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Abstract: Using mathematical models of physiological systems in medicine has allowed for the devel-
opment of diagnostic, treatment, and medical educational tools. However, their complexity restricts,
in most cases, their application for predictive, preventive, and personalized purposes. Although there
are strategies that reduce the complexity of applying models based on fitting techniques, most of them
are focused on a single instant of time, neglecting the effect of the system’s temporal evolution. The
objective of this research was to introduce a dynamic fitting strategy for physiological models with an
extensive array of parameters and a constrained amount of experimental data. The proposed strategy
focused on obtaining better predictions based on the temporal trends in the system’s parameters
and being capable of predicting future states. The study utilized a cardiorespiratory model as a case
study. Experimental data from a longitudinal study of healthy adult subjects undergoing aerobic
exercise were used for fitting and validation. The model predictions obtained in a steady state using
the proposed strategy and the traditional single-fit approach were compared. The most successful
outcomes were primarily linked to the proposed strategy, exhibiting better overall results regarding
accuracy and behavior than the traditional population fitting approach at a single instant in time. The
results evidenced the usefulness of the dynamic fitting strategy, highlighting its use for predictive,
preventive, and personalized applications.

Keywords: cardiorespiratory system; computer simulation; mathematical model; parameter estimation;
predictive models

1. Introduction

The increase in and variety of chronic diseases, consequences of a reactive medical
approach, and the unsatisfactory results of generic diagnoses and treatments suggest the
need for a predictive, preventive, and personalized medical paradigm [1–3]. This must be
based on integrating healthcare personalization concepts, anticipation, risk assessment, and
the determination of optimal treatment based on predictive tools [3,4]. Tools that predict a
patient’s personalized health status and their risk of presenting pathologies based on their
physiological information are preferable [5–7].

Mathematical modeling and computational simulation of physiological systems have
proven to be support tools for medical science. Their applications have allowed the
evaluation of clinical treatments, the development of training tools and medical education
platforms, and the design of medical equipment [8–12]. These advancements are possible
due to the models’ ability to predict clinically critical physiological variables under varying
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conditions and for different individuals and stimuli or influences. One of the key features
of these modeling-based tools is the comprehensive portrayal of elements, functions, and
interactions. This aspect sets them apart from other predictive tools, enabling a precise
comprehension of intricate regulations and physiological processes [13,14].

Cardiorespiratory system models are relevant in clinical applications as they predict
the variables influenced by complex regulatory processes, crucial for maintaining body
homeostasis. This analysis is essential for diagnosing, monitoring, and treating diseases [15,16].
At present, there are several studies focused on verifying and using cardiorespiratory
models in different situations, including exercise [17,18], cardiovascular surgeries [19,20],
respiratory disorders [21–23], mechanical ventilatory support [24], and others. Among these
situations, physical exercise can be especially important to diagnosis and clinical prediction
because exercise is a natural stimulus that generates significant and well-characterized
variations in related physiological systems [25,26].

Despite the advantages and variety of validated mathematical models of physiological
systems, their usefulness in medical practice, particularly for predictive, preventive, and
personalized approaches, is restricted by different factors. One of the most important is
their mathematical complexity, which is more remarkable as their precision and biological
relevance increase and is related to many parameters that are difficult to measure experi-
mentally [13,14]. Although nominal parameter values have been provided in the literature
for model simulations, these were derived under specific experimental conditions and
subject characteristics. Using them for predictions gives a constrained and quite general
idea of a physiological system’s dynamics, often neglecting the characteristics that vary
among individuals and conditions [13].

The different fitting techniques reported so far allow for modeling personalization
based on experimental data such as vital signs. These techniques are generally related to
identifying parameters that are challenging to measure experimentally [14,27,28]. Even so,
these methods primarily focus on recognizing constant characteristics, thereby limiting
the utility of the fitted models. They are designed for the static prediction of physiological
response, not accounting for alterations in model parameters due to lifestyle changes, aging,
diseases, and so forth.

In our view, a much-needed application of physiological models as a predictive,
preventive, and personalized medicine tool would involve a strategy to continuously
optimize and customize their parameters as a function of time. Some studies involve
continuously optimizing the model parameters to accommodate the effect of time on the
change in systems’ behavior, potentially leading to favorable prediction outcomes for
various applications [29–31]. This approach, known as time-varying systems modeling,
has also been applied to models of physiological systems. However, its applications have
mainly focused on small models that are described using only a few equations and for
which the experimental data are directly related to predicting the interest variables [32].
Although its application could be extended to more complex models (involving different
variables or complete self-regulation), its application ignores that the system’s responses
may be attributed to the effects of other systems or controllers not directly related to the
measured variables.

Our work presents a novel strategy for the dynamic fitting of physiological models
with complete self-regulation. This approach enables the prediction of the future states of
the modeled physiological system, even with a large number of parameters and limited
experimental data for fitting. Our strategy uses techniques from previous works on fitting
and modeling physiological systems, particularly focusing on a complex cardiorespiratory
model tailored to predict healthy adult subjects’ responses to incremental aerobic exer-
cise [33]. Using this model as a case study and challenged by dynamic aerobic exercise
scenarios, we leverage experimental records from a longitudinal study to establish eval-
uation criteria both for a population and from personalized perspectives. Our findings
suggest that our strategy significantly enhances the usability of complex mathematical
models of physiological systems in predictive, preventive, and personalized contexts.
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This paper is structured as follows. First, we present the dynamic fitting strategy.
This includes identifying the parameter values at selected time points, modeling their
temporal trend, and then validating their applicability in predicting the future states of
the physiological system being modeled. Following this, the case study is introduced,
detailing the cardiorespiratory model, experimental observations, simulations, and data
analysis. Thirdly, we present the results of each procedure under two fitting scenarios,
focusing specifically on validating our strategy. Finally, we discuss the outcomes of the
proposed approach.

2. Materials and Methods

In this section, we introduce our proposed dynamic fitting strategy, which encom-
passes the time-specific fit of the physiological models, dynamic parameter modeling, and
validation. Subsequently, we present a case study employing a comprehensive mathemati-
cal cardiorespiratory model and experimental data obtained from a longitudinal study.

2.1. Dynamic Fitting Strategy

The proposed dynamic fitting strategy involves static fitting of physiological models,
along with dynamic modeling of the model parameters that most influence the system
response. Based on observations from a longitudinal study, it aims to identify the model pa-
rameter values that minimize the differences between the physiological model predictions
and the experimental data at specific instants of time. It involves three key procedures:
(a) a time-specific fit of the physiological model incorporating sequential application of a
static fitting strategy [28], (b) dynamic modeling of the model parameters to reflect their
time trends, and (c) a strategy validation considering the future steady-state response of
the modeled physiological system.

Given the natural variation in physiological systems over time due to biological
degradation and various influencing factors, such as habits, events, and diseases [34–40],
the proposed strategy leverages the longitudinal outcomes of the static fit to reveal the
temporal changes in the physiological system’s characteristics. By modeling these time-
related trends, future parameter values can be predicted, providing valuable insights into
the system parameter dynamics. The following subsections explain in detail the procedures
that are encompassed.

2.1.1. Time-Specific Fit of Physiological Models

This procedure is focused on obtaining optimized model parameter values that best
align the physiological model response with the experimental observations made at differ-
ent instants of time during a longitudinal study. Figure 1 shows a general flowchart of the
proposed fitting.

The number of results of the time-specific fit procedure will depend on the number of
study samples or time instances (N) since each one (n) corresponds to a static fit of the model
regarding the data recorded at each instant of time (Exp.Data tn). The procedure comprises
different sub-processes that must be sequentially applied over time, with the understanding
that the results will reflect the temporal evolution of the physiological system for the same
subject or population. The first fit (n = 0) starts from the nominal values of the model
parameters and the subsequent ones from the immediately preceding optimization result
(Params. tn−1). The sub-processes are applied iteratively, while the number of iterations
does not exceed the number of instances in the experimental data (n < N). At each iteration,
the parameter optimization results (Reg. Params.) and experimental information related
to the factors that significantly influence the modeled system (Reg. Factors) are recorded.
This information is useful for the subsequent dynamic parameter modeling procedure.
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Figure 1. Flowchart for the time-specific fit procedure.

