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Abstract: We develop a lepton–hadron model for the possible origin of hard very high energy
(VHE) spectra from a distant blazar. The model includes synchrotron self-Compton (SSC) and
hadronic components. The lepton components include synchrotron radiation and inverse Compton
scattering of relativistic electrons. For the hadronic components, we consider proton synchrotron
radiation and investigate the interaction of protons with the synchrotron emission soft photons or
cosmic microwave background (CMB) photons. Upon adopting the parametrization of the observed
spectrum of 1ES 1218+304, we obtain the following results: (1) the model is able to match the spectral
energy distribution of 1ES 1218+304; (2) we find that in Ep ≈ 1010 ∼ 1017 eV, the π0 → γ-ray
process contributes the majority of the secondary photons; and (3) the interaction of protons with the
low-energy photons may occur in or outside the jet.

Keywords: galaxies; BL Lacertae objects; radiation mechanisms; non-thermal; gamma-rays; individual;
1ES 1218+304

1. Introduction

Blazars are a special class of active galactic nucleus (AGN) with non-thermal emission,
which arises from the relativistic jet aligned to the observer’s line of sight. Blazars are often
classified according to their emission lines as BL Lacertae objects (BL Lacs) or flat-spectrum
radio quasars (FSRQs). BL Lacs have weak or no emission lines, whereas FSRQs have
strong emission lines [1,2]. Starting from Fermi-LAT and Air Cherenkov telescopes data,
one may obtain the spectral energy distribution (SED) from radio to the TeV γ-ray bands.
Those log ν − log νFν spectra exhibit two clear humps which correspond to two different
emission mechanisms. The low-energy hump from radio to the soft X-ray bands [3] may
be ascribed to synchrotron radiation of relativistic electrons [4], whereas the emission
mechanism behind the high-energy hump is still disputed. The leptonic model argues that
the high-energy hump from hard X-ray to TeV γ-ray corresponds to radiation generated
by inverse Compton (IC) scattering of relativistic electrons. This includes synchrotron self-
Compton (SSC) and external Compton (EC) contributions according to their soft photons’
origin [5]. The SSC model considers the soft photons from synchrotron photons in the
jet [6–8], whereas the EC model ascribes those soft photons to the disk [5,9], broad-line
region [5,10–12], and dusty molecular torus (MT) [13]. The hadronic model argues that the
high-energy hump is due to proton synchrotron emission [14,15] or meson generated by
the proton–photon interaction [15–17].

BL Lac objects are classified into four categories according to the magnitude of the
synchrotron peak frequency vsyn

peak : vsyn
peak < 1014 Hz is called Low peaked BL Lacs (LBL),

1014 Hz ≤ vsyn
peak < 1015 Hz is called Intermediate peaked BL Lacs (IBL), 1015 Hz ≤ vsyn

peak <

1017 Hz is called High peaked BL Lacs (HBL), and 1017 Hz ≤ vsyn
peak are called extreme high

peaked BL Lacs (EHBLs) [18,19].
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In the standard SSC model view, the synchrotron radiation peak located in the X-ray
band pushes the second peak into the very high-energy γ-ray band (VHE, energies above
100 GeV). Observations have shown, however, that in some objects the second peak actually
moves at higher energies—above the TeV γ-ray region—making their SED a challenge
for the standard lepton SSC model. Indeed, in this case, the decrease in the scattering
cross section with energy in the Klein–Nishina system will inevitably lead to quite soft SSC
spectra at TeV energies, contrary to observations [19,20].

