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Abstract: The field of interventional cardiology has evolved significantly since the first percutaneous
transluminal coronary angioplasty was performed 40 years ago. This evolution began with a balloon
catheter mounted on a fixed wire and has progressed into bare-metal stents (BMS), first-generation
drug-eluting stents (DES), second- and third-generation biodegradable polymer-based DES,
and culminates with the advent of bioabsorbable stents, which are currently under development.
Each step in technological advancement has improved outcomes, while new persisting challenges
arise, caused by the stent scaffolds, the polymers employed, and the non-selective cytostatic and
cytotoxic drugs eluted from the stents. Despite the promising technological advances made in
stent technology, managing the balance between reductions in target lesion revascularization,
stent thrombosis, and bleeding remain highly complex issues. This review summarizes the evolution
of percutaneous coronary intervention with a focus on vascular dysfunction triggered by the
non-selective drugs eluted from various stents. It also provides an overview of the mechanism
of action of the drugs currently used in DES. We also discuss the efforts made in developing novel
cell-selective drugs capable of inhibiting vascular smooth muscle cell (VSMC) proliferation, migration,
and infiltration of inflammatory cells while allowing for complete reendothelialization. Lastly, in the
era of precision medicine, considerations of patients’ genetic variance associated with myocardial
infarction and in-stent restenosis are discussed. The combination of personalized medicine and
improved stent platform with cell-selective drugs has the potential to solve the remaining challenges
and improve the care of coronary artery disease patients.

Keywords: coronary artery disease; angioplasty; percutaneous intervention; stent; restenosis;
reendothelialization

1. Introduction

Worldwide, coronary artery disease (CAD) is the leading cause of morbidity and mortality and
imposes a major health and economic burden on the majority of developed nations. In the United
States alone it is estimated to cause 790,000 heart attacks each year [1] with an estimated cost of
$89 billion as of 2016 that is expected to increase to $215 billion by 2035 [2]. In the past decade,
improved therapies have decreased the mortality accompanying CAD while increasing survival
following a myocardial infarction. Despite this decrease in mortality, the prevalence of CAD is
expected to continue to increase due to the increase in the aging population [3]. The treatment of CAD
has been transformed by the introduction of percutaneous coronary intervention (PCI), which remains
the focus of intensive research and development (Figure 1) [4,5].

The first milestone in treating CAD was achieved by the introduction of Balloon angioplasty
performed by Andreas Grüntzig in 1977. However, this technique had two major drawbacks:
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Thrombosis and acute occlusion caused by vascular elastic recoil occurred in 5–10% of patients
immediately after the procedure, and development of neointimal proliferation with restenosis occurred
in ~30% of patients within the first six months. In an effort to combat the shortcomings of elastic
recoil, pioneering work performed by Sigwart et al. developed and implanted the first self-expanding
bare-metal stent (BMS) following balloon angioplasty, and in 1987 the BMS was the first food and
drug administration (FDA)-approved stent in the USA [6]. Although this new technology reduced
early elastic recoil, it was accompanied by two major problems: stent thrombosis and in-stent
restenosis (ISR) [7]. Despite the potentially serious complications associated with the procedure,
BMS implantation became the standard of care following the publication of the results from two
landmark trials in 1993, the STRESS and the BENESTENT, which indicated that BMS implantations
were superior to balloon angioplasty alone [8]. However, follow-up studies found that in-stent
restenosis due to neointimal proliferation was still persistent at the rate of 20–30% [9].

Figure 1. Evolutionary history of percutaneous coronary intervention (PCI). 1 BMS: Bare-metal stent.
2 DES: Drug-eluting stent.

2. Vascular Response to Stent Deployment

During the 1990s, extensive investigations sought to elucidate the molecular mechanisms
underlying the vascular response to PCI and stenting. The actual use of balloon angioplasty
together with stent deployment disrupts the endothelial cell (EC) layer and initiates a cascade of
molecular events that contribute to thrombosis and restenosis. This inevitable EC injury induces
platelet activation and aggregation followed by infiltration of leukocytes and monocytes into the
lesion site. The resulting inflammatory response plays a critical role in the initiation and progression
of neointimal formation. Platelet and inflammatory cells secrete growth factors, chemokines and
cytokines, and induce macrophage phagocytosis that clears cell debris and induces proliferation and
migration of quiescent vascular smooth muscle cells (VSMCs) and ECs to heal the lesion. The shift
in VSMC phenotype from quiescent contractile to synthetic, and subsequent entry into the cell cycle
followed by migration into the intima and deposition of the extracellular matrix is the hallmark of
intimal hyperplasia.