Physiological system models are highly intricate due to their many parameters. At-
tempting to fit them using a limited amount of experimental data can be computationally
expensive and results in multiple optimization solutions that lack physiological mean-
ing [14]. To address this issue, our time-specific fit procedure combines techniques such as
standardization, classification, selection, and optimization of a reduced set of parameters.
Consequently, it allows for predictions with adequate precision and accuracy for models
considering many parameters and different stimuli and populations. The effectiveness of
this procedure has already been tested in a case study involving a comprehensive cardiores-
piratory model. Below, an overall explanation of it is provided. The reader can refer to [28]
for more details.

Standardization of simulation conditions
Depicted as the first sub-process that generates results for “Update params.” in Figure 1,

this involves adjusting the model parameters values based on the available experimental
measurements. This aligns the model’s simulation conditions closer with those used as
a reference for fitting, which ultimately reduces the computational costs by eliminating
the need to optimize these parameters later. Standardized values are generally related to
the characteristics of the subjects, the stimulus evaluated, or the environmental conditions.
Parameters unaffected by standardization, which cannot be directly linked to the avail-
able experimental measures, retain the equivalents of their nominal values and are later
considered in the classification and selection sub-procedures.

Classification and Selection of Parameters
This aims to reduce the complexity of the optimization problem by identifying a

reduced set of the most representative parameters to be used during the model fitting [28]. It
initially consists of classifying parameters based on their role, identifiability and sensitivity
to variations, and relationship with the evaluated stimulus, as follows.

• Role: This consists of grouping the parameters into five sets according to the typi-
cal functions found in physiological models. These groups include time constants,
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conversion parameters, covariates, initial values, and gain and thresholds. The static
fitting strategy focuses on adjusting the model predictions in a steady state, so only
the sets of parameters with the role of gain and thresholds, whose variations have a
physiological sense, are selected for applying the subsequent classification techniques.

• Identifiability and sensitivity to variations: This involves classifying the parameters
selected by role according to how well conditioned they are to be identified [41] and
ranks them according to their variation effect in the model predictions [14], employing
both total and relative sensitivity analysis approaches. Their application involves
improvements that allow evaluating different levels of stimulus and parameter values,
while considering the error contribution regarding the experimental data [28]. As a re-
sult, two sets of parameters are identified. The first one corresponds to the parameters
with the best results for subset selection and the highest total sensitivity. The second
set comprises parameters with the best relative sensitivities for each variable, which,
in turn, have a non-significant effect concerning the others.

• Stimulus: This encompasses the parameters that measure the impact of relevant
mechanisms based on their classification by role.

Once the selection criteria are applied, the parameters eligible for optimization are
identified. This process ensures that the optimization efforts are focused on the most
relevant and impactful model parameters.

Parameter Optimization
This involves identifying the optimal values of the model parameters that reduce the

difference between the model predictions and the experimental data [32]. The result is
related to the second “Update params.” sub-process in Figure 1. This procedure focuses
on solving an optimization problem, in which the outcome is associated with the choice
and parametrization of an optimization algorithm, establishing the evaluation boundaries
for the chosen parameters, and selecting a suitable metric for assessing the prediction
capability of the model [27].

According to the referenced static fitting and validation strategy [28], three optimiza-
tion stages are applied sequentially, related to the classification of and selection criteria for
the parameters previously described. The first stage is the base fitting approach, which
involves adjusting the identifiable parameters with the highest sensitivity. The second stage
is the specific fitting approach, which focuses on reducing the prediction error of each vari-
able without significantly affecting the result of the others by adjusting the parameters with
the best relative sensitivity. The last stage is the stimulus-related fitting approach, which
focuses on bringing the behavior of predictions closer to what is expected by modifying
the related mechanisms.

2.1.2. Dynamic Parameter Modeling

Its objective is to model the temporal trends in the parameters so that these trends can
be used to predict the future fit of the physiological model. There is no specific structure
defined for this modeling. Still, applying autoregressive techniques is recommended,
considering their simplicity and the cumulative effect regarding time and other factors
on physiological systems [34–40]. Therefore, the design of a MISO (Multiple-Input Single-
Output) model is proposed for each parameter. This latter allows for predictions based
on their past values and a temporal record of significant factors such as habits, events,
or diseases.

Figure 2 shows the general flowchart for the dynamic modeling of a given parameter,
denoted as Px. This procedure focuses on predicting and storing the forthcoming value
(Reg. Pred. Params.) at the next instant of time (n + 1), based on the samples used for
modeling within a range from 0 to n. Here, N denotes the total number of time instances
available. The modeling and simulating process (marked as Model/Sim) involves only
those parameters whose values are modified as a result of the time-specific fit procedure
(Variation(Px,0 → Px,n)). Any parameter that remains unaltered retains its initial nominal
or standardized value. Similar to the optimization process, it is essential to note that
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the predictions of the parameters could lack a physiological justification and should be
evaluated before being accepted. The goodness-of-fit measures of the models and the rate
of change in the parameter values can be used as criteria to define the use of the predictions
or keeping the previous ones (Criteria(Fit, Px,0 → Px,n)).
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2.1.3. Validation

This procedure focuses on evaluating the results yielded by the proposed strategy
based on its ability to accurately predict the fitting of the physiological model at a future
point in time. For this purpose, the experimental values of the variables at each instant are
compared against their respective predictions using the physiological model using three sets
of parameter values: (a) parameters that are specifically fitted to the experimental data at
each selected time point, which represent a time-specific fit and are the gold standard of the
optimization process, (b) parameters resulting from the traditional single-time fit approach,
which consist of the fitting results for the first instant of time using the experimental
results of the entire population, and (c) the predicted parameters values obtained using the
proposed dynamic fit strategy by dynamically modeling the selected model parameters.

Given that the sequentially implemented static fitting strategy does not involve re-
sponses to transient changes, the precision, accuracy, and directional aspects of the physi-
ological model’s predictions are evaluated only when the steady state of the variables is
reached. This process involves selecting and using a metric that allows for an assessment
of the model’s performance, usually associated with calculating the prediction error.

2.2. Case Study
2.2.1. Cardiorespiratory Model

The mathematical cardiorespiratory model (CR model) used as a case study is a
multi-compartmental self-regulated model of the cardiorespiratory system. It comprises
316 parameters and 170 equations distributed across different integrated mechanisms to
represent the cardiovascular circulation system, the respiratory mechanic system, the gas
exchange system, and the respiratory and cardiovascular controllers [33]. It is the result of
adapting previous models reported of systems, controllers, and mechanisms. It has been
fitted and validated using experimental data from healthy adult individuals during rest
and progressive aerobic exercise [28]. Figure 3 delineates a schematic representation of the
CR model, while Table 1 provides detailed descriptions of the symbols utilized within the
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model diagram. These references constitute essential instruments for facilitating a deep
and comprehensive exploration of the model’s framework.
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Figure 3. Schematic representation of the CR model. This diagram illustrates the overall struc-
ture of the case study model, showcasing the integrated systems along with their respective con-
trollers. See Table 1 for symbol descriptions. The mathematical equations delineating the func-
tionalities of all systems and controllers are detailed in the Supplementary Materials and in the
model-building paper [33].

Table 1. CR model symbol descriptions. This table lists and defines the abbreviations used in the CR
model, complementing the schematic representation illustrated in Figure 1.

Abbreviation Definition

AT Anaerobic threshold
BF Breathing frequency
CvCO2 Carbon dioxide concentration in the venous blood
CvO2 Oxygen concentration in the venous blood
Emax,jv End-systolic elastance of each ventricle
FiCO2 Inspired fractions of dry carbon dioxide
FiO2 Inspired fractions of dry oxygen
HR Heart rate
I Exercise intensity (central command action)
MRV Metabolically related neural drive component of the ventilation
Nd Neural drive signal
Pao The pressure at the airway opening
Patm Atmospheric pressure
PbCO2 Brain carbon dioxide partial pressure
Psa Systemic arterial pressure
Rjp Resistance related to each peripheral circulation
TC Total duration of the muscular contraction
Tim Duration of the muscular contraction–relaxation cycle
.

V Airflow
.

VE Total minute ventilation
.

VCO2 Carbon dioxide output
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Table 1. Cont.

Abbreviation Definition
.

VO2 Oxygen uptake
Vu,jv Unstressed volume related to each venous circulation
VT Tidal volume
TI Inspiratory time
Psa Systemic arterial pressure
Qjp Blood flow related to each peripheral circulation
Qbp Blood flow related to the brain circulation
Qpp Blood flow related to the pulmonary peripheral circulation
PaCO2 Arterial carbon dioxide partial pressure
PaO2 Arterial oxygen partial pressure

The cardiovascular portion of the CR model encompasses a detailed representation of
the heart and the circulatory system, including both pulmonary and systemic circulation.
Its sophistication lies in the incorporation of various physiological aspects, such as the
dynamics of blood flow through different valves and vascular beds. Notably, it incorporates
modifications to accurately simulate moderate aerobic exercise, detailing the effects of
muscle contractions and respiration on venous return.

