with feature combinations with maximum accuracy.
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For distinguishing disease status using Model I (Figure 2), the physiological variables
gender, age, and height were the most impactful in Combination D (average accuracy
of 0.755). Among IOS parameters, the actual-to-predicted resistance ratio at 20 Hz (R20
act/pred) and R5–R20 difference were influential (Figure 2a). Combination E (average
accuracy of 0.623), which did not include physiological parameters, showed that reactance
(X5) and resistors R20 and R20 act/pred were important. Irrespective of physiological
parameters, R20 act/pred and R5–R20 emerged as key IOS features (Figure 2b).

In the identification of respiratory abnormalities (Model II; Figure 3), physiological
parameters had minimal influence (except for age at rank 6 for Combination B, with an
average accuracy of 0.893). Resistance measures R5–R20, R15, R20, and R35 and reactance
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X35 dominated feature importance (Figure 3a). Similar trends were seen for Combination E
(average accuracy of 0.879), with R5–R20, R35, and X35 as the top features (Figure 3b).
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In differentiating between COPD and asthma (Model III; Figure 4), physiological
parameters were again ranked at the top in Combination D (average accuracy of 0.814;
Figure 4a). In the case of Combination C without physiological parameters (average
accuracy of 0.679), resistance R20, reactance deviation X5 pred–act, and resistance ratio R20
act/pred were the most informative IOS measures (Figure 4b).

4. Discussion

This study makes a compelling case for the viability of using machine learning models
with IOS data to enable accurate, noninvasive diagnosis and screening of chronic obstruc-
tion diseases. The breadth of experiments across supervised classification algorithms,
disease targets, and input feature sets facilitates insightful technical and clinical analysis.

The ability to differentiate disease from health (Model II), with up to 92% accuracy
and an AUC of over 0.9, supports the utility of IOS testing for large-scale community-
based screening. This could facilitate early intervention, improve outcomes, and lower
healthcare costs. The high negative predictive value is especially useful for ruling out
disease. Consistent with the literature [31], the finding that the addition of basic age, gender,
height, and weight variables boosts accuracy further confirms the value of the physiological
context. Standardization of robust screening approaches can aid adoption [32].

Importantly, the consistency with which low-frequency IOS resistance and reactance
measures were identified as some of the most informative features closely reflects known
respiratory physiology. Frequencies below 20 Hz enable greater penetration into the
smaller distal airways. Higher resistance and more negative reactance values indicate
increasing obstruction [29]. The prominence of resistance at 5 Hz (R5) and impedance (Z5)
indicate their sensitivity, in agreement with the literature [23]. Moreover, the predictive
value of derived indices, such as the R5–R20 difference and resistance ratios at differing
frequencies, aligns with their ability to characterize site-specific mechanics and frequency
dependence [23,29].

This embedded knowledge of physiology drives the gains in performance of the
models compared to the performance of naive IOS data alone. The fact that differences
in reactance values at 5 Hz compared to predictions (X5 pred–act) and resistance ratios
relative to predicted normals (R20 act/pred) repeatedly arose as key features indicates
the power of comparative measures over absolute values. The relative resistance between
central and peripheral airways (Rc–Rp) also emerged as informative, reaffirming that the



J. Pers. Med. 2024, 14, 398 12 of 14

partitioning of respiratory impedance can benefit diagnosis [23,29]. The more surprising
finding is that R35 and X35 play a highly important role in identifying healthy people or
people with respiratory diseases. These two features have not been mentioned in previous
studies, so further research is needed to verify their roles.

Among the classification algorithms, neural networks consistently emerged as superior
performers across target conditions and feature sets owing to their greater learning capacity,
aligning with trends in other medical applications [33]. The accuracy levels achieved by
highly interpretable models such as SVM and logistic regression also make these models
worthy of further optimization for clinical acceptance. The testing of model ensembles
could reveal complementary advantages.

Among input features, Combinations B and D that contained a select subset of IOS
output parameters augmented by physiological variables showed optimum trade-offs be-
tween predictive performance and parsimony. The drop in accuracy due to the elimination
of lower-ranked IOS measures is modest, suggesting the potential to refine feature sets
for generalizable models. The inclusion of additional variables, such as smoking history,
imaging markers, and multi-omics profiles, could provide additive value.

In summary, this study provides convincing technical evidence, alongside physiologi-
cal and clinical justifications, that strongly supports the value of advancing IOS data-driven
models to aid COPD and asthma management. Standardization, prospective evaluation,
and real-world validation of performance will be pivotal next steps toward understanding
the translational impact of these models.

5. Conclusions

The experimental results of this study clearly demonstrate the feasibility of exploiting
machine learning with IOS measures to establish robust models for both screening and di-
agnostic classification of common respiratory diseases. The integrative modeling approach
provided clinically significant levels of accuracy by effectively combining noninvasive
lung function profiles with relevant physiological knowledge. Areas for ongoing research
include expanding disease groups beyond COPD and asthma, incorporating additional
physiological data, and deploying model ensembles for boosted predictive performance.
Prospective clinical validation can establish the viability of machine learning approaches
as an assistive methodology to aid physicians’ expertise during respiratory diagnoses
involving pulmonary function testing. While physiological data were useful for screening
models in this study, IOS resistance and reactance parameters at low frequencies consis-
tently emerged as key features across all target outcomes, reaffirming their relevance for
diagnosing respiratory diseases.

6. Limitation

In this study, the diagnosis of COPD and asthma relied on spirometry and various
factors, including smoking history, occupational exposure, atopy, age of onset, childhood
asthma, and adherence to GOLD and GINA guidelines, respectively. These diagnoses
were established by experienced pulmonologists following established guidelines, which
encompassed a thorough assessment comprising spirometry results, patient history, and
clinical presentation.

However, to narrow the focus of our study to exploring the effectiveness of machine
learning techniques with IOS data, we excluded other pertinent factors such as smoking
history, occupational exposure, atopy, age at onset, and childhood asthma from our predic-
tive model. Incorporating these variables could enhance the accuracy and robustness of
models designed to distinguish between COPD and asthma. Therefore, in future research
endeavors, we intend to investigate the integration of these additional factors alongside
IOS parameters to develop a more comprehensive predictive model. Such an approach has
the potential to enhance the clinical utility of these models in aiding accurate diagnosis and
management of respiratory diseases.
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