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Abstract: Antisense therapy is an approach to fighting diseases using short DNA-like 

molecules called antisense oligonucleotides. Recently, antisense therapy has emerged as an 

exciting and promising strategy for the treatment of various neurodegenerative and 

neuromuscular disorders. Previous and ongoing pre-clinical and clinical trials have provided 

encouraging early results. Spinal muscular atrophy (SMA), Huntington’s disease (HD), 

amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy (DMD), Fukuyama 

congenital muscular dystrophy (FCMD), dysferlinopathy (including limb-girdle muscular 

dystrophy 2B; LGMD2B, Miyoshi myopathy; MM, and distal myopathy with anterior 

tibial onset; DMAT), and myotonic dystrophy (DM) are all reported to be promising 

targets for antisense therapy. This paper focuses on the current progress of antisense 

therapies in neurology. 
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1. Introduction 

Antisense oligonucleotides (AOs) are short, synthetic nucleic acid sequences that selectively 

hybridize to target sequences in messenger RNA (mRNA). AOs can cause inhibition or redirection of 

splicing and inhibition of protein synthesis through various mechanisms, including disruption of the 

cell’s splicing machinery, interference with the ribosomal complex, and/or by activation of RNase  

H1-mediated degradation of the oligo-RNA heteroduplex [1]. Antisense therapy is an approach to 

fighting diseases using DNA-like molecules (AOs). After initially observing antisense-mediated RNA 

regulation in nature, investigations using model systems to test the feasibility of using synthetic AOs to 

reduce levels of specific mRNA transcripts quickly followed. Early experiments showed that AOs 

were effective in reducing target transcripts and protein synthesis [2]. However, despite promising 

early results, the use of AOs in disease therapy has been stymied by technical challenges and progress 

has been slow. Despite more than 20 years of research and clinical investigations, the United States 

Food and Drug Administration (FDA) has only ever approved two marketable AO drugs, Vitravene 

(Isis Pharmaceuticals, Carlsbad, CA, USA), for the treatment of cytomegalovirus retinitis in 

immunocompromized Acquired Immune Deficiency Syndrome (AIDS) patients with human 

immunodeficiency virus (HIV) infection [3], and, recently, Kynamro® (Isis Pharmaceuticals, 

Carlsbad, CA, USA) for the treatment of familial hypercholesterolemia. Although approved in 1998, 

Vitravene was removed from the market in 2004. Notwithstanding its slow progress, antisense remains 

a widely popular area of research in molecular biology, and with recent advancements in oligo 

chemistries and promising results from recent clinical trials it may well be that the day of AOs in the 

clinical arena in neurology is close at hand. 

2. Challenges 

Although promising, the headway of antisense therapy in the clinical realm has been quite slow.  

To better appreciate the current status of AO drug therapies, it is important to consider the hurdles that 

AOs have had to overcome. The first of these hurdles is drug delivery. First generation AOs do not 

easily cross the lipid bilayer of the cell, making intracellular potency via systemic delivery problematic 

since these AOs cannot readily penetrate to their intracellular targets at significant concentrations to be 

effective [4–7]. In the case of certain neurodegenerative diseases, such as Huntington’s disease and 

Alzheimer’s, the limited permeability of the blood-brain barrier further compounds the difficulty of 

effective drug administration to target cells of the central nervous system (CNS) [8]. Another problem 

associated with first generation AOs is off-target toxic effects [9]. DNA and RNA can be 

immunostimulatory, binding to and activating toll-like receptors or other receptors involved in innate 

immunity in a sequence- and chemistry-dependent manner [10]. Other biological barriers include 

uptake and sequestration of AOs in the reticuloendothelial system and intracellular sequestration in 

oligo-protein complexes and phagolysosomes [11]. Furthermore, to achieve biochemical efficacy, a 

large proportion of RNA targets must be hybridized and silenced—this number can vary widely, but 

can be as high as >90 percent [12]. To overcome these challenges, AOs have been designed such that 

the ribose backbone (normally present in RNA and DNA) is replaced with other chemistries. These 

constructs are so distinct from classical nucleic acid structures that they are not readily targeted by 
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nucleases or DNA/RNA-binding proteins. These modifications result in increased stability and help 

prevent most off-target toxic effects. The various chemistries and modifications of AOs will be 

discussed in-depth in the next section. Regarding issues of delivery to CNS tissues, studies have shown 

the feasibility of AO-mediated RNA silencing in CNS tissues by AO drug administration into 

cerebrospinal fluid (CSF) via cerebral ventricles and intrathecal injection [13,14]. Drug administration 

into CSF via cerebral ventricles is a common medical practice in humans [15]. Studies involving 

administration of AOs into cerebral ventricles have shown significant oligonucleotide concentrations 

present not only in the brain and brainstem but also in many levels of the spinal cord after delivery in 

rats and nonhuman primates, providing evidence of delivery efficacy and sidestepping the hurdle of 

permeating the blood-brain barrier [16]. 