The cardiovascular controller focuses on facilitating reflex control through a complex
network of neural pathways and effector mechanisms. It adeptly responds to a range
of stimuli, including changes in oxygen and carbon dioxide levels, thereby modulating
cardiovascular responses during aerobic exercise.

The respiratory module of the CR model outlines the mechanics of the pulmonary and
upper airway systems. This model segment has been enhanced to simulate the intricacies
of muscle pressure waves and air movement during the respiratory cycle, effectively
representing both the inspiratory and expiratory phases.

The gas exchange system provides a comprehensive depiction of the mechanisms
governing the interaction between the cardiovascular system and respiratory mechanics,
focusing on the regulation of blood gas concentrations. This system intricately details the
processes involved in gas exchange, both at the cerebral and tissue levels, incorporating
essential mechanisms that are particularly significant during exercise.

The respiratory controller in the CR1 model integrates the central and peripheral
chemoreceptors and a metabolically related neural drive component. This setup, which
utilizes inputs from the gas exchange system, facilitates precise estimation of the ven-
tilatory demand, maintaining optimal arterial blood gas levels during physical activity.
Additionally, it employs an optimization approach to adjust the breathing pattern each
cycle, minimizing the work of breathing (WOB) and fine-tuning variables such as VT, BF,
and inspiratory and expiratory times (TI and TE), thus ensuring nuanced regulation of
respiratory control during exercise.

For a more in-depth understanding and exploration of the CR1 model, readers are
encouraged to refer to the Supplementary Materials. This material provides a compre-
hensive insight into the model, facilitating a deeper comprehension of its complexity
and functionalities.

2.2.2. Experimental Data

The experimental data used to evaluate the strategy corresponded to signals and mea-
surements from cardiorespiratory variables recorded in an observational and longitudinal
study. This was based on an incremental, submaximal, and multistate cardiopulmonary
exercise test performed using a programmable cycle ergometer under controlled envi-
ronmental conditions. The test lasted for a total of 45 min, segmented into five distinct
phases: rest (2 min), warm-up (4 min), active exercise (25 min), recovery phase (9 min), and
concluding with a final resting period (5 min). During the exercise stage, five consecutive
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steps were carried out with load increments of 25 W every five minutes and at a constant
pedaling speed of 60 RPM.

The recorded information was divided into two databases to analyze the usefulness
of the dynamic fitting strategy from population-wide and personalized perspectives. The
first database (DB1) corresponds to the longitudinal record of twenty-seven male adult
volunteers at three different instants with more than six months of difference between
them. The second database (DB2) corresponds to the records of three male adult volunteers
matched by degree of consanguinity, medical history, and lifestyle but with different ages,
which are proposed as an approximation of the longitudinal records of one same subject at
six different stages of his life, consistent with the approach of stratified medicine [42,43].
These subjects are male members of the same family, corresponding to a father and his
two sons who live together and have similar habits. The first two records correspond to
the youngest subject, the next three to his brother, and the last to his father.

All the participants registered during the study were deemed healthy, encompassing
individuals with diverse physical fitness levels, from sedentary to those regularly engaging
in physical training. They were non-smokers and had no history or present symptoms
of cardiovascular, pulmonary, metabolic, or neurological disorders. Additionally, none
had pacemakers or any other types of implanted electrical stimulators. The records were
composed of the signals of

.
VE, TI, VT, BF, HR, oxygen uptake (

.
VO2), carbon dioxide

output (
.

VCO2), alveolar oxygen partial pressure (PAO2) and alveolar carbon dioxide
partial pressure (PACO2) and measurements of systolic blood pressure (PS), diastolic
blood pressure (PD), and mean arterial blood pressure (PM). The records also comprised
characteristics of the environment, such as Patm, FiCO2, and FiO2.

Quantifiable information related to factors other than age reported significantly influ-
encing the cardiorespiratory system was also recorded. These data accounted for habits
such as diet [35,36], physical activity [38,39], and quality of sleep [37,44], related to mea-
sures of body mass index, average hours of weekly physical activity, and average hours
of daily sleep, respectively. Other relevant factors, such as accidents or illnesses, habits
such as smoking, or family history of diseases, were not reported, considering that they
were regarded as exclusion criteria. Medication use was only reported by the oldest subject
of the DB2 and was related to blood pressure control. Table 2 presents the information
recorded for each database related to the environmental conditions, the characteristics of
the volunteers, and the factors mentioned above. The data shown for DB1 correspond to
the mean and standard deviation of the measurements.

Table 2. Recorded information for each database of the experimental study. Data are reported as
mean and standard deviation for the DB1.

Registered Information
DB1 Records DB2 Records

1 2 3 1 2 3 4 5 6

Environmental conditions
Ambient temperature (◦C) 26.6 ± 1.5 27.0 ± 1.6 25.9 ± 1.3 25.0 26.0 28.0 25.0 27.0 26.0
Relative humidity (%) 63.7 ± 5.0 58.7 ± 4.5 61.8 ± 7.1 56.0 56.0 64.0 49.0 70.0 49.0
Subject data
Age (years) 28.3 ± 6.8 29.0 ± 6.9 29.9 ± 6.9 25.2 26.0 29.9 30.8 31.5 63.1
Height (cm) 173.6 ± 6.3 173.6 ± 6.3 173.6 ± 6.3 163.0 163.0 167.4 167.4 167.4 165.0
Weight (kg) 76.7 ± 9.6 76.6 ± 10.8 77.6 ± 11.4 71.8 70.9 83.3 79.2 81.6 71.3
Body mass index (kg/m2) 25.5 ± 2.8 25.4 ± 3.0 25.7 ± 3.2 27.0 26.7 29.7 28.3 29.1 26.2
Average sleep (hours
per day) 6.6 ± 0.9 6.6 ± 1.0 6.7 ± 1.0 7.0 7.0 6.5 7.0 8.0 6.0

Average physical activity
(hours per week) 6.4 ± 4.5 4.4 ± 4.5 3.3 ± 3.5 5.0 2.0 0.0 4.0 0.0 0.0

All the methods received authorization from the Ethical Committee for Human Re-
search of the University Research Department (SIU) of the University of Antioquia (ap-
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proval certificates 16-59-711, 17-59-711, and 18-59-711). These procedures adhered to the
standards set by the Declaration of Helsinki. Written agreements were secured for every
participant following a briefing on the experiment’s procedure and the associated risks.

2.2.3. Computational Implementation and Data Analysis

The measured values of
.

VO2 and
.

VCO2 served as the model inputs to simulate
exercise intensity levels. This method has been previously employed in simulating aerobic
exercise within physiological models [20,45]. The rationale behind this approach is that the
physiological response to such a stimulus is intrinsically linked to the metabolic rates of O2
uptake and CO2 production, which are directly affected by the workload during exercise
(the physiological model does not consider the workload as a model input).

The average of each measurement during the last minute for each subject (except for
PS, PM, and PD) was used as a representative sample of each phase of the exercise test
under steady-state conditions. The experimental data were constrained using

.
VCO2 as

a reference, starting at 0.3 L/min, which corresponds to the resting state and consists of
the minimum value observed across all the subjects’ records, and ending at the respective
calculated value of AT because the model was defined only for aerobic exercise.

Each temporal fitting of the model parameter values references the parameter values
from the most recent optimization result, except for the first fit of each database. In this
case, the nominal values reported in [33] are used, reflecting a traditional single-time
fit approach.

Each stimulus level was simulated for 2000 s to guarantee steady-state conditions for
all the evaluated variables, as reported in [33]. The model’s steady-state responses were
determined by calculating the mean values of each variable during the final minute of each
simulated stimulus level.

The model simulations, data processing, and statistical tests were performed using
SIMULINK/MATLAB® version R2023a. The computational specifics of the simulation
were aligned with those documented for the model’s validation, utilizing the numerical
solver ODE23 (Bogacki and Shampine BS23 algorithm for the solution of ordinary non-rigid
differential equations) and a variable step size between 1 × 10−2 and 1 × 10−3 seconds. The
simulations were conducted only once, as all the model equations are deterministic. Below,
the specific implementation details for each procedure are outlined.

