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Abstract: Acute cardiac rejection remains a significant challenge in the post-transplant period,
necessitating meticulous monitoring and timely intervention to prevent graft failure. Thus, the goal
of the present study was to identify novel biomarkers involved in acute cardiac rejection, paving the
way for personalized diagnostic, preventive, and treatment strategies. A total of 809 differentially
expressed genes were identified in the GSE150059 dataset. We intersected genes selected by analysis
of variance, recursive feature elimination, least absolute shrinkage and selection operator, and
random forest classifier to identify the most relevant genes involved in acute cardiac rejection.
Thus, HCP5, KLRD1, GZMB, PLA1A, GNLY, and KLRB1 were used to train eight machine learning
models: random forest, logistic regression, decision trees, support vector machines, gradient boosting
machines, K-nearest neighbors, XGBoost, and neural networks. Models were trained, tested, and
validated on the GSE150059 dataset (MMDx-based diagnosis of rejection). Eight algorithms achieved
great performance in predicting acute cardiac rejection. However, all machine learning models
demonstrated poor performance in two external validation sets that had rejection diagnosis based on
histology: merged GSE2596 and GSE4470 dataset and GSE9377 dataset, thus highlighting differences
between these two methods. According to SHAP and LIME, KLRD1 and HCP5 were the most
impactful genes.

Keywords: acute cardiac rejection; heart transplantation; machine learning

1. Introduction

Heart transplantation is a lifesaving intervention in the setting of end-stage heart
disease, such as heart failure [1]. Despite gradual improvement in 1-year survival rates for
cardiac transplantation, acute cardiac allograft rejection remains a significant challenge in
the post-transplant period, necessitating meticulous monitoring and timely intervention
to prevent graft failure [2,3]. Discovering biomarkers crucial in cardiac rejection may aid
in the development of targeted therapies and improve heart transplantation outcomes.
Allograft rejection involves both antibody and T cell responses [4]. Cytotoxic T lympho-
cytes and natural killer (NK) cells play a pivotal role in the immune response including
in organ transplantation [5,6]. They contribute to allograft rejection by releasing perforin
and granzymes as part of their cytotoxic mechanisms [7]. Numerous genes modulate
antibody responses and T cell function, thereby impacting allograft rejection. For instance,
genes encoding major histocompatibility complex (MHC) molecules, such as human leuko-
cyte antigen (HLA) genes, play a central role in antigen presentation to T cells and are
important determinants of graft survival [8,9]. Moreover, genes encoding co-stimulatory
molecules (e.g., CD40) and adhesion molecules (e.g., ICAM-1) regulate T cell activation and
migration [10,11]. Specific receptor genes, such as killer cell lectin-like receptors (KLRs)
expressed on NK cells, can interact with MHC class I molecules on target cells to regulate
NK cell activity and contribute to allograft rejection [12].
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The advent of molecular diagnostics, namely the Molecular Microscope Diagnostic
System® (MMDx), has revolutionized the assessment of allograft rejection through compre-
hensive analysis of gene expression profiles in transplanted organs [13]. MMDx provides
novel insights into the understanding of rejection states [14]. In parallel, machine learning
algorithms present an incredibly powerful method to identify patterns from large, complex,
and assorted data, such as gene expression data. Machine learning is widely used for
predictive modeling in numerous fields and has been shown to outperform conventional
statistical analysis tools in various settings [15,16]. Machine learning algorithms have
shown enormous potential to open new frontiers with great prospects for personalized
medicine [17]. By analyzing high-dimensional datasets, machine learning algorithms can
identify molecular signatures indicative of rejection, which, in turn, may improve trans-
plant outcomes by facilitating timely diagnosis and prompt treatment [18]. By integrating
MMDx data with state-of-the-art machine learning algorithms, our objective was to develop
a predictive model capable of accurately identifying acute rejection in heart transplant
recipients. Moreover, through comprehensive analysis of gene expression profiles, we
aimed to identify novel biomarkers and molecular pathways involved in cardiac rejection,
paving the way for personalized diagnostic, preventive, and treatment strategies.