3. Comparative AO Chemistries 

To avoid nuclease degradation, facilitate stronger base-pairing with target mRNA sequences, 

increase stability, and enable easier delivery into the cell, a variety of AO chemistries have been 

developed (Figure 1). One of the most widely used oligo chemistries is the 2'O-methylphosphorothioate- 

modified (2'OMePS) antisense oligo. These oligos contain a 2'-modification of the ribose ring as well 

as phosphorothioate linkages throughout their length (Figure 1C). The 2'OMePS AOs exhibit 

improved stability and increased cellular uptake via conventional delivery reagents. These AOs have 

also been shown to be very efficient in vivo [17,18]. The safety of this particular AO chemistry has 

been well characterized through a number of preclinical and clinical trials for several diseases [19–21]. 

Of note, the Prosensa/GlaxoSmithKline Duchenne muscular dystrophy (DMD) drug development 

program (Prosensa Therapeutics, Leiden, the Netherlands, and GlaxoSmithKline, London, UK), 

currently one of the leading bodies in antisense therapy research, employs this particular antisense 

chemistry [20,21]. 

Another oligo chemistry that is gaining in popularity is the phosphorodiamidate morpholino 

oligomer (PMO, morpholino). The PMO chemistry differs from traditional DNA/RNA chemistry in 

that the nucleic acid bases are bound to morpholine moieties as opposed to deoxyribose/ribose rings 

and the phosphodiester backbone is replaced by a phosphorodiamidate linkage [22] (Figure 1D). Like 

other oligos, the chemical modifications to PMOs render them sufficiently different from conventional 

nucleic acid chemistries so that they are not recognized by nucleases, making them very stable. 

Advantages of PMOs include increased binding efficiency to RNA targets and insusceptibility to 

metabolic degradation. Moreover, PMOs do not activate toll-like receptors, the nuclear factor  

(NF)-κB-mediated inflammatory response, or the interferon system [23]. Currently a phase 2 clinical 

trial involving PMOs for Duchenne muscular dystrophy is being conducted by Sarepta Therapeutics 

(Cambridge, MA, USA), and a significant improvement in 6-min walking distance (6-min walk test) 

has already been reported (MDA conference presentation, Washington, April 2013). 
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Figure 1. Chemical structure of biological and synthetic oligonucleotides. (A) DNA;  

(B) RNA; (C) 2'O-methylphosphorothioate (2'O-MePS); (D) Morpholino (PMO); (E)  

2'-methoxyethoxy (2'-MOE); (F) PMO with peptide conjugate (PPMO); (G) Locked 

nucleic acid (LNA); (H) Vivo-morpholino (vPMO); (I) Peptide nucleic acid (PNA); (J) 

Boranophosphate-oligodeoxy-nucleoside (BH3-ODN); (K) Oxetane-modified AO. 

 

There are several groups of next generation antisense compounds that have shown very promising 

results in animal models. For example, 2'-methoxyethoxy (2'-MOE)-modified oligonucleotides 

containing lipophilic 2'-O-alkyl-substituted nucleobase modifications demonstrate high RNA binding 

affinity and metabolic stability, and can be used as gapmers to catalyze RNase H1-mediated 

degradation of target nucleic acids [24–26] (Figure 1E). 2'-MOE oligos have been used in vivo to 

target toxic mRNA triplet repeats in myotonic dystrophy [27]. Vivo-morpholinos (vPMOs) are octa 

guanidine (cell-penetrating moiety) conjugated PMOs (Figure 1H) and have shown very efficient 

splicing modulation in studies targeting the FCMD gene, DMD exons 6 and 8 multi skipping in 

dystrophic dogs, and exons 45–55 in mdx52 mice [28–30]. PMOs with peptide conjugates (PPMOs or 

PMOs with muscle targeting peptides; Figure 1F) act similarly to vPMOs and efficiently rescued 

cardiac muscle as well as skeletal muscles in mdx mice [31–37]. Peptide nucleic acids (PNAs) are 

another class of antisense oligo in which the phosphodiester-linked deoxyribose/ribose backbone is 

replaced by peptide-linked repeating N-(2-aminoethyl)-glycine units, to which the nucleobases are 

attached [38] (Figure 1I). PNAs exhibit greater binding strength than many other AOs and are 

extremely stable, though their solubility in water is much lower [39,40]. Locked nucleic acid (LNA) 
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AOs contain a 2'-C, 4'-C-oxymethylene-linkage which ―locks‖ the deoxyribo/ribo sugar structure in an 

N-type conformation [41] (Figure 1G). LNAs are stable against exonucleolytic degradation, exhibit 

high thermostability and hybridize strongly with target nucleic acids [42,43]. Several LNA analogs 

have been developed [42,44]. The characteristics of LNA constructs have made them the oligo of 

choice for several molecular applications, including microarrays [45], genotyping assays [46–48], and 

for the stabilization of DNA triplex formation in gene silencing [49]. In 1992, Sood et al. first reported 

an antisense oligo chemistry containing a boronated phosphate backbone (boranophosphate) [50]. 