Time-Specific Fitting of the Physiological Model
Standardization of the simulation conditions
The parameters of the physiological model that were assigned according to the exper-

imental data included FiO2, FiCO2, Patm, basal respiratory tidal volume (VTn), AT, total
blood volume (Vtot), and constant values of unstressed blood volume. FiO2, FiCO2, and
Patm, accounting for the environmental conditions, were considered constant in all the
records and equal to 21.0379%, 0.0421%, and 640 mmHg, respectively. The values of VTn,
AT, Vtot, and unstressed blood volume are associated with the distinct characteristics of the
subjects. The value of VTn was determined from the VT measurements; AT was calculated
using the noninvasive technique v-slope [23,46]. Vtot in ml was also estimated for each
record in relation to the body surface area (BSA) in m2 according to Equations (1) and
(2) [47]. Finally, the parameters related to the unstressed blood volumes were calculated
using the proportion of their reported nominal values regarding Vtot [33].

BSA =

√
(Weigth·High)

3600
, (1)

Vtot = 1000(3.29·BSA − 1.29), (2)

The values of VTn, AT, and Vtot used for the standardization of each fit are presented
in Table 3. The data presented for DB1 correspond to the mean and standard deviation,
except for AT, whose value corresponds to the median and interquartile range considering
the data distribution.
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Table 3. Values of parameters calculated from experimental data.

Parameter
DB1 DB2

1 2 3 1 2 3 4 5 6

Vtot (mL) 5025.9 ± 454.6 ** 5022.2 ± 497.4 ** 5062.4 ± 526.0 ** 4642.0 4604.7 5185.1 5023.7 5118.7 4657.5
AT for

.
VCO2(L/min) 0.9 ± 0.5 * 0.7 ± 0.3 * 0.8 ± 0.6 * 0.9 0.8 1.0 1.2 1.4 1.4

VTn (mL) 0.72 ± 0.12 ** 0.76 ± 0.13 ** 0.78 ± 0.13 ** 0.60 0.73 0.77 0.67 0.66 0.74

* Values reported as mean and standard deviation. ** Values reported as median and interquartile distance.

Classification and Selection of Parameters
Classification and selection of the parameters were performed based on the steady-

state simulation results by applying changes in stimulus level and parameter value varia-
tions. Identical stimulus levels and parameter variations as those reported for the static
fitting strategy previously applied to the same model were used [28]. Three exercise stim-
ulus levels were simulated using

.
VO2 and

.
VCO2 as the model inputs, corresponding to

states of rest, an intermediate level of exercise, and AT. The identifiability and sensitivity
of the model parameters selected by role (gain and thresholds) were evaluated throughout
five uniformly distributed percentage variations in a range of ±5% of the reference value.
The number of parameters selected was the same as that reported for the model according
to the static fitting strategy.

The fitting approach related to the stimulus was not applied because it did not signifi-
cantly decrease the prediction error, and the exercise mechanisms had already been fitted
to the model [28].

Parameter Optimization
The optimization algorithm implemented corresponds to the Covariance Matrix and

Adaptation Evolution Strategy (CMA-ES). This stochastic global optimization algorithm
is grounded in adaptive and evolutionary principles [48,49]. Its selection was based on
its favorable outcomes in terms of the convergence speed, precision, and accuracy when
fitting the case study model [28] and other related ones [27]. The parameter values applied
in the implementation of the CMA-ES algorithm align with those reported for the model
according to the static fitting strategy [28].

The evaluation ranges for the parameter optimizations were defined in accordance
with the static fitting strategy [28]. The parameter values reported as nominal for the model
were used as the variation references [33]. A general evaluation range of ±30% regarding
the nominal value was established and expanded to ±50% for weighting parameters
unrelated to direct physiological measures. These ranges were modified according to the
information reported about the optimization results or physiological sense (values with
physiological justification).

Steady-state model predictions of
.

VE, TI, VT, BF, HR, PAO2, PACO2, PS, PD, and PM
for eight consecutive, equidistant, and incremental step values of

.
VO2 and

.
VCO2, spanning

from rest to AT as the experimental data, were used for the parameter optimization. The cost
function (CF) employed corresponds to Equation (3), utilizing the same root mean squared
error (RMSE)-based metric as applied in the reported fitting of the case study model [28].

CF =
1
I ∑I

i=1

√√√√ 1
K∑K

k=1

(
yexpi,k

− ysimi,k

yexpi,k

)2

(3)

where yexp and ysim correspond to the experimental and simulated values of the variable,
respectively; I and K represent the number of variables and stimuli levels; and the subscripts
i and k designate each specific variable and stimulus level.

Dynamic Parameter Modeling
To effectively model a dynamic parameter, it is essential that the parameter has been

optimized at least twice at two consecutive instants of time. Thus, for DB1, only the
optimized parameter values of record three were predicted, while for DB2, the predictions
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encompassed the optimized parameter values from records three to six. Specifically, only
the parameters demonstrating significant variations in their value during the optimization
procedure were modeled as dynamic parameters. The remaining parameters retained their
previous values, whether they were nominal, standardized, or previously optimized.

Deterministic and parametric MISO models were implemented for each dynamic pa-
rameter. The implemented model structure corresponded to an ARX model (autoregressive
with exogenous input), selected to consider the effect of the past values of the outputs
and inputs on the current value [32]. Equation (4) corresponds to a representation of the
model structure.

A(q)P(n) = ∑I
i=1 Bi(q)Fi(n − ki) + e(n), (4)

where P represents the parameter’s value at each instant of time; Fi is the ith input, which is
associated with the factors evaluated; A and B are polynomials expressed in the time-shift
operator q−1 and are related to the parameter and the inputs, respectively; I is the total
number of inputs; ki is the input delay; and e(n) is considered random noise.

For each model, the following inputs were used: the time elapsed between records, the
average weekly physical activity, the average daily sleep hours (Table 2), and AT (Table 3).
To calculate the time, the difference in age between each record was accumulated, and a
value of zero for the first record was assigned. AT values have been used because they
account for the metabolic response of the subject to cardiorespiratory changes [46,50].
Except for time, the values of the previous record’s inputs were considered equivalent to
the values in the record to be predicted.

Different model orders associated with the polynomials were evaluated for each
parameter, and the model with the best fit was selected. The past values of the parameters
and the inputs were interpolated, considering that the design of the models requires
constant sampling times. Sampling times between 0.1 and 0.4 years were evaluated in
this work, considering the temporal difference between records for each fit. The orders
of polynomials A and B were evaluated from zero to the maximum number of samples
available. ki, the input delay, was considered zero regarding all the inputs due to the
limited number of available records. The coefficients of the polynomials for each model
were estimated using the least-squares method. The best-order selection was based on
applying Akaike’s Information Criterion (AIC) according to Equation (5).

AIC = ln(V) +
2d
N

, (5)

where V is the loss function (normalized sum of squared prediction errors), d is the total
number of parameters in the structure in question, and N is the number of data points used
for the estimation.

Criteria based on the goodness of fit of the models and the variation in the predicted
value regarding a bounded range were applied to evaluate the physiological justification for
the predictions. Models with a goodness of fit of less than 60%, sign changes, or variations
greater than 50% regarding the range of recorded values were discarded, and the values
corresponding to the immediately previous record were used instead.

Validation
Validation consisted of comparing the simulation results of the case study model

using (1) optimized parameter values for each record (time-specific fit approach), (2) nomi-
nal parameter values (single-time fit approach), and (3) predicted parameter values from
the identified dynamic parameter models (dynamic parameter fit approach). These com-
parisons aimed to demonstrate the usefulness of the dynamic fitting strategy from the
perspective of predicting the future state of the modeled system against the traditional
approach of using the traditional population fit results at a single instant of time.

Prediction Error
For each approach, the effectiveness of the model performance was assessed by

calculating the prediction error (PE) in relation to the steady-state experimental measures
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of the recorded cardiorespiratory variables (
.

VE, TI, VT, BF, HR, PAO2, PACO2, PS, PD,
and PM) for eight incremental step values of

.
VO2 and

.
VCO2 from rest to AT, as in the

optimization process. The metric used to calculate the PE corresponds to Equation (6),
a modification of the Mean Absolute Error (MAE) that allows an interpretation of the
differences as a proportion of the experimental data. It considers the error for each subject,
variable, and level of stimulus as follows:

PE(%) = 100· 1
N∑N

j=1

Mediani,k

∣∣∣∣∣∣
yexpi,j,k

− ysimi,j,k

yexpi,j,k

∣∣∣∣∣∣
 (6)

where yexp is the experimental variable value; ysim is the simulation prediction value; N
denotes the number of variables; and the subscripts i, j, and k are indexes that represent
each subject, variable, and stimulus level, respectively.