Observations of very-high-energy (VHE) γ-rays have shown that more than 40 blazars
radiate γ-rays in the TeV energy region [21,22]. It has been suggested that primary TeV
photons from distant TeV blazars produce electron–positron pairs due to interactions with
the extragalactic background light (EBL) [23]. However, the observed spectra do not show a
sharp cutoff at energies around 1 TeV [24,25]. A typical example is the VHE γ-ray emission
in the distant blazar 1ES 1101-232, which was detected by the High Energy Stereo System
(H.E.S.S.) of the Cherenkov Telescope Array [24,26]. The VHE γ-ray data result in very
hard intrinsic spectra, with a peak above 3 TeV in the SED, corrected for EBL absorption
at the lowest energy level [26]. Similar behavior has been detected in other TeV blazars
such as 1ES 0229+200 [27], 1ES 0347-121 [28], and Mkn 501 [29]. EHBLs do not show as
high and fast variability as other blazars like HBLs (e.g., low variability of 1ES 0229+200
in the long-term light curve of VHE γ-rays in [30]). This effect may be related to the low
flux of these sources, but lepton models predict large flux variations that have never been
observed on short time scales. The hard VHE γ-ray spectrum and the absence of fast flux
variability make EHBLs interesting candidates for hadronic and lepton–hadronic emission
models, which can reproduce their observed SEDs well [19,31].

For the hard spectrum of EHBLs at ultra-high γ-ray energies, the SSC model [32]
is unable to explain the ultra-high γ-ray energy emission. Therefore, different emission
mechanisms have been proposed to explain this spectral region, and Murase et al. [33]
proposed that the interaction of very high-energy photons with EBL photons produces
e±, and the resulting e± can IC high-energy photons to higher energies. In addition,
Murase et al. [33] considered that cascade emission induced by ultra-high energy cosmic
rays could also lead to emission in the high-energy region of the spectrum. Lefa et al. [34]
explored lepton models, namely the single-region SSC and EC scenarios, to see if they
could account for hard γ spectra with a narrow distribution of energetic particles. On the
other hand, Simet et al. [35] proposed the existence of axion-like particles, while Protheroe
and Meyer [36] argued for Lorentz invariance violation as the origin of the hard spectrum.
The surprisingly low attenuation of high-energy γ-rays, and in particular the shape of the
VHE γ-ray tails in the observed spectra, can be explained by secondary γ-rays produced in
interstellar space by the interaction of cosmic ray protons with background photons [37–40].
Hard spectra are expected if γ-rays from distant blazars consist mainly of secondary γ-rays
that are produced along the line of sight by the interaction of cosmic ray protons with
background photons [37–39]. 1ES 0229+200 is one of the most-studied EHBLs detected by
TeV γ-rays, and hard TeV spectra in intergalactic cascade scenarios have been successfully
interpreted in [33]. Dong et al. [41] researched the accelerated protons in the jet’s interaction
with cosmic microwave background (CMB) photons to produce electron pairs, which in
turn form cascading spectra by IC scattering of these electron pairs with soft photons.

However, due to the lack of extreme high-energy data, it has not been possible to
estimate suitable parameters to fit the TeV spectra based on different models. More data
are now available to study the nature of γ-rays, and some of the data from EHBLs can be
accessed. Here, we focus on investigating the detailed properties of the previously known
TeV emitter 1ES 1218+304. In this framework, we use a lepton–hadron model to derive the
SED of EHBL and then explore their radiation mechanisms by varying the free parameters
to fit the SED to the observed data.

This paper is structured as follows. In Section 2, we present a detailed description
of our model. In Section 3, we apply our model to the BL Lac 1ES 1218+304. In Section 4,
we discuss results and in Section 5 we close the paper with some concluding remarks.
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Throughout the paper, we assume the Hubble constant H0 = 75 km s−1 Mpc−1, the dimen-
sionless cosmological constant ΩΛ = 0.73, matter energy density ΩM = 0.27, and radiation
energy density ΩR = 0 [42].

2. The Model

We assume that the radiating region is homogeneously spherical. We consider the lep-
ton–hadron model, i.e., SSC and hadron processes. For the lepton components, including
synchrotron radiation and inverse Compton scattering of relativistic electrons, the hadronic
components contain both the synchrotron radiation of protons and the proton–photon pro-
cess. For the proton–photon process, we use the method in [42,43] to obtain the secondary
γ-ray components. We use the method in [41,42] to calculate the Bethe–Heitler process.