Known as boranophosphate-oligodeoxy-nucleosides (BH3
−
-ODN), these AOs differ from classical 

DNA/RNA constructs in that they contain a borane group in place of a non-bridging oxygen species in 

the phosphodiester backbone (Figure 1J). Boranophosphates have been shown to activate RNase  

H1-mediated RNA cleavage [51]. Furthermore, experiments have demonstrated the highly lipophilic 

nature of boranophosphates [52], thus facilitating their transport across the bilipid membrane to target 

nucleic acids. This characteristic is likely due to the increased hydrophobicity of BH3 compared with 

oxygen. Boron-modified dNTPs have also been successfully employed in DNA sequencing assays—

by taking advantage of the nuclease-resistant nature of boranophosphates [53,54], researchers are able 

to sequence resultant nucleic acid fragments following exonuclease digestion [55]. Oxetane-modified 

oligonucleotides (Figure 1K) are another form of AO which have proven their feasibly as antisense 

molecules by exhibiting resistance to nuclease digestion, the ability to activate RNase H1-mediated 

cleavage of the AO/RNA heteroduplex, tightly bind to their target nucleic acid sequences, and 

efficiently silence gene expression in vitro [56,57]. Development of more effective and less toxic AOs 

will be a key to the success of AO therapy. 

4. Antisense Oligo Delivery 

The method of delivery of antisense oligonucleotides in neurology is mainly predicated on the 

nature of the disease. There are two major targets of delivery: tissues of the central nervous system 

(CNS) and all other non-CNS tissues. In the case of neurodegenerative diseases such as Huntington’s 

disease (HD), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA), direct 

targeting of CNS tissues is often desirable and can be accomplished via intrathecal injection, 

intracerebroventricular administration, and intraparenchymal delivery to the striatum [58–61]. This 

sidesteps the hurdle of the blood-brain barrier and increases the likelihood of oligo uptake to desired 

CNS tissues. A recently concluded phase I clinical trial involving Isis Pharmaceuticals’ antisense drug 

ISIS 333611 against SOD1 for the treatment of ALS reported no serious adverse effects following 

intrathecal injection [60]. 

For the antisense treatment of myopathic diseases, such as Duchenne muscular dystrophy (DMD), 

systemic administration via subcutaneous or intravenous injection, as well as direct intramuscular 

injection has been shown to facilitate widespread oligo distribution and effective intracellular  

uptake [62,63]. In the case of DMD, the preexisting pathology of the muscle tissues further enhances 

oligo uptake, as the plasma membranes of these muscle cells are unstable and contain small 

perforations, allowing AOs to more readily penetrate to their intracellular targets [64]. 

As previously mentioned, the intracellular delivery of AOs is further aided by chemical modifications 

which allow the oligos to more easily penetrate cell membranes. These modifications come in various 
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forms, such as arginine-rich peptide conjugated morpholinos (PPMOs) or morpholinos linked to octa 

guanidine dendrimers (vPMOs), but each chemical adduct is designed to aid intracellular uptake. 

In some instances, a dualistic targeting of both CNS and non CNS tissues is favorable, especially in 

cases involving multiorgan diseases. For example, Hua et al. demonstrated that liver plays an 

important role in SMA pathogenesis and were able to show a significant increase in survival in 

severely affected SMA mice following subcutaneous delivery of AOs. Increased survival following 

systemic AO administration was more pronounced than intracerebroventricular administration to  

CNS tissues alone and was further increased when both routes of oligo administration were coupled 

together [59]. 

5. Antisense Therapy in Neurology: Overview 

In the second half of this article, the use of antisense oligos for Duchenne muscular dystrophy 

(DMD), Fukuyama congenital muscular dystrophy (FCMD), myotonic dystrophy (DM), spinal 

muscular atrophy (SMA), dysferlinopathy, Amyotrophic lateral sclerosis (ALS), and Huntington’s 

disease (HD) will be covered. Although they are all targeted by antisense therapy, therapeutic 

strategies for these disorders are quite different. For example, to target DMD, antisense-mediated exon 

skipping can remove nonsense mutations or frame-shifting mutations from mRNA [65–67]. To treat 

the mutation in the FCMD gene, a cocktail of vivo-morpholino AOs targeting splice enhancer sites and 

splice silencer sites led to correction of the aberrant splicing pattern in cell and mouse models [29]. 