Statistical Analysis
The Wilcoxon signed-rank statistical test was applied to evaluate whether the distribu-

tions of the PE results of the used fitting approaches were different. As a non-parametric
test, the Wilcoxon signed-rank test is widely recommended for two populations when
observations are paired [51]. The test was applied between the PE results for all pairs of
different approaches. The results were considered statistically significant for ρ values less
than 0.01 (strong differences) and less than 0.05 (mild differences). ρ value results greater
than 0.05 were not considered statistically different.

3. Results
3.1. Time-Specific Fitting of the Physiological Model

Table 4 shows the PE results for the model fitted to each record of the databases. The
results regarding the variables correspond to the median and the interquartile range.

Table 4. Prediction error (%) of the model fitted to each record (time-specific approach). Overall PE
values are reported as median values, while the remaining variables are presented in median and
interquartile range.

PE
DB1 DB2

1 2 3 1 2 3 4 5 6

Overall 7.57 8.42 8.03 8.51 6.13 7.24 5.25 5.13 6.84
.

VE
7.40 ±

7.90
7.37 ±

9.81
7.19 ±

7.47
10.27 ±

2.63
15.07 ±

5.47
17.07 ±

9.93
14.89 ±

7.15
16.21 ±

2.73
17.05 ±

5.94

VT 11.10 ±
12.26

11.81 ±
15.53

12.56 ±
13.56

12.96 ±
16.26

1.76 ±
5.86

5.52 ±
9.69

12.99 ±
3.79

4.56 ±
11.39

16.23 ±
8.75

BF 10.08 ±
13.58

12.06 ±
13.12

9.83 ±
12.46

16.19 ±
14.23

10.31 ±
6.47

13.52 ±
14.61

4.64 ±
6.27

6.68 ±
5.97

3.49 ±
4.44

TI 10.41 ±
12.46

11.88 ±
13.57

10.03 ±
13.36

8.56 ±
10.17

7.83 ±
7.02

10.67 ±
11.78

3.88 ±
9.62

6.42 ±
5.06

6.03 ±
2.72

HR 10.50 ±
11.19

13.44 ±
14.18

12.81 ±
14.81

8.69 ±
5.84

11.05 ±
4.42

6.77 ±
13.87

2.26 ±
5.71

1.73 ±
2.85

3.79 ±
3.71

PS 5.08 ±
7.35

5.36 ±
6.04

6.41 ±
7.57

9.67 ±
9.54

2.45 ±
1.79

4.22 ±
4.25

2.70 ±
6.86

2.11 ±
2.88

3.91 ±
6.81

PM 5.47 ±
7.23

5.15 ±
7.10

7.00 ±
7.89

5.62 ±
4.87

2.31 ±
1.17

6.18 ±
3.84

3.46 ±
3.13

3.89 ±
8.28

4.80 ±
2.22

PD 8.94 ±
12.64

10.39 ±
10.05

7.49 ±
11.29

10.45 ±
10.12

8.54 ±
1.06

6.48 ±
5.31

5.23 ±
6.21

6.12 ±
10.60

3.74 ±
1.89

PACO2
4.29 ±

4.83
4.43 ±

4.37
4.38 ±

6.67
1.06 ±

1.43
1.80 ±

0.66
0.90 ±

0.96
2.04 ±

1.18
2.63 ±

1.22
7.44 ±

4.81

PAO2
2.48 ±

3.10
2.33 ±

3.05
2.62 ±

3.34
1.65 ±

1.06
0.17 ±

0.13
1.09 ±

1.73
0.38 ±

1.31
0.98 ±

0.78
1.98 ±

1.28
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For both databases, it is observed that the highest PE values are generally related to the
respiratory variables and the lowest to the gas exchange variables. More specifically, DB2’s
fittings generally show results with lower variabilities and lower overall PEs. It is also
highlighted that the highest values of overall PE in DB2 are related to the most significant
changes in the cardiorespiratory system according to the proposed approach (Section 2.2.2.
Experimental Data).

3.2. Dynamic Parameter Modeling

Tables 5 and 6 compare the parameter predictions obtained via the proposed dynamic
fit approach (Pred.) with the optimized results (Fitted) from the time-specific fit approach
for the records evaluated of each database. The results for each parameter are grouped
according to the directly related system or controller. A definition and description of each
parameter are omitted in this section for the sake of being concise. Readers seeking com-
prehensive details are directed to the publication on the referenced case study’s model [33].
The symbol (*) indicates that the parameter was not predicted for the record because there
was no modification regarding the previous values, but it was optimized for the evaluated
record. The symbol (**) indicates that the predicted value did not satisfy the physiological
justification criteria and therefore the value from the previous record was used instead.

Table 5. Parameter optimization trend and prediction results for DB1 records.

Parameter

DB1

1 2 3

Fitted Fitted Fitted Pred.

Cardiovascular Controller
GT,v 0.0792 0.0886 0.0840 0.0967
T0 0.6704 0.6712 0.6712 0.6709
I0,met 0.4266 0.4266 0.3845 *
I0,sp 0.650 0.461 0.461 0.550
PaCO2,n 41.5 41.5 39.0 *
kmet 0.180 0.173 0.162 0.172
Cardiovascular System
KRlv 0.000437 0.000448 0.000475 0.000463
Lpa 0.000180 0.000181 0.000175 0.000176
Lsa 0.000220 0.000184 0.000236 0.000256
Rsa 0.0478 0.0488 0.0476 0.0479
Gas Exchange System
α2 0.0559 0.0559 0.0609 *
C1 8.80 9.21 8.84 9.02
K2 194.40 207.10 207.10 196.29
MRBCO2 0.00074 0.00074 0.00106 0.00092
Respiratory Controller
Kbg 17.42 17.69 18.97 17.99
KcCO2 0.2792 0.2967 0.2989 0.2923
KpCO2 0.20250 0.20238 0.20238 0.20241
KpO2 6.79 × 10−9 8.69 × 10−9 7.80 × 10−9 1.14 × 10−8

λ1 0.876 0.825 0.819 0.838
λ2 0.368 0.343 0.397 0.334
n 1.722 1.878 1.676 1.730
Pmax 94.9 82.1 82.1 93.0
Respiratory Mechanics
Ers 27.47 24.37 25.56 28.08
Rrs 3.53 2.97 3.08 3.15

* Parameters that were not predicted for the record.
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Table 6. Parameter optimization trend and prediction results for DB2 records.

Parameter

DB2

1 2 3 4 5 6

Fitted Fitted Fitted Pred. Fitted Pred. Fitted Pred. Fitted Pred.

Cardiovascular Controller
GT,s −0.130 −0.130 −0.130 −0.130 −0.092 * −0.092 ** −0.092 −0.113
GT,v 0.102 0.108 0.081 0.109 0.081 0.066 0.045 0.041 0.054 **
GRep 1.940 1.940 1.940 1.940 1.876 * 1.876 2.432 1.613 **
T0 0.588 0.588 0.549 * 0.581 0.542 0.571 0.631 0.571 **
I0,met 0.55254 0.55254 0.55360 * 0.55360 0.55384 0.55360 0.55503 0.55360 0.55360
kmet 0.180 0.182 0.182 0.189 0.182 0.181 0.182 0.178 0.182 0.182
PaCO2,n 40.0 40.0 46.2 * 46.2 ** 55.4 51.8 39.8 58.3
Pn 117.3 96.2 74.5 ** 92.6 ** 92.6 68.4 92.3 90.7
Φmax 22.03 22.03 26.00 * 26.00 26.47 26.00 25.25 26.00 26.00
Cardiovascular System
KElv 0.0105 0.0098 0.0098 0.0068 0.0098 0.0099 0.0098 0.0109 0.0098 0.0097
KErv 0.0116 0.0078 0.0078 ** 0.0079 0.0078 0.0087 0.0071 0.0109 **
KRlv 0.000477 0.000469 0.000486 0.000434 0.000363 0.000488 0.000488 ** 0.000431 0.000233
KRrv 0.0014 0.0014 0.0014 0.0014 0.0013 * 0.0013 ** 0.0013 **
Rsa 0.053 0.054 0.053 0.055 0.053 0.053 0.046 0.052 0.090 **
Gas Exchange System
a2 1.819 1.819 1.819 1.819 1.819 1.819 1.819 1.819 2.365 *
α2 0.05591 0.05591 0.05591 0.05591 0.06029 * 0.06029 ** 0.06029 0.05792
C1 11.10 11.10 10.65 10.68 10.14 10.54 9.64 ** 10.05 9.64
C2 87.00 93.77 93.77 88.29 93.77 93.76 93.77 ** 93.77 **
K2 194.40 194.40 149.91 * 149.91 ** 149.91 149.91 149.91 **
MRBCO2 0.00098 0.00081 0.00075 ** 0.00063 0.00076 0.00066 0.00053 0.00065 **
VTCO2 15.0 15.0 15.0 15.0 15.0 15.0 15.1 * 15.1 **
Respiratory Controller
Kbg 25.13 22.98 22.73 24.65 20.72 21.33 21.76 21.95 20.33 **
KcCO2 0.4385 0.4573 0.4481 0.5398 0.4559 0.4167 0.4664 0.4593 0.4664 0.5005
KpCO2 0.20250 0.17739 0.16777 ** 0.16777 0.16555 0.15523 ** 0.19200 **