3. The Evolution of the First Generation of Drug-Eluting Stent

Several therapeutic approaches aimed at reducing neointimal hyperplasia have been explored.
Although targeting platelet activation, thrombosis, or inflammation did not confer any benefit,
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inhibition of VSMC proliferation and migration in response to antiproliferative drugs such as sirolimus
and paclitaxel, substantially reduced intimal hyperplasia in animal models when given systemically or
when coated on the surface of bare-metal stents.

Sirolimus, also known as rapamycin, is a natural macrocyclic lactone obtained from the bacterium
Streptomyces hygroscopicus found in soil samples from Easter Island (Rapa Nui) [10] that is a potent
antifungal, immunosuppressive and antiproliferative agent. Its lipophilic properties enables sirolimus
to pass through cell membranes and then bind initially to its intracellular receptor FKBP12 and
consequently to the mammalian target of rapamycin complex 1 (mTORC1) resulting in inhibition of its
serine/threonine kinase activity. mTORC1 is a multiprotein complex that regulates cell proliferation
by controlling the levels of cyclins and cyclin-dependent kinase (CDK) inhibitors required for G1 to S
cell cycle stage transition. By inhibiting mTORC1, sirolimus blocks the action of mitogenic stimuli to
downregulate the CDK inhibitor p27Kip1 (p27) and ultimately inhibit both cyclin E-CDK2 and cyclin
D-CDK4 complexes. The resulting increase in p27 levels is the final pathway by which sirolimus exerts
its antiproliferative effects. Paclitaxel is a natural compound isolated from the bark of the Pacific yew
tree and is a potent cytotoxic drug. Its lipophilic properties enable paclitaxel to pass freely through the
cellular membranes and then promote microtubule assembly, which leads to arrest of the cell cycle
during the G2/M-phase and eventual apoptosis [11–13].

In 1999, Edwardo Sousa implanted the first sirolimus-eluting stent (SES). Several randomized
controlled trials that followed (RAVEL, SIRIUS, E-SIRIUS, C-SIRIUS and ISAR-DESIRE) revealed
that SES was superior to BMS in reducing ISR and target lesion revascularizations [14–17]. In 2003,
the FDA approved the SES, CYPHER, and shortly after the paclitaxel-eluting stent (PES), TAXUS.
However, follow-up studies showed that patients receiving drug-eluting stent (DES) were at higher
risk of developing late clinical events such as myocardial infarction and death owing to late stent
thrombosis (ST), when compared to BMS [18,19]. This devastating complication imposed the use of
prolonged regimens of dual anti-platelet therapy [20–22].

4. Vascular Response to Drug-Eluting Stent

The increased incidence of DES-associated late ST has been attributed primarily to the lack
of reendothelialization of vessel walls with competent ECs. A competent endothelium (both in
integrity and function) is critical in order to provide an efficient semipermeable barrier capable of
regulating vascular tone, lipid, and tissue-fluid homeostasis, as well as suppressing intimal hyperplasia,
inflammation, and thrombus formation. However, DES deployment inevitably disturbs the normal
competent endothelium structure. Compounding this, elution of non-selective cytostatic or cytotoxic
drugs drastically reduces the quality of vessel healing and the regenerating endothelium. The exposure
of the metal struts of the stents to the circulation results in hypersensitivity reactions, platelet adhesion,
and chronic inflammation. Moreover, accelerated neoatherosclerosis in the stented segment, caused by
the poorly formed endothelial cell junctions and impaired barrier function that allows lipoproteins to
enter the sub-endothelial space, were found to occur more frequently and at an earlier time point in
DES when compared with BMS [23].

5. New Generations of Drug-Eluting Stent

To combat the safety concerns related to incidence of ST, second-generation DES were developed.
Improved platforms, made of cobalt–chromium (CoCr) or platinum–chromium (PtCr), reduced thickness
and were used to improve radial strength and visibility, while newer derivatives of sirolimus, such as
everolimus and zotarolimus, were used to improved lipophilicity and enhance cellular uptake.