RNase H1-mediated degradation of toxic RNA with 2'-MOE antisense for myotonic dystrophy type 1 

showed very promising results in the mouse model [68]. A unique ―knock up‖ approach (exon 

inclusion) targeting the SMN2 gene with 2'-MOE antisense or PMOs has been used to treat SMA cell 

and mouse models [69,70]. In the following sections, recent progress of antisense therapy in neurology 

and remaining challenges will be discussed.  

6. Exon Skipping Therapy for DMD  

DMD is an X-linked recessive form of muscular dystrophy, affecting around one in 3,500 boys 

worldwide, which leads to muscle degeneration and eventual death [71,72]. DMD is caused by 

mutations in the gene encoding dystrophin [73]. Recently, exon skipping has been heavily researched 

for the treatment of DMD [74,75]. Exon skipping employs antisense oligos as ―DNA Band-Aids‖ to 

skip over the parts of the mutated gene that block the effective creation of proteins and restore the 

reading frame (Figure 2) [76]. In fact, such exon skipping of disease-causing mutations occurs 

spontaneously in DMD patients and animal models to some extent [77–81]. The efficacy of exon 

skipping was tested in several animal models including dystrophic mdx mice and dystrophic dogs as 

well as human DMD cells [30,35,82–95]. Systemic rescue of animal models with exon skipping has 

been demonstrated in dystrophic dogs (exons 6 and 8 multi-skipping), mdx mice (exon 23), and mdx52 

mice (exon 51 and exons 45–55 multi-skipping) [17,28,82,96]. Currently, systemic clinical trials are 

being conducted targeting exon 51 in the DMD gene with PMOs and 2'OMePS antisense oligos, and 

very promising data have already been presented [20,97–100] (Table 1). Possibly, these antisense 

drugs will be approved by the Federal Drug Administration (FDA) in the near future. In addition, the 

first clinical trial of DMD targeting exon 53 skipping will start in Japan scheduled in 2013 (Nippon 
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Shinyaku Co. Ltd. and National Center of Neurology and Psychiatry news release; UMIN-CTR 

Clinical Trial number UMIN000010964) (Table 1). Remaining challenges include: (1) limited  

efficacy of AOs, especially in the heart; (2) unknown long-term safety; (3) limited applicability  

(only approximately 10% of DMD patients can be treated with exon 51 and exon 53 skipping  

therapy, respectively). 

Figure 2. Mechanism of exon skipping therapy for Duchenne muscular dystrophy (DMD). 

Nonsense mutations in the DMD gene can create a novel STOP codon which results in the 

loss of DMD protein. Exon skipping corrects this error when exons (black) that are bound 

to antisense oligos (green) are spliced out of the pre-mRNA, and the resulting exon 

sequences ―fit together‖, i.e., are in-frame (denoted by the shape of each exon—ends that 

fit together are in-frame). Out-of-frame mutations caused by the loss of exonic sequences, 

through deletion or splice site mutations, can also be corrected through exon skipping, 

which removes exons adjacent to the mutation site so that the remaining exons are  

in-frame. The result is a truncated yet partly functional protein, as in the case of Becker 

muscular dystrophy (BMD).  
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Table 1. Current clinical trial status of antisense drugs for use in neurodegenerative and neuromuscular disorders. 

Disease Drug Chemistry 
Mechanism of 

action 
Target 

Clinical 

Phase 
Status Sponsor 

Clinicaltrials.gov 

ID 

DMD Eteplirsen (AVI-4658) PMO Exon Skipping Exon 51 Phase II Completed Sarepta Therapeutics NCT01396239 

DMD 
Drisapersen 

(PRO051/GSK2402968) 
2'OMePS Exon Skipping Exon 51 Phase III Recruiting 

Prosensa Therapeutics/ 

GlaxoSmithKline 
NCT01803412 

DMD NS-065/NCNP-01 PMO Exon Skipping Exon 53 Phase I Recruiting 
Nippon Shinyaku 

Pharmaceuticals 
NA 

SMA ISIS-SMNRx 2'-MOE Exon Inclusion Exon 7 Phase II Recruiting Isis Pharmaceuticals NCT01839656 

ALS 
ISIS-SOD1Rx/ISIS 

333611 
2'-MOE Gapmer Exon 1 Phase I Completed Isis Pharmaceuticals NCT01041222 

DM1 PRO135 NA NA 
CUG 

expansion 
Preclinical 

In 

progress 
Prosensa Therapeutics NA 

HD PRO289 NA NA 
CAG 

expansion 
Preclinical 

In 

progress 
Prosensa Therapeutics NA 
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7. Splicing Correction Therapy for FCMD 

FCMD is an autosomal recessive form of muscular dystrophy mainly described in Japan [101]. The 

gene responsible for FCMD encodes a novel protein, fukutin [102]. Fukutin is believed to add chains 

of sugar molecules (glycosylation) to α-dystroglycan, a member of the dystrophin glycoprotein 

complex [103,104]. Interestingly, most patients (87%) with mutated FCMD gene bear chromosomes 

that have a 3-kb retrotransposon insertion into the 3'-untranslated region (UTR) of the gene derived 

from a single ancestral founder [105,106]. The aberrant mRNA splicing induced by the SINE-VNTR-Alu 

(SVA) retrotransposon exon-trapping is responsible for the pathogenesis of FCMD [29] (Figure 3). The 

insertion induces splicing errors and cryptic splice site activation with a new splice donor in exon 10 

and a new splice accepter in the SVA insertion site. This results in aberrant splicing and truncation of 

exon 10. To rescue the mutated gene, a cocktail of at least three antisense oligos was required [91]. 