2. Materials and Methods
2.1. Selection Criteria

The gene expression omnibus (GEO) database was searched for “cardiac rejection OR
heart rejection” from inception until 14 January 2024. Inclusion criteria were as follows:
GEO series, expression profiling by array, human endomyocardial biopsy, datasets contain-
ing acute cardiac rejection and non-rejection samples, and at least 20 samples in a dataset.
Five datasets were identified: GSE2596, GSE4470, GSE9377, GSE124897, and GSE150059.
GSE124897 was excluded as all samples from it can be found in GSE150059.

GSE150059 (GPL16043 platform) contains 1320 samples: 853 with and 467 without
acute cardiac rejection. The diagnosis of each sample within the GSE150059 dataset was
based on MMDx, whereas histologic diagnosis was provided in GSE2596, GSE4470, and
GSE9377. GSE2596 and GSE4470 share the same platform—GPL1053. The former dataset
contains 63 samples (including 11 replicates): 35 stable samples and 21 rejected samples.
Seven samples did not have a clear histologic diagnosis and were therefore excluded.
GSE4470 contains 15 rejection and 12 non-rejection samples with one and two replicates,
respectively. Finally, GSE9377 (GPL887 platform) consists of 9 stable and 17 rejected grafts.
Detailed information regarding each dataset is provided in Table 1.

Table 1. Datasets used in this study.

Dataset Number of Acute Cardiac
Rejection Samples

Number of
Non-Rejection Samples Platform Rejection

Diagnosis Set

GSE150059 853 467 GPL16043 MMDx Training set, test set,
internal validation set

GSE2596 35 21 GPL1053 Histology External validation set 1
GSE4470 15 12 GPL1053 Histology External validation set 1
GSE9377 17 9 GPL887 Histology External validation set 2

2.2. Data Preprocessing

Data analysis and preprocessing were carried out in RStudio v2023.12.1 (R version 4.3.2,
Bioconductor version 3.18). The GEOquery package (version 2.70.0) was utilized to down-
load normalized GSE2596, GSE4470, GSE9377, and GSE150059 datasets. Given the large
sample size of GSE150059 and the differences among datasets in terms of diagnostic meth-
ods, GSE150059 was selected as a discovery set and used for further analysis, whereas the
other datasets were used as external validation sets. GSE2596 and GSE4470 were merged
as they are biologically and technologically similar. ggplot2 (version 3.4.4) was employed
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to construct a principal component analysis (PCA) plot to assess the presence of batch
effects. The ‘removeBatchEffect’ function (available in the limma package, version 3.58.1)
was used to adjust for batch effects in the merged dataset (Figure 1). The merged GSE2596
and GSE4470 dataset was used as the first external validation set, and GSE9377 was used as
the second external validation set. Gene annotation in all datasets was carried out using in-
formation obtained from their corresponding platforms. Rows containing unspecific probes
or probes not corresponding to any gene symbols were deleted; rows with duplicated gene
symbols were merged, and a median was calculated.
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Figure 1. Principal component analysis (PCA) scatter plot of the merged dataset (GSE2596 and
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2.3. Identification of Differentially Expressed Genes

limma was used to identify differentially expressed genes (DEGs). First, a linear model
was built (‘lmFit’ function, default arguments), then the ‘eBayes’ function was employed to
calculate empirical Bayes statistics (robust limma-trend method). Results were extracted
using the ‘topTable’ function and were adjusted by the Benjamini–Hochberg procedure.
The cutoff values were as follows: |logFC| > mean(logFC) + 2SD(logFC) and adjusted
p-value < 0.05. Thus, DEGs with logFC > 0.4497 were considered upregulated, and DEGs
with logFC < −0.4497 were considered downregulated. Volcano plots and heatmaps were
created using the EnhancedVolcano (version 1.20.0) and pheatmap (version 1.0.12) packages.