Second-generation DES showed superiority to first-generation DES, not only with lower
target lesion revascularization rates, but also lower rates of ST with no major difference among
cobalt-chromium-everolimus eluting stent (CoCr-EES), cobalt-chromium-zotarolimus eluting stent
(CoCr-ZES) or platinum-chromium-everolimus eluting stent (PtCr-EES), according to large randomized
controlled trails enrolling thousands of patients [24–28].
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To overcome the hypersensitivity reaction to the durable polymer, non-polymeric third-generation
DES with biodegradable polymers and a semisynthetic analogue of sirolimus, biolimus A-9, with 10 times
higher hydrophilicity were also developed. These biodegradable polymer-based DES showed similar
safety and efficacy outcomes to the second-generation DES and received FDA approval in 2015.

In parallel, fourth-generation DES constructed with fully bioresorbable scaffolds (BRS),
designed to provide vessel support and deliver the antiproliferative drug to prevent neointimal
proliferation for a defined period after PCI, followed by gradual resorption leaving behind no
permanent foreign material. Considering stent thrombosis typically forms due to impaired
reendothelialization of the metallic stent, BRS appeared to be a promising candidate to improve
vessel healing after PCI. The most studied bioresorbable Vascular Scaffold system was the Absorb GT1,
made of fully biodegradable poly-L-lactic acid that controls the release of everolimus. Initial short-
and long-term follow-up studies demonstrated the feasibility of using BRS and indicated low rates
of major adverse cardiac events [29–31]. In 2016, the FDA approved Absorb GT1 for use in the
United States. However, a larger-scale trial with long-term patient follow-up comparing the Absorb
BRS to a CoCr-EES indicated an increased risk for scaffold thrombosis in the BRS group [32]. Additional
studies of the Absorb BRS have also indicated an increased risk of myocardial infarction and scaffold
thrombosis in patients implanted with the Absorb BRS [33]. In 2017, the FDA released a warning
related to the increased incidence of device thrombosis and it was subsequently removed from the
global market.

6. Future Directions for Percutaneous Coronary Intervention

6.1. Selective Anti-Restenotic and Prohealing Drug

Despite an impressive list of promising technological advances accompanied by serious research
efforts expended in the field of stent therapy over the past two decades, restenosis and ST (primarily
late and very late) remain the principal factors contributing to stent-associated morbidity and
mortality rates. First-generation DES effectively suppressed neointimal growth, but at the expense
of poor strut coverage with incompetent endothelium [20,34–38]. Newer generations of DES,
such as ZES achieve greater strut coverage with their low-dosage, rapid drug release, but at the
expense of greater neointimal growth [39]. These detrimental trade-offs in DES technology remain
unresolved, and the inability to deliver cell-selective therapy has hindered progress in the field of
percutaneous intervention.

Newer generations of DES, with more sophisticated scaffolds, thinner struts, biodegradable
polymers, and even BRS, have been developed to combat the incidence of ST. Nevertheless, they still
deploy the same non-selective drugs (paclitaxel or sirolimus or its analogs, everolimus, zotarolimus and
biolimus, with improved lipophilicity) [40]. Current therapies remain incapable of providing
a comprehensive treatment that can prevent restenosis and inflammation while concurrently preserving
the endothelial layer, which is vital for both vascular healing and preventing thrombosis and
neoatherosclerosis. Due to the non-selective mechanism of action of the drugs eluted from the DES,
ST will remain a persistent risk, and measures must be implemented to minimize this risk. For example,
ensuring that patients are both able and likely to comply with at least 12 months of dual anti-platelet
therapy before DES implantation together with ensuring optimal stent deployment during PCI are
two effective ways of reducing this incessant risk of ST [41].

To date, cell-selective drugs that can discriminate between proliferating VSMCs, inflammatory
cells and ECs are not available. Considering that vascular ECs provide crucial protection against
thrombosis, lipid uptake, and inflammation, it is of paramount importance to develop a cell-selective
therapy that can inhibit VSMC proliferation and inhibit inflammatory cell infiltration, yet spare ECs to
carry on their vital functions.

In response to this challenge, we have developed an innovative “microRNA (miRNA)-based
cell-selective therapy” to selectively target VSMC and inflammatory cells while protecting ECs,
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thereby enabling them to reendothelialize vessel walls and maintain their crucial function
(Figure 2) [42].