These oligos were targeted against intronic or exonic splicing enhancer sites (called ISE or ESE). These 

splicing enhancers are sites with consensus sequences that bind to splicing activator proteins [107,108]. 

They increase the probability that a nearby site will be used as a splice junction [109]. A cocktail of 

vPMOs led to normal fukutin mRNA expression and protein production in human patient cells as well 

as the mouse model in vivo [29]. 

Figure 3. Strategy of antisense therapy for Fukuyama dystrophy. Retrotransposon insertion 

in the FCMD gene leads to aberrant splicing. An antisense vivo-morpholino cocktail  

(A3, E3 and D5) restores normal splicing.  

 

8. Antisense Therapy for DM1 

Myotonic dystrophy is the most common adult form of muscular dystrophy and is characterized by 

myotonia (slow relaxation of the muscles), progressive muscle weakness, and atrophy [110]. DM can 
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also cause dysfunction of heart, eye, and brain tissues, as well as the gastrointestinal and endocrine 

systems [111,112]. Myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2) are 

multisystemic microsatellite expansion disorders caused by an expanded CTG tract in the 3' UTR of 

the dystrophia myotonica-protein kinase gene (DMPK) and an expanded CCTG tract in the first intron 

of the CCHC-type zinc finger, nucleic acid binding protein gene (CNBP, also known as ZNF9), 

respectively [113–118]. Disease phenotype (including age of onset and severity) is highly correlated 

with repeat number. In the case of DM1, unaffected individuals tend to have CTG repeats between  

5 and 35 while DM1 patients often present with expansions between 50 and >2,000 [119,120]. DM 

follows an autosomal dominant pattern of inheritance and, although the precise molecular mechanisms are 

unknown, symptoms are thought to arise owing to the toxic gain-of-function of RNA transcripts containing 

expanded repeats, which causes the transcripts to be retained and accumulate in the nucleus [121]. 

Wang et al. have also provided evidence to suggest a possible dominant-negative effect of  

expansion-containing mutant RNA transcripts [122]. Protein-level gain-of-function is not likely, as the 

CTG expansion region lies outside of the DMPK coding region in the 3' UTR. Antisense-mediated 

suppression of DMPK RNA transcripts is, therefore, a promising therapeutic approach [123,124] 

(Figure 4). Importantly, there is considerable evidence implicating diminished DMPK transcripts in 

DM1 pathology, with a consensus among several studies that production and processing of DMPK 

mRNA is inhibited by expansion-containing mutant transcripts [125–130]. In their study utilizing 

homozygous DMPK-null mice, Reddy et al. showed that these mutants develop a progressive 

myopathy that is pathologically similar to DM, underscoring the importance of DMPK in maintaining 

proper skeletal muscle condition [131]. 

Figure 4. Mechanism of antisense silencing via RNase H1 activity. Myotonic dystrophy 

(DM1) is caused by RNA gain-of-function due to an expanded CUG repeat in the dystrophia 

myotonica-protein kinase (DMPK) gene transcript. RNase H1-mediated degradation of 

target nucleic acids is facilitated by AO ―gapmers‖, composed of a central gap region 

which supports RNase H1 activity and flanking nucleotides at the 5' and 3'-ends which are 

resistant to RNase H1 degradation and display strong binding affinity for target RNA. 
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Recent in vitro studies have helped shed light on the therapeutic efficacy of several AO chemistries 

targeted against the microsatellite expansion of DM1 [132]. In vivo studies using 2'-MOE, LNA, and 

PPMO chemistries have provided evidence of efficient, long-lasting antisense-mediated knockdown of 

mutant RNA transcripts, as well as amelioration of physiological and transcriptomic abnormalities in 

DM1 mouse models [27,133,134]. Researchers from the University of Rochester and Isis Pharmaceuticals, 

Inc. have developed efficient methods to treat DM1 in a mouse model with systemically administered 

2'-MOE modified antisense oligos [27]. They have successfully reversed symptoms of DM1 in these 

mice by eliminating toxic RNA in muscle fibers. Currently the group is working to improve their lead 

compound further, developing antisense oligos with stronger efficacy against the toxic RNA, but with 

minimal toxic effects.  