KpO2
2.69 ×
10−9

3.76 ×
10−9

3.85 ×
10−9 ** 2.36 ×

10−9 ** 4.80 ×
10−9

3.06 ×
10−9

3.54 ×
10−9 **

λ1 0.458 0.752 0.899 ** 0.609 0.933 0.609 ** 1.099 **
λ2 0.468 0.245 0.691 ** 0.348 0.794 0.348 ** 0.348 **
n 1.362 0.834 0.899 ** 1.123 1.794 1.016 ** 1.348 **
.
Pmax 1055.4 1055.4 1069.8 * 1069.8 1072.9 1069.8 1069.8 1069.8 1069.8
Pmax 72.2 47.7 51.2 68.5 63.5 90.1 93.9 ** 58.7 **
V0dead 0.2381 0.2278 0.2381 0.1831 0.2273 0.2358 0.2273 0.3339 0.2319 0.2057
Respiratory Mechanics
Ers 19.86 29.00 29.00 21.60 26.72 27.14 29.00 29.01 26.21 **
Rrs 3.06 3.06 3.50 * 3.50 3.60 3.50 4.10 3.50 3.50

* Parameters that were not predicted for the record. ** Predicted values did not satisfy the physiological
justification criteria.

Most of the parameters optimized for DB1 show slight differences regarding the
predicted ones and those that were not modified (*) (variations of less than 10%). Therefore,
similar simulation results could be expected. In this case, all the predictions were in
accordance with the defined physiological justification criteria, which suggests good fits
for a restricted number of samples and predictions with consistent variations considering
the prediction time and the input data.

From the results related to DB2, it was observed that the number of non-modeled
parameters (*) decreased with the number of samples, which is related to the greater
coverage of the prediction of physiological characteristics related to cardiorespiratory
variations. Even so, the number of predictions that did not satisfy the physiological
justification criteria increased for the last two records (**), related to lower goodness-of-fit
measures and more significant variations, mainly for record six, considering the longer
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prediction time (Table 2). The most significant differences were obtained for the respiratory
controller parameters due to the results of the time-specific fit for each record. They
could be related to the higher reported errors of the physiological model regarding the
respiratory variables [28].

3.3. Validation

The validation results correspond to a comparison of the model predictions in a steady
state with the experimental data and the PE values at each evaluated instant of time. The
compared simulations correspond to those obtained using the parameters resulting from the
dynamic fit approach (dynamic fit) against those of the traditional single-time fit approach
(single-time fit). The time-specific fit results for each database record are presented as a
reference (time-specific fit). Additionally, the PE results are detailed by presenting the
overall value, mean, median, interquartile range, and any statistically significant differences
among predictions.

Figure 4 shows the steady-state results of the model predictions for the evaluated
physiological variables in function of the experimental levels of exercise (

.
VCO2) regarding

the third DB1 record. It compares the model simulations for the three approaches: the
time-specific fit, the single-time fit, and the proposed dynamic fit.

It was shown that the simulations of the dynamic fit approach were the most similar
to those of the time-specific fit approach for this record, mainly for the variables

.
VE, VT,

TI, PACO2, and HR, both in terms of magnitude and behavior. Although PM and PD
show some of the most significant differences in magnitude, their behaviors concerning the
stimulus are similar, mainly for PD, compared to the results of the traditional single-time
fit approach. Some variables that present the most significant differences for the dynamic
fit approach are related to the parameter values with the highest variations regarding those
optimized for the record (Pred. and Fitted values for record 3 in Table 5, respectively).
Thus, the results of PM and PD can be attributed mainly to the values of I0,met and PaCO2,n
and BF to the values of λ2 and Pmax. For PAO2, the differences in the parameter values
are not so significant, so the results may mainly be related to the effect of the systemic
arterial pressures on the blood flows that enter the gas exchange system (Equations of Gas
Exchange and Mixing and Gas transport in the Supplementary Materials).
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Figure 4. Steady-state simulation results against experimental data from the third DB1 record in
function of experimental levels of exercise (

.
VCO2). Simulations were based on the third DB1 record

following three approaches: time-specific fit, single-fit, and proposed dynamic fit. They aimed to
evaluate the physiological model performance from a population perspective.



J. Pers. Med. 2024, 14, 406 17 of 27

Figure 5 shows the PE values obtained for the physiological model predictions regard-
ing the third DB1 record. The data are presented as the median and interquartile range of
the PE results for each approach. The average PE values for each subject are presented as
individual points. The overall PE values and statistically significant differences between
the results for each approach are also presented.
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Figure 5. Percentage prediction error (PE) obtained for the physiological model responses regarding
the third DB1 record following three approaches: time-specific fit, single-time fit, and proposed
dynamic fit. The height of the bars shows the median values, and the error bars indicate the
interquartile range (values between 25 and 75% of the data distribution). Statistically significant
differences between the PE values of each approach were found using the Wilcoxon signed-rank test
and are shown as (*) for ρ < 0.05 and (**) for ρ < 0.01.

The obtained overall results indicate that the simulations related to the dynamic
approach are more suitable than those of the traditional single-time fit approach. The
highest errors associated with the traditional single-time fit approach are for

.
VE and VT, for

which the most statistically significant differences are obtained regarding the time-specific
fit results. It is also evidenced that the most significant PE contribution to the dynamic fit
approach is mainly related to the variables PM and PD.

Figure 6 shows the steady-state results of the model predictions for the evaluated
physiological variables in function of the experimental levels of exercise (

.
VCO2) from the

third to the sixth DB2 records. It compares the model simulations for the three approaches:
the time-specific fit, single-time fit, and proposed dynamic fit. The results obtained for each
record are described below.

The simulations of the dynamic fit approach related to the third DB2 record show less
similarity to the time-specific fit results than for DB1, although they match the same record
number. The most significant differences are presented for the variables BF, TI, PS, PM,
PD, PACO2, and PAO2, and are related to the parameter values used for the simulations
(Table 6). The value of λ2, a weighting factor relating to the work of breathing during
expiration, significantly affects the regulation of BF and TI (Equations of the Breathing
Pattern Optimizer in the Supplementary Materials). The lower magnitudes of the systemic
arterial pressures are related to a lower predicted value of KElv due to its effect on the left
ventricular pressure signal (Equations of The Heart in the Supplementary Materials). For
PACO2 and PAO2, although the differences could also be related to the parameter values,
especially K2 for PACO2, considering the high sensitivity of the gas exchange system to
cardiovascular feedback (Equations of the Gas Exchange and Mixing in the Supplementary
Materials), it could be mainly attributed to the lower systemic blood pressures.
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Figure 6. Steady-state simulation results for the evaluated physiological variables in function of
experimental levels of exercise (

.
VCO2). Simulations were based on the third to the sixth DB2 record

following three approaches: time-specific fit, single-fit, and proposed dynamic fit. They aimed to
evaluate the physiological model performance from a personalized perspective. The results are
presented in a matrix such that the rows correspond to each evaluated variable and the columns to
the compared records.