Figure 2. Graphic schematic depicting the cell-selective therapy capable of preventing restenosis and
allowing for reendothelialization. Balloon injury and control green fluorescent protein (GFP) treated rat
coronary artery results in neotintimal hyperplasia, infiltration of inflammatory cells, and an increased
risk of thrombosis, accompanied by a severe reduction in reendothelialization and loss of endothelial
cell-dependent vasodilation. Balloon injury and non-cell selective p27 treated rat coronary artery
decreased neointimal hyperplasia and inflammation, but increased thrombosis due to decreased
reendothelialization endothelial cell-dependent vasodilation. However, balloon injury and treatment
with the cell-selective p27-126TS decreased neotintimal hyperplasia and inflammation, but also allowed
for complete reendothelialization and effective endothelial cell-dependent vasodilation and greatly
diminished the risk of thrombosis. EC: endothelial cell; CMV: Cytomegalovirus.

miRNAs are a class of endogenous small noncoding RNAs that use base pairing to direct
RNA-induced silencing complexes to specific mRNA transcripts containing partially or fully
complementary sequences, resulting in the degradation or translational inhibition of the target
mRNA [43,44]. The EC-specific miR-126 is a pivotal regulator of vascular integrity and angiogenesis,
and is upregulated in arterial injury sites and atherosclerotic plaques [45–47]. We took advantage
of this EC-specific miR-126 to design a unique adenoviral vector, encoding the CDK inhibitor p27
and incorporated four complementary target sequences for the mature miR-126-3p strand at its
3′ end (p27-126TS) (Figure 2) [42]. Testing the efficacy of this approach in a rat carotid balloon
injury model revealed that local overexpression of p27 following balloon injury resulted in complete
inhibition of neointimal formation and inflammation, but did not allow for reendothelialization
of the vessel. These results are remarkably similar to those observed in vessels implanted with
a DES that elutes currently used non-specific drugs. On the other hand, p27-126 treated vessels
after balloon injury inhibited vascular neointimal formation and inflammation but also allowed
for complete reendothelialization of the vessel (Figure 3). This preclinical study also illustrated
that p27-126 treated vessels reduced hypercoagulability and restored the EC-mediated vasodilatory
response to acetylcholine [42].

Building on these results, we employed the same miRNA-based cell-selective strategy in
a hypercholesterolemic atherogenic rabbit model. Following balloon injury, local treatment of
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the carotid arteries with p27-126TS significantly reduced the neointimal area and accumulation of
neointimal macrophages, and greatly improved reendothelialization. These results indicate the feasible
use of this single treatment that combines the antirestenotic therapy with enhanced reendothelialization,
even in the presence of hypercholesterolemic atherogenic conditions. This approach provides the base
for designing the next generation of cell-selective targeting in PCI aimed at reducing the need for
prolonged dual anti-platelet drug regimens.

Figure 3. Treatment with p27-126TS prevents restenosis and allows for complete reendothelialization
of the vascular wall. (A–D). Representative images of uninjured (A), or balloon injured rat carotid
arteries treated with GFP (B), p27 (C), or p27-126TS (D) followed by hematoxylin and eosin (H&E) stain.
Original magnification 10×, scale bars represent 500 µM. (E–H) Representative images of uninjured (E),
or balloon injured rat carotid arteries treated with GFP (F), p27 (G), or p27-126TS (H) immunostained for
vascular endothelial cell marker vascular endothelial-cadherin (VE-Cadherin). White arrows indicate
VE-Cadherin positive endothelial cells. (I–L) Representative images of uninjured (I), or balloon
injured rat carotid arteries treated with GFP (J), p27 (K), or p27-126TS (L) immunostained for the
pan-inflammatory marker CD45. (E–L) Nuclei were counterstained with DAPI. Original magnification
60×, scale bars represent 100 µM.

6.2. Precision Medicine and Coronary Artery Disease

In parallel to the technological advances in the stent design, individualized treatment that takes
into consideration the individual’s genetic lifestyle and environment to tailor healthcare decisions and
treatments to the individual patient are required.

The Human Genome Project laid the groundwork for the development of precision medicine,
also known as personalized medicine. In recent years, many preclinical and clinical trials have rapidly
expanded the field of precision medicine in CAD. Genome-wide association studies (GWAS) have
identified a multitude of single nucleotide polymorphisms (SNPs) that increase the susceptibility to
develop CAD and in-stent restenosis [48], while others were associated with response to antiplatelet
therapy [49]. Therefore, genetic testing in the clinical setting will help physicians when making medical
decisions to improve the outcomes associated with PCI and lower healthcare cost [50].

Author Contributions: J.C. and H.T.-J. wrote the manuscript.
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