Currently, no clinical trials are underway which involve AOs for the treatment of DM. Prosensa 

Therapeutics (Leiden, Netherlands), is currently in the pre-clinical stage of developing an antisense oligo, 

PRO135, which was shown to ameliorate toxic effects in vivo in DM1 preclinical models (Table 1). 

9. Exon Inclusion Therapy for SMA 

Spinal muscular atrophy (SMA) is a lethal autosomal recessive disease caused by a genetic defect in 

the SMN1 (survival motor neuron) gene [135,136]. SMA is characterized by the deterioration of spinal 

motor neurons, followed by weakness and wasting of the voluntary muscles in the arms and legs of 

infants and children, resulting in death during childhood [137]. Interestingly, SMA patients retain at 

least one copy of a highly homologous gene called SMN2 [138]. SMN2, an inverted duplicate copy 

nearly identical to SMN1, is unable to compensate for the loss of SMN1 due to a C-T transition in exon 7 

which interferes with a splice modulator, causing exon 7 to be lost and rendering the resultant SMN 

protein nonfunctional; however, some full-length SMN transcripts (~10%) and functional SMN proteins 

are still produced. The SMN2 gene differs from SMN1 by only five base pair changes [139]. Consequently, 

upregulation of SMN by modification of SMN2 exon 7 splicing is a promising therapeutic approach 

(Figure 5), an approach that has already demonstrated favourable results in animal models [69,140–143]. 

Antisense PMOs targeting splice silencing motifs that promote exon 7 retention successfully rescued 

the phenotype in a severe mouse model of SMA after intracerebroventricular delivery [144]. In 

addition, the PMO injection led to longer survival after a single dosing by ICV injection.  

Figure 5. Mechanism of antisense exon 7 inclusion in SMN2. Spinal muscular atrophy 

(SMA) is caused by a loss-of-function mutation in the SMN1 gene. Within the SMN2 gene, 

a paralogue of SMN1, a single nucleotide substitution in exon 7 interferes with an exonic 

splicing enhancer, impairing production of normal SMN protein. AOs targeted to the 

intronic splice silencer site (ISS) in intron 7 of SMN2 facilitate the retention of exon 7 

within the mature mRNA, increasing the production of functional SMN protein. 
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Recently, Isis Pharmaceuticals, Inc. announced the commencement of an open-label, multiple-dose, 

dose-escalation Phase II clinical trial which utilizes their antisense oligo drug ISIS-SMNRx (Table 1). 

The study involves patients with infantile-onset SMA and is currently seeking to recruit eight 

participants between three weeks and seven months of age in the US and Canada. The aim of the study 

is to provide information regarding the safety and tolerability of ISIS-SMNRx. The results of this 

investigation will help lay the foundation for a future large-scale phase II/III clinical trial. The drug 

under investigation, ISIS-SMNRx, is a 2'-MOE modified AO designed to modulate SMN2 splicing, 

thereby increasing levels of SMN protein. A previously concluded Phase I trial evaluating  

ISIS-SMNRx (ClinicalTrials.gov identifier: NCT01494701) showed the drug to be well-tolerated 

across all doses and also reported a significant improvement in muscle function in several participants. 

10. Exon Skipping Therapy for Dysferlinopathy 

The dysferlinopathies are a category of muscular dystrophy arising due to mutations in the dysferlin 

(DYSF) gene [145,146]. Three clinically distinct autosomal recessive muscular dystrophies are 

attributed to DYSF mutations: limb-girdle muscular dystrophy type 2B (LGMD2B), Miyoshi 

myopathy (MM), and distal myopathy with anterior tibial onset (DMAT) [147–152]. Dysferlinopathy 

is characterized by progressive muscle weakness and atrophy with onset usually beginning in 

adulthood and commencing in either the proximal or distal muscles, defining the clinical phenotype. 

Although distinct initially, the clinical phenotypes of dysferlinopathy include a wide spectrum of 

pathology that becomes less divergent as the disease progresses, eventually including both proximal 

and distal muscle groups, becoming one indistinguishable disorder. The sarcolemmal protein dysferlin 

is a transmembrane protein that is ubiquitously expressed and is found abundantly in cardiac and 

skeletal muscle where it plays a pivotal role in plasma membrane re-sealing [147,153–159]. 

A promising therapeutic approach to treating dysferlinopathies is exon skipping, wherein AOs are 

used to selectively target exonic sequences and prevent their incorporation into the final mRNA 

transcript [65,160]. This process of splicing modulation restores the open reading frame and leads to 

the production of a truncated-yet functional protein and has already been demonstrated in vitro using 

dysferlinopathy patient-derived cells [161]. In addition, Sinnreich et al. reported a case wherein a 

mildly affected mother with two severely affected daughters, both having LGMD2B with homozygous 

DYSF null mutations, was found to carry a lariat branch point mutation that resulted in the in-frame 

exon skipping of exon 32. The action of the resulting dysferlin protein is thought to account for her 

mild phenotype [162]. Therefore, at least dysferlin exon 32 is thought to be a promising target of exon 

skipping therapy, although there are currently no ongoing or pending clinical trials involving  

AO-mediated therapy for dysferlinopathy. 