2.4. Enrichment Aanalysis

org.Hs.eg.db (version 3.18.0) and clusterProfiler (version 4.10.0) were used to carry
out Gene Ontology (GO) analysis to explore biological processes of upregulated and
downregulated DEGs involved in acute cardiac allograft rejection. Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis was also performed. p-value < 0.05 was
considered statistically significant. ggplot2 was utilized to construct the necessary plots.

2.5. Data Preprocessing for Machine Learning Analysis

Machine learning analysis was conducted in Python. GSE150059 was randomly split
into a training set (70%), test set (15%), and internal validation set (15%). To ensure consis-
tency in model training and validation, the features present in both the training and external
validation datasets were aligned. This alignment guarantees that the models are trained and
evaluated on an identical set of features, which is essential for accurate model performance
assessment. Missing data points in datasets were addressed by employing Scikit-Learn’s
SimpleImputer with a ‘median’ strategy to impute missing values. This approach ensures
that the dataset is complete, allowing for effective model training and validation. The final
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preprocessing step involved scaling the features to have a mean of zero and a standard
deviation of one, which was performed using Scikit-Learn’s StandardScaler transformer.

2.6. Feature Selection

In the pursuit of identifying candidate genes for heart transplant outcomes, various
feature selection techniques were applied, each with its unique approach to isolating the
most relevant features from the gene expression data. The following feature selection
techniques were utilized:

1. Analysis of variance (ANOVA) was leveraged to pinpoint the top 100 genes with
significant expression differences between conditions, using SelectKBest with the
f_classif score function. This approach narrows down the feature space to those most
impactful for the analysis;

2. Recursive feature elimination (RFE), through RFECV, combined with logistic regres-
sion and cross-validation (StratifiedKFold), dynamically identifies an optimal subset of
features. Unlike traditional RFE which requires a predefined feature count, RFECV
automatically determines the best number of features by maximizing cross-validation
accuracy, making the selection process more data-driven;

3. The least absolute shrinkage and selection operator (LASSO), applied via LassoCV, op-
timizes feature selection alongside model training by identifying non-zero coefficient
features through cross-validation. This method effectively reduces the feature set to
those most predictive of outcomes without pre-specifying a feature count;

4. Random forest classifier (RFC) assesses feature importance after being trained with
50 trees. The optimal number of trees is found by using GridSearchCV. SelectFrom-
Model with a ‘mean’ importance threshold is then used to filter the most significant
features, allowing the model to concentrate on variables with the greatest impact on
transplant outcomes.

2.7. Machine Learning Algorithms

Overlapping genes selected by feature selection tools were used to train the machine
learning models. The models tested include logistic regression (LR), support vector ma-
chines (SVM), random forest (RF), gradient boosting machines (GBM), K-nearest neighbors
(KNN), XGBoost, decision trees (DT), and neural networks (using the MLPclassifier in Scikit-
Learn). Each model was evaluated on its ability to utilize the gene expression profiles for
outcome prediction, with a focus on identifying the most effective model or combination
of models. For each model, Scikit-Learn’s GridSearchCV was applied to explore a wide
range of hyperparameters, identifying the combination that yields the best performance.
The following metrics were used to provide insights into various aspects of model perfor-
mance: accuracy, precision, recall (sensitivity), F1 score, Matthew’s correlation coefficient
(MCC), area under the receiver operating characteristic curve (AUC), and area under the
precision–recall curve (AUPRC) [19,20].

To ensure the generalizability and robustness of the models, a rigorous validation
approach was employed, comprising both cross-validation and internal validation. Specifi-
cally, k-fold cross-validation was utilized, dividing the dataset into five smaller sets, training
the model on four folds, and validating it on the remaining one, repetitively cycling through
all folds.