Regarding the fourth DB2 record, the dynamic fit approach results showed improve-
ments in the behavior and magnitude of the variables compared to the previous ones,
mainly for TI, PACO2, and PAO2. The difference demonstrated for the respiratory vari-
ables could be related to the high variation between the predicted parameters, obtained
using the dynamic fit approach, and the optimized parameters, obtained using the time-
specific fit approach, regarding the respiratory controller (Table 6, Pred. and Fitted values
in record 4, respectively). The difference between the HR slopes regarding the stimulus is
mainly due to the prediction of higher sympathetic activity (GT,s) and lower parasympa-
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thetic activity (GT,v) (Equations of the Effectors for Reflex Control in the Supplementary
Materials). This result is coherent considering the time trend in the previous records of
these parameters. The improvement in the simulations of systemic blood pressure is due to
the increased similarity between the predicted and optimized values of KElv. Regarding
PACO2 and PAO2, considering that the differences in the related parameters are insignif-
icant, the improvement can be attributed mainly to the best-predicted systemic blood
pressure values.

As shown in Figure 6, the results from the dynamic fit approach for the fifth DB2
record show more similar behaviors to those from the time-specific fit, mainly for the
variables BF, TI, PS, PM, and PD. This fact can be attributed to the minor difference between
the predicted (dynamic fit) and optimized (time-specific fit) parameter values compared to
previous records due to better predictions and the use of values of earlier optimizations that
are not modified for the last fit (Table 6, Pred. and Fitted values in record 5, respectively).
Regarding the differences in magnitude between the dynamic fit and the time-specific fit
results, a higher

.
VE value could be mainly related to a high dead space volume (V0dead)

(Equations of the Ventilation Controller in the Supplementary Materials); the lower TI
and the higher BF could be related to a higher Pmax value [45]; a lower HR could be
due to a higher T0 (Equations of the Effectors for Reflex Control in the Supplementary
Materials); and the differences in PACO2 and PAO2 could be attributed to the variation in
the concentration of hemoglobin (C1) and the difference in the blood and respiratory flows
(related to

.
VE and systemic arterial pressure).

The dynamic fit approach results for the sixth DB2 record present magnitudes more
similar to those of the time-specific fit approach than those of the traditional single-time
fit approach. Regarding the behavior, there was an increase in the variation regarding the
results for previous records, which coincides with the increase in the differences between
the predicted (dynamic fit) and optimized (time-specific fit) parameter values. The main
differences occur for systemic arterial pressure. These are due to the predicted value
of PaCO2,n being higher than the optimized value (Table 6, Pred. and Fitted values in
record 6, respectively). The predicted value for this parameter is similar to the optimized
value for the previous record, and its effect on many of the cardiovascular controller
mechanisms is related to the inflection behavior of systemic arterial pressure at mid-
stimulus levels (Equations of the Afferent Pathways, Blood Flow Local Control, and CNS
Ischemic Response in the Supplementary Materials). Other significant differences are
related to the lower slopes and the offset of BF and TI and could be related to a higher value
of n and Pmax [45].

Figure 7 shows the PE results obtained for the model predictions regarding the DB2
records from third to sixth. Figure 7a presents the median PE results of each approach for
the variables evaluated. Figure 7b presents the overall PE results for each approach. The
mean PE values for each evaluated variable are presented as individual points. The overall
PE values and statistically significant differences between the results for each approach are
also presented.

Table 7 presents the overall PE values for each fitting approach regarding the DB2
records from the third to the sixth. The values correspond to the heights reached by the
bars plotted in Figure 7b.

The results for the third record corroborate the significant difference in the simulations
related to the dynamic fit approach compared to those of the time-specific approach. The
above evidence the high sensitivity of the dynamic fit approach regarding significant
changes in the variables evaluated, similar to the time-specific fit results (Table 4). For this
record, the significant changes mentioned evidence a limitation of the strategy proposed
for DB2 regarding a personalized approach (Section 2.2.2. Experimental Data), considering
the small number of samples used for the prediction (only two), which correspond to a
different subject from the one for whom predictions are made.
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Figure 7. Percentage prediction error (PE) obtained for the physiological model responses regarding
the DB2 records from third to sixth following three approaches: time-specific fit, single-time fit, and
proposed dynamic fit. (a) presents the median of PE results of each approach, and (b) presents the
overall PE results. The height of the bars corresponds to the overall PE, and the error bars indicate the
standard deviation range. Statistically significant differences between the PE values of each approach
were found using the Wilcoxon signed-rank test and are shown as (*) for ρ < 0.05 and (**) for ρ < 0.01.

Table 7. Overall PE values for DB2 records from third to sixth. The values are presented as mean and
standard deviation.

Fitting
Approach

Overall PE Values (%) for Records

3 4 5 6

Time-Specific Fit 7.73 ± 5.99 5.83 ± 4.90 4.42 ± 4.31 6.84 ± 5.37
Single-Time Fit 10.84 ± 7.79 12.76 ± 7.18 9.08 ± 4.93 11.24 ± 8.54

Dynamic Fit 13.32 ± 10.02 10.62 ± 8.83 7.34 ± 2.73 7.95 ± 5.97

The values presented for the fourth record evidence an improvement in the dynamic
fit approach, even presenting better overall results than the traditional single-time fit
approach. Although the distribution of the PE values is similar to that of the previous
record, the improvement in the behavior of the variables allows results closer to those of
the time-specific fit approach, mainly for the gas exchange variables.

The values for the dynamic fit approach in the fifth record also show better results
than the traditional single-time fit approach, even for more variables than in the previous
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record. This consecutive improvement is related to the greater similarity regarding the
magnitudes and behaviors of the variables (Figure 6), a consequence of the smaller overall
difference between the predicted and optimized parameter values (Table 6).

The results for the sixth record show better results with the dynamic fit approach than
the traditional single-time fit approach for most of the variables evaluated. The differences
obtained regarding the time-specific fit approach are related to those described for the
steady-state results and were expected considering the long prediction time for this record
(Table 2).

The results in Table 7 differ from those in Table 4 for registers 3 to 6 in DB2 due to the
input values used in each case. The input values in Table 4 are based on a distribution of
.

VO2 and
.

VCO2 that is specific to the AT value of each individual record. In contrast, in
Table 7, the distribution of

.
VO2 and

.
VCO2 are defined from the AT value of the preceding

record to maintain consistency with the dynamic fit approach. As a result, while the
traditional single-time fit and the time-specific fit approaches both utilize identical input
distribution values for an accurate comparison, the values diverge slightly due to the AT
considered in each case.

4. Discussion
4.1. Time-Specific Model Fitting

It is highlighted that the highest deviations and errors are mainly related to the
respiratory variables, contrary to what is presented for the gas exchange variables (Table 4).
These results are similar to those reported in the building and validation of the case study
model [28,33] and therefore could be mainly related to the predictability characteristics of
the model rather than resulting from the method presented.

It was also evidenced that the variabilities and overall PE values were lower for DB2
(Table 4). These results are related to the characteristic dispersion of the DB1 records and
show the better performance of the model under a personalized fitting perspective.

Regarding DB2, there were continuous decreases in the overall PE values between
the first and second records and from the third to the fifth (Table 4). These results could
be related to the sensitivity of the dynamic fitting strategy, which shows the records with
significant changes in the cardiorespiratory response. Thus, considering the approximation
proposed for DB2 (Section 2.2.2. Experimental Data), the model presents better results be-
tween successive records of the same subject due to the use and accumulation of previously
optimized parameter values (which do not change regarding the next fit). Still, when there
is a significant change in the system’s response, which in this case is due to the variation in
the recorded subject, the prediction error of the variables increases. This is not observed for
DB1, possibly due to the variability of the experimental data in its records.

4.2. Dynamic Parameter Modeling

It could be generally observed for DB2 that, as the number of records evaluated
increased, the number of parameters that required re-modeling became increasingly smaller
(Tables 5 and 6). Even so, this trend is not fulfilled after evaluating the third record, a result
that provides evidence for a significant alteration in the cardiorespiratory characteristics
and which could be related to the change in the subject recorded in accordance with the
approach implemented (Section 2.2.2. Experimental Data). In the case of DB1, despite the
variability in a population record, this effect is attenuated considering the fit regarding the
mean trend in the data.

It was also observed that the number of parameters that did not satisfy the physio-
logical justification criteria was higher for DB2, and the highest number was presented for
its sixth record (Tables 5 and 6). The above also shows the sensitivity of the strategy to
significant changes in the records, which for DB1 are attenuated considering the fit regard-
ing the mean trend of the experimental data. For DB2, these results are related to greater
difficulty modeling the temporal behavior of the parameters regarding the available factors
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and optimization records. This complexity increases, considering the longer prediction
time for the sixth record (Table 2).