11. Antisense Therapy for Amyotrophic Lateral Sclerosis (ALS) 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting upper and 

lower motor neurons in the brain and spinal cord [163]. Though associated with some clinical 

heterogeneity, ALS typically manifests during adulthood and is characterized by progressive neuronal 

death, spasticity, muscle atrophy, paralysis, and death within ~5 years of diagnosis [164–166]. Most 

cases of ALS are sporadic; however, ~10% of cases are familial and follow an autosomal-dominant pattern 
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of inheritance [167,168]—of these, 20% are caused by mutations in the Cu/Zn superoxide dismutase 

(SOD1) gene, resulting in a toxic gain-of-function via a currently unknown mechanism [169–171]. 

Although currently believed to be the result of a gain-of-function mechanism, initial investigations into 

the role of SOD1 in ALS supported a loss-of-function mechanism [172,173]. Belief in a loss-of-function 

model waned significantly following in vivo experiments involving transgenic mice expressing human 

SOD1 protein, which exhibited progressive neurodegeneration, mirroring human ALS clinical 

pathology [170,174,175]. Clinical observations which failed to support a connection between SOD1 

activity and disease progression further eclipsed the idea of loss-of-function [176]. However, in their 

recent article, Saccon et al. compile previous and recent findings to provide a compelling argument for 

the existence of a possible modifying role of loss-of-function in ALS [177]. They note that SOD1 

activity is significantly reduced in ALS patients and that SOD1-null mice exhibit neuropathology 

similar to human ALS. Although a loss of SOD1 activity does not appear directly responsible for ALS 

phenotype, these data support the idea of a possible synergistic relationship between gain-of-function 

and loss-of-function in ALS disease progression. The interplay between gain- and loss-of function has 

also been described in a host of other neurodegenerative disorders, including Huntington’s disease and 

Parkinson’s disease [178,179]. As such, the implications to antisense therapy in neurology, and 

especially the antisense-mediated reduction of SOD1, are profound. The long-term effects of 

downregulating SOD1, therefore, should be an important focus of future clinical trials. 

Isis Pharmaceuticals recently concluded a Phase 1 placebo-controlled, double-blind, dose-escalation, 

safety and tolerability clinical trial for their antisense drug ISIS-SOD1Rx (Table 1). The oligo 

employed in this study, ISIS 333611, was a 2'-MOE modified antisense oligo targeted to the first  

exon (19th–38th bps) of SOD1 (regardless of mutation) and catalyzed RNase H1-mediated  

degradation [60,180]. The study involved patients from four US centers aged 18 years or older and 

carrying SOD1 mutations. Participants were given 12-h intrathecal infusions of ISIS 333611 at varying 

concentrations, or placebo. No clinically significant adverse effects associated with oligo 

administration were reported. Following administration, AO was detected in the CSF of all AO-treated 

participants and increased with dosage concentration. SOD1 concentrations in the CSF did not change 

significantly, though achieving SOD1 reduction was never an aim of the study.  

In addition to the SOD1 gene, several other genes have also been implicated in ALS pathogenesis, 

including the TAR DNA binding protein (TARDBP), fused in sarcoma (FUS), angiogenin (ANG), 

ubiquilin 2 (UBQLN2), and valosin-containing protein (VCP) genes [181–189]. Most notably, it was 

recently discovered that a GGGGCC hexanucleotide repeat expansion in the first intron of the C9orf72 

gene is the most common genetic cause of ALS pathogenesis, more common than all other known 

ALS gene mutations combined, accounting for between 37%–50% of familial ALS cases among studied 

cohorts [190–197]. Although both loss-of-function and gain-of-function mechanisms have been 

postulated, the underlying etiology by which these C9orf72 expanded repeats result in neurodegeneration 

is, as yet, unknown; however, evidence suggests a pathogenic threshold of hexanucleotide repeats may 

exist, though such a threshold has not yet been fully demarcated [191,192,195,198–200]. Because  

of the high prevalence of C9orf72 mutations in cases of ALS, and because mutations in C9orf72  

have also been associated with other neurodegenerative disorders, such as Parkinson’s disease  

and frontotemporal dementia (FTD), C9orf72 is a promising candidate for targeted antisense  

therapy [191,195,201–203]. Research groups are currently working with ISIS Pharmaceuticals to 
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develop an antisense strategy for C9orf72-based ALS, working under the hypothesis that reducing 

mutant C9orf72 transcripts using AOs will ameliorate toxic aggregations of expanded repeat mRNA, 

which present as nuclear foci in brain and spinal cord in affected patients [191,204]. Early 

investigations using AOs have yielded promising results, reducing the frequency of C9orf72 expanded 

repeat aggregates and stabilizing gene expression in vitro [204,205]. 