2.8. Model Interpretation

To understand the impact of selected gene features on model predictions and the
biological relevance of these genes in heart transplant outcomes, interpretation frameworks
such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic
Explanations (LIME) were used. SHAP provides insights into how each feature contributes
to the model’s prediction for an individual sample, and LIME offers explanations for
model predictions on individual instances, facilitating understanding of model behavior in
specific cases.
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3. Results
3.1. Identification of DEGs and Enrichment Analysis

After preprocessing, there were 19,042 genes in the GSE150059 dataset, 11,849 genes
in the merged GSE2596 and GSE4470 dataset, and 16,546 genes in the GSE9377 dataset. As
MMDx was used to diagnose acute cardiac rejection in GSE150059 and the rejection status
of samples in the other datasets was based on histologic examination, GSE150059 was used
to conduct differential expression analysis as well as GO and KEGG enrichment analyses,
whereas the other datasets were used as external validation sets.

A total of 750 upregulated and 59 downregulated DEGs were identified in the GSE150059
dataset (Figure 2). Upregulated genes were mainly enriched in the immune-related biologi-
cal processes, including immune response-regulating signaling pathway, leucocyte cell–cell
adhesion, immune response-activating signaling pathway, etc. (Figure 3A). Downregu-
lated genes were enriched in metabolic processes and cell signaling systems (Figure 3B).
Notably, KEGG enrichment analysis revealed that DEGs were significantly enriched in
graft-versus-host disease and allograft rejection (Figure 3C).
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Figure 2. Differential expression analysis of GSE150059. (A) Volcano plot. Black dots—not significant
genes, blue dots—genes with p-value < 0.05 but |logFC| < 0.4497, red dots—differentially expressed
genes (p-value < 0.05, |logFC| > 0.4497). (B) Heatmap of the top 50 differentially expressed genes.

3.2. Machine Learning Analysis

ANOVA, RFE, LASSO, and RFC were applied to identify the most relevant DEGs that
contributed to the predictive power of machine learning models. As a result, 129 genes
were selected by RFE, followed by 100 genes by ANOVA, 97 genes by RF, and 70 genes
by LASSO. As each feature selection method has its own advantages and disadvantages,
all selected genes were intersected to identify candidate genes involved in acute cardiac
allograft rejection (Figure 4A). Thus, six genes were selected to train the machine learning
models: HCP5, KLRD1, GZMB, PLA1A, GNLY, and KLRB1. Eight models showed similar
performance when predicting acute cardiac rejection based on MMDx. According to
aggregate metrics, RF and LR performed slightly better compared to the other models in the
test and internal validation sets (Table 2 and Figure 4B,C). In contrast, DT underperformed
compared to the other models and had an accuracy of 0.91 and AUC of 0.90 in the test set
and an accuracy of 0.87 and AUC of 0.88 in the internal validation set.
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downregulated genes. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis of all genes.

J. Pers. Med. 2024, 14, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 4. Machine learning analysis. (A) Venn diagram of genes selected by four feature selection 
tools. (B–D) Receiver operating characteristic (ROC) curve of machine learning models: (B) Test set; 
(C) Internal validation set; (D) External validation set 1 (merged GSE2596 and GSE4470). (E) Exter-
nal validation set 2 (GSE9377). Note: ANOVA—analysis of variance, RFE—recursive feature elimi-
nation, LASSO—least absolute shrinkage and selection operator, RF—random forest classifier; 
SVM—support vector machines, GBM—gradient boosting machines, KNN—K-nearest neighbors, 
XGB—XGBoost. 

Finally, we wanted to assess whether models trained on the MMDx dataset can be 
used to predict the histologic diagnosis of acute cardiac allograft rejection. LR, SVM, RF, 
GBM, KNN, XGBoost, DT, and neutral networks were tested on two external validation 
sets: merged GSE2596 and GSE4470 dataset and GSE9377 dataset (Table 3 and Figure 
4D,E). All the models had very poor performance (close to random curve) in two external 
validation sets, highlighting major differences between the two diagnostic methods. 