It should be noted that, as the number of records increases, the number of parameters
to be modeled also increases. This is because the optimized parameters are not necessarily
the same between consecutive model fits. According to the incorporated static fit strategy,
the selection of the parameters involves an evaluation of the differences between the
experimental data and the model predictions so that the variations between characteristics
or magnitudes promote the optimization of the most related parameter.

Although a greater number of model parameters are consistent, the fact that all
physiological characteristics change with time also implies a more significant computational
load, which may not be justified regarding the temporal trends of the optimizations.

.
Pmax

and VTCO2, regarding DB2, are examples of the above, and although their values are
modified in some of the records, they do not change again for subsequent ones, or their
variations are not representative (Table 6).

4.3. Validation

Regarding the simulation comparisons for the third record of DB1, the higher overall
PE value of the traditional single-time fit approach provides evidence of the change in
the cardiorespiratory system over time and, therefore, the importance of a dynamic fit of
the model to obtain more adequate predictions of the variables (Figure 5). Additionally,
the greater similarity of the results related to the dynamic fit approach with those of the
time-specific fit, both in magnitude and behavior (Figure 4), indicates the usefulness of
considering the temporal trend of associated factors and parameter optimizations to predict
the future state of the modeled system.

The dynamic fit approach results provided evidence of a greater sensitivity of the
strategy regarding the personalized records (DB2) than with population records (DB1)
(Figures 4–7). This sensitivity is related to significant variation in the variables to be
predicted regarding their previous records and the few samples used for the prediction.
Although the dynamic fit approach considered the same number of samples regarding
the third record of both databases, the variation in the temporal trend of the records
of DB1 is less than DB2 due to the mean trend of the registered subjects. For DB2, the
mentioned variation provides evidence for a limitation in the approximation used for the
personalized records (Section 2.2.2. Experimental Data) since the records used for the
prediction correspond to a different subject from the one attempted to predict.

As the number of temporary records evaluated for DB2 increases, the dynamic fit
approach exhibits better overall results regarding accuracy and behavior than the traditional
single-time fit approach (Figures 6 and 7, Table 7). This performance can be mainly
attributed to two characteristics of the proposed strategy. Firstly, using a more significant
number of samples allows us to obtain model parameters with more precise predictions
regarding the optimized results (Table 6). Secondly, using previously fitted parameters,
some of which do not change between optimizations, allows us to obtain predictions with
behaviors and magnitudes more similar to those of the time-specific fit to each record. The
above confirms the advantage of dynamic fit regarding the traditional application of a
fitted model in a single instant, in addition to evidence that a personalized approach is
more appropriate than a population one.

Regarding the last DB2 record, despite the good overall result of the dynamic fit
approach, the difference in the behavior of some variables regarding the time-specific fit
approach simulations was highlighted (Figure 6). Mainly, this difference happened because
using previous values of optimized parameters implies results with the characteristics
of previous fittings (Table 6). In this sense, when evaluating a longer prediction time
and, therefore, significant variations of the variables (due to the expected change of the
modeled system to age), evidence could be provided of the memory characteristic of the
proposed strategy.
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4.4. Application, Limitations, and Future Work

In this work, a dynamic fitting strategy for physiological models was developed and
evaluated by utilizing a model of the cardiorespiratory system as a case study. Experimental
datasets from a longitudinal study of healthy subjects under aerobic exercise were used.
The validation of the strategy consisted of comparing the model predictions using the
proposed strategy against those obtained from the traditional approach, i.e., a population
fit at a single instant of time. The main objective was to demonstrate the importance of
dynamic fitting of the physiological model.

We conclude that our strategy is more effectively helpful in analyzing the cardiorespi-
ratory system response than the traditional approach. This effectiveness is attributed to
the consistently superior results regarding the predicted variables’ accuracy and behavior.
This successful performance validates our strategy for both the model fitting at each point
of time and predictions of future states of the physiological system. Furthermore, this
evidence emphasizes the importance of considering the temporal evolution of physiological
systems and contributing factors, such as lifestyle habits, accidents, illnesses, and clinical
history. These elements play a significant role in the overall system, a fact which our
strategy effectively integrates.

Our results underscore the practical utility of our proposed strategy in a clinical
context, specifically in predictive, preventive, and personalized medicine. Essentially, our
strategy serves as a tool that adapts mathematical models for analyzing and simulating the
time-dependent responses of the physiological systems.

The proposal to include parameter variation due to natural life situations of a subject,
such as changes in habits, diseases, or treatments to which they are subjected, constitutes
significant advancement for personalized medicine. This approach acknowledges the
dynamics of the evolutionary process of an individual regarding time. It offers the signifi-
cantly ability to personalize a physiological model, enabling simulations and predictions
of a subject’s current and future response to different stimuli, pathologies, and conditions.
Furthermore, this approach aids the identification of the characteristics and mechanisms
most closely linked to observed behaviors and values.

The results presented in this study indicate that the proposed approach outperformed
the traditional one with statistically significant differences following a population per-
spective. Moreover, the accuracy of the predictive capability of the proposal showed
improvements, as experimental data at different time states were added to analysis from
a personalized perspective. These results were observed when adjusting the model pa-
rameters based on DB1 and DB2, which included three and six records from different time
instants, respectively. While exercise stimulus was taken into account in this study as a safe
and non-invasive procedure for healthy people (spanning in DB2 several years to validate
the model parameter’s trends), this approach is also highly applicable in a clinical setting,
especially for patients who are continuously monitored, such as those in intensive care
units (ICUs).

This work also identified aspects that may limit the application of the proposed
strategy. The sensitivity of the results regarding significant changes of variables to be
predicted between records is highlighted, both for the dynamic fitting of the physiological
model and for predicting the system’s future state. This aspect can be related to large
time differences between consecutive records and specifically to the predictive approach
with a short number of samples. The quality of the experimental data records is another
crucial factor that can significantly influence the results. A dataset containing errors
or inconsistencies could lead to inaccurate predictions and model fitting. Finally, the
availability of adequate factors related to the temporal response of the system can influence
the predictive approach’s outcomes.

The proposed strategy may have future applications due to the good validation results.
Considering that, in this study, all the procedures were generically described, its application
regarding other physiological systems, stimuli, characteristics of subjects, and experimental
recording conditions can also be evaluated. Works related to the temporal analysis and the



J. Pers. Med. 2024, 14, 406 24 of 27

prediction of subjects with different pathologies, clinical treatments, medication regimens,
or physical conditioning could be considered for the case study model.

According to the above, the strategy can be considered, for instance, in the field
of mechanical ventilation therapy, applied to analyze the temporal changes in patients’
respiratory patterns, optimize ventilator settings in real time based on individual patients’
responses, and predict the future state of the patient’s respiratory system. It could be
crucial to understand how mechanic ventilation (MV) affects the patient over time, leading
to personalized ventilator settings that could significantly enhance patient comfort and
outcomes while reducing the risk of ventilation-induced lung injuries. By applying our
strategy, clinicians could potentially improve MV therapy by leveraging personalized,
predictive data, paving the way for advancements in patient care and treatment efficacy.

Even though the presented strategy focuses mainly on the fitting of complex physiolog-
ical models, it can also be applied to simpler cases. In this context, it should be considered
that the minimum errors that can be obtained with the strategy will not be less than the
values inherent to the model. Furthermore, the following is usually the case: the greater
the complexity with which the model describes its interactions and functions, the greater
the precision and accuracy of its predictions [13,14].

Although the proposed methodology was adequate to validate the strategy, some
aspects could be considered for future studies. These include the evaluation of the effect of
time between records; the assessment of different strategies for modeling the time trend
of parameters; the identification, analysis, and evaluation of various factors related to
the temporal response of the system to the predictive approach; and the definition and
evaluation of criteria that allow us to define which parameters justify being modeled based
on the time trend of their optimizations.

5. Conclusions

This paper presents the description, application, and validation of a dynamic fitting
strategy for physiological models in settings that include a large number of parameters
and a limited amount of experimental data. The proposed strategy consists of different
procedures that allow the dynamic fit of the model; the modeling of the temporal trend
of their parameters; and the validation, considering its usefulness, to predict the future
state of the modeled system. The results allow us to conclude that our proposed strategy
enhances the applicability of comprehensive mathematical models of physiological systems
in a predictive, preventive, and personalized manner.
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