12. Antisense Therapy for Huntington’s Disease 

Huntington’s disease (HD) is an adult-onset, lethal, progressive neurodegenerative disease that 

follows an autosomal dominant pattern of inheritance. Clinical manifestations of HD include cognitive 

decay, such as the diminished ability to perform executive functions, motor deficits, such as chorea 

(involuntary, spastic movements), the inability to manage prehensile controls, and psychiatric 

disturbances, such as dysphoria, anxiety, irritability, mania and psychosis [206–211]. Neuropathological 

features of HD include widespread neuronal atrophy and the formation of nuclear/intranuclear 

inclusions in neural tissues of the brain [208,212–217]. Although the precise etiology of HD is still 

unknown, the disease is caused by a trinucleotide CAG-expansion in the first exon of the Huntingtin 

(HTT) gene, which results in a toxic gain-of-function of the resultant mutant huntingtin protein 

(mHTT) [218,219]. The inclusion bodies are composed of aggregates of misfolded mHTT and their 

density is highly correlated with repeat length [220–222]. Wild-type huntingtin (HTT) is ubiquitously 

expressed and is found at high concentration in the brain [223–225]. HTT is vital to proper embryonic 

development and neurogenesis, and also plays a role in protecting CNS cells from apoptosis, vesicular 

trafficking, axonal transport, and synaptic transmission [224,226–235]. Because the loss of HTT is 

associated with several deleterious consequences, the allele-specific silencing of mHTT is a promising 

therapeutic approach to treating HD [58,61,179,236], although some studies have shown significant 

beneficial effects from the co-suppression of both mutant and wild-type alleles [237–239]. 

The two foremost therapeutic approaches to allele-specific silencing of mHTT are the targeting of 

single nucleotide polymorphisms (SNP) and direct targeting of the expanded CAG region [240–245]. 

In vivo studies have demonstrated successful selective reduction of mHTT and a concomitant 

amelioration of HD neuropathology and behavioral/motor dysfunctions in mouse models [246–248]. 

Since AOs were first used to downregulate the expression of HTT, much attention has been given to 

developing antisense strategies aimed at selectively reducing mHTT levels [249]. A variety of AO 

chemistries, including PNA, LNA, 2'-MOE, and morpholino chemistries have been used in vitro and  

in vivo to selectively reduce levels of mHTT [58,239,243,245,250–252]. Notably, similar to DM1,  

2'-MOE modified antisense oligo infusion into the cerebrospinal fluid of HD mouse models successfully 

reversed the disease progression with RNase H1-mediated degradation of huntingtin mRNA [239]. No 

clinical trials involving antisense oligos for the therapeutic treatment HD are currently being pursued; 

however, Prosensa Therapeutics is currently conducting preclinical tests of their antisense drug PRO289, 

designed to reduce levels of mHTT by targeting the expanded CAG tract (Table1). So far, PRO289 has 

been successful in reducing mutant transcripts in HD patient-derived fibroblasts.  
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13. Conclusions—What Does the Future Hold? 

Lately, antisense therapies have moved one step closer to entrance into the clinical arena. The data 

from the Phase 2 DMD clinical trials are very promising. Isis Pharmaceuticals has recently started 

clinical trials of an antisense oligonucleotide therapy for SMA and ALS. Antisense drugs against 

FCMD, DM1, and Huntington’s disease are still in the preclinical stage of the development process but 

showed promising results in animal models. Some in vitro studies have demonstrated that 

dysferlinopathy is also a possible target for antisense therapy. Remaining challenges include limited 

delivery to the heart, potential off-target effects, lack of long term safety data, and limited applicability 

of each antisense oligo targeting each mutation (particularly in exon skipping therapy for DMD and 

dysferlinopathies). Unfortunately, the current regulatory process for drug development is not designed 

to handle these kinds of sequence-specific oligonucleotide therapies [253]. A re-evaluation of the 

current drug approval process, which takes into consideration the common characteristics of the same 

antisense chemistry and differences in the specific sequences, will help create a more efficient path for 

the development of antisense drugs and will benefit the progress of personalized medicine.  

With the recent clinical success of several antisense-based therapies, and establishment of  

proof-of-concept efficacy in several disease models, antisense oligos have established themselves as a 

promising and rapidly-developing therapeutic strategy covering a wide range of genetic disorders. 

With such dramatic improvements in antisense technology in a relatively short time frame, and with 

the current frenzied pace of antisense research, new and enhanced AO designs will likely be 

forthcoming and will facilitate their widespread application in the clinical realm. 
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