Table 3. Results of machine learning algorithms trained on six genes (HCP5, KLRD1, GZMB, 
PLA1A, GNLY, and KLRB1) in two external validation sets. 

Metric RF LR DT SVM GBM KNN XGB MLP 
External validation set 1 (histology) 

Accuracy 0.46 0.45 0.48 0.46 0.42 0.41 0.46 0.45 
Precision 0.42 0.42 0.43 0.42 0.4 0.39 0.4 0.42 

Recall 0.97 1 0.91 1 0.88 0.85 0.73 1 
F1 Score 0.59 0.59 0.58 0.59 0.55 0.53 0.52 0.59 

AUC 0.55 0.48 0.57 0.57 0.53 0.52 0.51 0.47 
MCC 0.16 0.18 0.15 0.21 0 −0.05 0.01 0.18 

AUPRC 0.45 0.35 0.66 0.69 0.4 0.6 0.38 0.35 
External validation set 2 (histology) 

Accuracy 0.65 0.54 0.27 0.35 0.69 0.54 0.42 0.54 

Figure 4. Machine learning analysis. (A) Venn diagram of genes selected by four feature selection
tools. (B–D) Receiver operating characteristic (ROC) curve of machine learning models: (B) Test set;
(C) Internal validation set; (D) External validation set 1 (merged GSE2596 and GSE4470). (E) External
validation set 2 (GSE9377). Note: ANOVA—analysis of variance, RFE—recursive feature elimination,
LASSO—least absolute shrinkage and selection operator, RF—random forest classifier; SVM—support
vector machines, GBM—gradient boosting machines, KNN—K-nearest neighbors, XGB—XGBoost.
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Table 2. Results of machine learning algorithms trained on six genes (HCP5, KLRD1, GZMB, PLA1A,
GNLY, and KLRB1) in test and internal validation sets.

Metric RF LR DT SVM GBM KNN XGB MLP

Test set (MMDx)
Accuracy 0.95 0.95 0.91 0.93 0.92 0.93 0.94 0.93
Precision 0.95 0.95 0.92 0.93 0.92 0.93 0.95 0.90

Recall 0.90 0.90 0.81 0.89 0.86 0.89 0.89 0.90
F1 Score 0.93 0.93 0.86 0.91 0.89 0.91 0.92 0.90

AUC 0.98 0.98 0.90 0.98 0.98 0.98 0.98 0.98
MCC 0.89 0.89 0.80 0.86 0.83 0.86 0.88 0.85

AUPRC 0.97 0.98 0.90 0.97 0.97 0.97 0.97 0.97
Internal validation set (MMDx)

Accuracy 0.89 0.90 0.87 0.90 0.91 0.90 0.90 0.89
Precision 0.87 0.88 0.84 0.88 0.89 0.88 0.88 0.84

Recall 0.83 0.83 0.80 0.83 0.84 0.83 0.83 0.84
F1 Score 0.85 0.85 0.82 0.85 0.87 0.85 0.85 0.84

AUC 0.96 0.96 0.88 0.96 0.96 0.94 0.95 0.96
MCC 0.77 0.78 0.72 0.78 0.80 0.78 0.78 0.76

AUPRC 0.93 0.92 0.86 0.91 0.92 0.90 0.90 0.92

Note: RF—random forest, LR—logistic regression, DT—decision trees, SVM—support vector machines,
GBM—gradient boosting machines, KNN—K-nearest neighbors, XGB—XGBoost, MLP—multilayer perception
(neural network), AUC—area under the curve, MCC—Matthew’s correlation coefficient, AUPRC—area under the
precision–recall curve.

Finally, we wanted to assess whether models trained on the MMDx dataset can be
used to predict the histologic diagnosis of acute cardiac allograft rejection. LR, SVM, RF,
GBM, KNN, XGBoost, DT, and neutral networks were tested on two external validation sets:
merged GSE2596 and GSE4470 dataset and GSE9377 dataset (Table 3 and Figure 4D,E). All
the models had very poor performance (close to random curve) in two external validation
sets, highlighting major differences between the two diagnostic methods.

Table 3. Results of machine learning algorithms trained on six genes (HCP5, KLRD1, GZMB, PLA1A,
GNLY, and KLRB1) in two external validation sets.

Metric RF LR DT SVM GBM KNN XGB MLP

External validation set 1 (histology)
Accuracy 0.46 0.45 0.48 0.46 0.42 0.41 0.46 0.45
Precision 0.42 0.42 0.43 0.42 0.4 0.39 0.4 0.42

Recall 0.97 1 0.91 1 0.88 0.85 0.73 1
F1 Score 0.59 0.59 0.58 0.59 0.55 0.53 0.52 0.59

AUC 0.55 0.48 0.57 0.57 0.53 0.52 0.51 0.47
MCC 0.16 0.18 0.15 0.21 0 −0.05 0.01 0.18

AUPRC 0.45 0.35 0.66 0.69 0.4 0.6 0.38 0.35
External validation set 2 (histology)

Accuracy 0.65 0.54 0.27 0.35 0.69 0.54 0.42 0.54
Precision 0.75 0.73 0.33 0 0.8 0.73 0.62 0.73

Recall 0.71 0.47 0.12 0 0.71 0.47 0.29 0.47
F1 Score 0.73 0.57 0.17 0 0.75 0.57 0.4 0.57

AUC 0.5 0.49 0.27 0.5 0.56 0.52 0.52 0.48
MCC 0.26 0.13 −0.37 0 0.36 0.13 −0.04 0.13

AUPRC 0.67 0.66 0.53 0.66 0.7 0.66 0.72 0.65

Note: External validation set 1—merged GSE2596 and GSE4470, external validation set 2—GSE9377, RF—random
forest, LR—logistic regression, DT—decision trees, SVM—support vector machines, GBM—gradient boosting ma-
chines, KNN—K-nearest neighbors, XGB—XGBoost, MLP—multilayer perception (neural network), AUC—area
under the curve, MCC—Matthew’s correlation coefficient, AUPRC—area under the precision–recall curve.
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3.3. Model Interpretation

The SHAP summary plot for the RF model revealed a hierarchy of genes according
to their influence on the model’s predictions (Figure 5A). Red and blue colors occupy
half of the horizontal rectangles for each class. This means that each feature has an equal
impact on the classification of both rejection and stable cases. The gene KLRD1 emerged
as the most influential, exhibiting the highest mean impact on the model’s output. It was
followed in significance by HCP5, suggesting that these two genes have a predominant
role in the predictive framework. GZMB and PLA1A were also identified as impactful,
albeit to a lesser extent than KLRD1 and HCP5, underscoring their contributory roles in the
model’s decision-making process. KLRB1 and GNLY, while still influential, demonstrated
a comparatively lower impact on the model’s predictions. The LIME plot indicates that
the model predicts acute cardiac rejection with a probability of 1.00, suggesting strong
confidence in this outcome (Figure 5B). All genes were shown with positive weights,
indicating their influence on the acute cardiac rejection prediction. The values next to each
feature represent their presence in the instance, and the weights (e.g., 0.28 for HCP5 > 0.53)
show each gene’s contribution to pushing the prediction towards acute cardiac allograft
rejection. High feature values alongside positive weights confirm their significant role in
the model’s decision-making process for this prediction.
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4. Discussion

We intersected genes selected by four robust feature selection methods (ANOVA, RFE,
LASSO, and RFC) to identify the most relevant DEGs. HCP5, KLRD1, GZMB, PLA1A,
GNLY, and KLRB1 were selected and were used to train the machine learning models.
All DEGs, including the identified six genes, were mainly enriched in immune-related
processes and pathways, including graft-versus-host disease and allograft rejection. These
six genes have long been known to be associated with immunity and acute rejection [21–32].
HCP5 (HLA complex P5) is a long non-coding RNA. Its single-nucleotide polymorphisms
were found to be associated with an increased risk of relapse, decreased survival rate, and
occurrence of graft-versus-host disease in hematopoietic stem cell transplantation [21–23].
However, the role of HCP5 in solid graft rejection is unclear and requires further investiga-
tion. KLRD1 (CD94) and KLRB1 (CD161) are NK cell receptors involved in cytotoxicity and
both antibody- and T-cell-mediated rejection [24–26]. CD94 forms a heterodimeric recep-
tor with NKG2 isoforms resulting in either activating (e.g., CD94/NKG2D) or inhibitory
(e.g., CD94/NKG2A) receptors, both of which bind MHC class I molecules, namely HLA-E
and possibly HLA-G [33,34]. Expression of transgenic HLA-E and HLA-G in endothelial
cell lines was reported to significantly suppress macrophage-mediated cytotoxicity in a
xenomodel [35,36]. Furthermore, expression of HLA-E and HLA-G was associated with a
reduced rate of rejection in transplant recipients [37–39]. CD161 is primarily an inhibitory
receptor, blockage of which promotes activation of T cells and cytotoxicity [40,41]. CD161
is a marker of pro-inflammatory NK cell function with high cytokine responsiveness [42].
CD161+ T cells present an important subset of early inflammatory cells in allograft rejection,
but their relative contribution and significance compared to other immune cells remain
to be explored [43,44]. Granzyme B, which is encoded by the GZMB gene, was shown to
be significantly overexpressed in patients with acute solid organ rejection compared to
stable patients. Interestingly, a significant decrease in expression levels of this enzyme
was noted after initiation of anti-rejection therapy [27–29]. Granzyme B plays a key role in
inducing apoptosis in target cells during immune responses and mediating early allograft
injury [45,46]. Several recent studies investigated the possibilities of its application for
noninvasive diagnosis of transplant rejection [30,31]. Finally, GNLY (cytolytic protein
expressed in NK cells) and PLA1A (phospholipase A1 member A, an IFNG-inducible
enzyme) are antibody-mediated selective transcripts [26,32]. Increased expression of these
two genes was observed in rejecting human hearts [47,48]. GNLY (granulysin) contributes
to tissue damage and allograft rejection by promoting cytotoxicity and inflammation [49].
In addition, granulysin can induce targeted allograft apoptosis through perforin-dependent
and perforin-independent mechanisms [50,51]. Granulysin binds to phospholipids in cell
membranes, which is important for its cytotoxic function as it allows the protein to dis-
rupt the integrity of cell membranes and induce cell death [52,53]. The specific role of
PLA1A (IFNG-inducible enzyme) in rejection mechanisms is less clear, but phospholipases
can modulate inflammatory responses and immune cell functions by generating lipid
mediators [54]. An increase in the activity of phospholipases triggers lipid degradation
and subsequently energy metabolism imbalance [55,56]. In order to predict acute allograft
rejection based on gene expression profiles, we trained eight machine learning algorithms
to identify the best-performing one. Machine learning models are at high risk of overfit-
ting when trained on datasets with a large number of features relative to the number of
observations [57,58]. Overfitting occurs when a model learns the noise in the training data
to the extent that it performs poorly on new, unseen data. It is a common issue in bioinfor-
matics analyses of gene expression datasets obtained from publicly available repositories
such as GEO [59]. In our study, the GSE150059 dataset that was used to train the models
contains hundreds of samples and is therefore large enough for this task. In addition, we
ensured that our models were not overfitting through rigorous feature selection to reduce
dimensionality, cross-validation, and internal validation. Various metrics were used to
assess the predictive performance of each model as it is impossible for any single metric
to capture all the strengths and weaknesses of a classifier, especially in the setting of an
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unbalanced dataset or in the presence of confounders [19]. For instance, if we had used
only F1 score (aggregate metric) or AUPRC, we would have mistakenly assumed that some
models had good performance in predicting histologic diagnosis of acute cardiac rejection.

We achieved excellent predictive performance in all the machine learning algorithms
trained on these six genes with RF and LR outperforming the other six models. In addition,
we ran each model on two external validation sets. However, this was conducted to
assess differences between MMDx and histologic diagnoses rather than evaluate model
performance. Despite great predictive performance shown in test and validation sets, all
the models failed to achieve optimal results in two external validation sets. Thus, our study
highlights major differences between the two diagnostic methods in terms of machine
learning algorithms. Discrepancies between histologic and MMDx diagnosis in solid organ
rejection were reported in multiple studies [60–62]. Although MMDx cannot yet replace
histopathology, both methods complement each other and help expand our understanding
of heart transplant rejection states [63]. Apart from differences in diagnostic modalities,
the performance of machine learning algorithms was likely affected by several factors,
albeit to a smaller degree. Firstly, only normalized data of both external validation sets
could be obtained from the GEO. Utilization of different normalization methods is known
to affect model performance [64]. Secondly, the first external validation set had missing
values, which were replaced with a median. Thirdly, only genes that were present in all the
datasets were selected.

LIME and SHAP are two techniques used to explain the predictions made by ma-
chine learning models. LIME focuses on generating local, interpretable explanations for
individual predictions. It does this by approximating the behavior of the model around
a specific prediction using a simple, interpretable model. This involves sampling pertur-
bations around the prediction and fitting a straightforward model to these perturbations.
By doing so, LIME can identify which features have the most significant influence on the
prediction [65]. In contrast, SHAP provides a more global explanation by utilizing Shapley
values from cooperative game theory to measure the contribution of each feature to the
prediction. It achieves this by estimating the marginal contribution of each feature through
an iterative process of adding features to a reference value and observing the resulting
change in the model output. The resulting feature attributions offer an additive explanation
of how each feature contributes to the overall model output [66]. Both LIME and SHAP
offer valuable insights into the contributions of different features towards model predic-
tions. These insights can be particularly useful in understanding the mechanisms involved
in complex phenomena such as cardiac rejection. By gaining a better understanding of
feature importance, researchers can potentially develop preventive or therapeutic interven-
tions. HCP5, KLRD1, GZMB, PLA1A, GNLY, and KLRB1 emerged as robust biomarkers
for molecular diagnosis of acute cardiac rejection and had a prediction probability of 1.0.
KLRD1 and HCP5 were identified as the most impactful by SHAP and LIME, highlighting
their importance in cardiac rejection and potential as therapeutic targets. In the future,
therapeutic interventions may be tailored to individual transplant recipients based on
their unique gene expression profiles. For instance, high-risk patients identified by the
predictive model may be closely monitored for signs of rejection and receive appropriate
treatment, while those at low risk may require less aggressive immunosuppressive therapy,
thus reducing the risk of adverse effects.

5. Conclusions

Taken together, machine learning algorithms hold immense promise for advancing
therapeutic and preventive strategies in acute cardiac allograft rejection. LR, SVM, RF,
GBM, KNN, XGBoost, DT, and neutral networks demonstrated great predictive perfor-
mance in predicting acute cardiac rejection based on MMDx. LR and RF outperformed
the other six machine learning models. However, all models showed poor performance
when predicting histologic diagnosis of cardiac rejection, which is attributed to differences
between these two methods. HCP5, KLRD1, GZMB, PLA1A, GNLY, and KLRB1 were
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identified as candidate genes. According to SHAP and LIME, KLRD1 and HCP5 were the
most impactful genes.
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