2.1. SSC Component

We assume that the electron distribution Ne(γe) in the jet follows a broken power-law
distribution governed by the electron spectral index n1, n2 as follows:

Ne(γe) =

{
Ne,0γ−n1

e , γe,min ≤ γe ≤ γe,b

Ne,1γ−n2
e , γe,b ≤ γe ≤ γe,cut

(1)

where γe,min, γe,b, and γe,cut are the minimum Lorentz factor, broken Lorentz factor, and

cutoff Lorentz factor, respectively. It is easy to obtain the relation Ne,1 = Ne,0γ
(n2−n1)
e,b when

γe = γe,b. In the source coordinate system, we get the synchrotron radiation intensity
Isyn(ν) [7] through the radiation transfer equation and calculate the IC intensity IIc(ν)
using the differential photon production rate [44,45]. The emission blob moves relativisti-
cally with respect to the observer, and the observed emission intensity in the laboratory
coordinate system is enhanced by the Doppler beaming effect [1]. Therefore, considering
the Doppler beaming correction, the emission flux in the observer coordinate system may
be expressed as

dNint
γ

dEγ
= π

r1
2

d2E2
γ

δ3(1 + z)
[
Isyn(Eγ) + IIc(Eγ)

]
(2)

where r1 and d are the radius of the emission blob and luminosity distances, respectively. z
is the red shift and δ = [Γ(1 − βcosθ)]−1 is the Doppler factor which depends on the blob
Lorentz factor Γ and the angle θ between the moving direction of the emission blob and
the observer’s line of sight. Additionally, taking account of the EBL absorption, i.e., the
interaction of very high-energy photons with the EBL photons, we have [46–50],

dNobs
γ

dEγ
=

dNint
γ

dEγ
exp[−τ(Eγ,z)] (3)

where τ(Eγ, z) is the absorption optical depth, and we adopt its corresponding EBL model
in [51].

2.2. Hadronic Component

The synchrotron radiation of protons is analogous to the synchrotron radiation of
electrons, which just replaces the mass of the electron with the mass of the proton in
Section 2.1. For the Bethe–Heitler process, we refer to the method in [42] for calculation
which describe the secondary γ-ray production rate clearly. Additionally, the interaction of
relativistic protons with low-energy photons may produce π0 and π± mesons according to

p + γ → n0π0 + n+π+ + n−π− + ... (4)

where n0, n+ and n− represent the number of mesons (we assume their values are all
one). We assume that the low-energy photons originate from the synchrotron photons or
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CMB photons. For synchronous soft photons, we assume an energy threshold for photons
as follows:

ϵ ≪ mπc2 (5)

where ϵ is the energy of photons, and mπ is the mass of π meson. For CMB photons, the
distribution Nph(Es) satisfies the following equation:

Nph(Es) =
1

π2(hc)3
E2

s
exp(Es/kT)− 1

(6)

where Es is the CMB photons’ energy and the CMB temperature T = 2.73 × (1 + z)K with
Boltzmann constant k = 1.38 × 10−16 erg/K and Planck constant h = 6.63 × 10−27 erg · s.
The frequency range of the CMB is 3 × 108 ∼ 3 × 1019 Hz. Moreover, we assume that the
proton distribution in the jet displays a power-law distribution with a high-energy cutoff,

Np(Ep) = Np,0e
− Ep

Ep,max E−α
p (7)

Np,0 is a normalization coefficient, Ep represents the energy of protons, and α is the proton
spectral index. The production rate of γ-rays is given by [43]

dNγ

dEγ
=

m2
pc4

4

∫ ∞

η0

∫ ∞

Eγ

dEp

E2
p

Np(Ep)× fph(
ηm2

pc4

4Ep
)Φγ(η, x)dη (8)

where η0 = 2 mπ
mp

+ m2
π

m2
p

and η =
4ϵEp

m2
pc4 ≥ η0, c is the light speed, the energy of photons can

be expressed as ϵ =
ηm2

pc4

4Ep
and fph(

ηm2
pc4

4Ep
) describes the density of the low-energy photons.

Eγ is the energy of γ-ray and Φγ(η, x) represents its distribution which depends on η and
x =

Eγ

Ep
as follows [43,52]:

Φγ(η, x) =


Bγ(ln2)ψ, x < x−

Bγexp
{
−sγ[ln(

x
x−

)]δγ

}
× [ln(

2
1 + y2 )]

ψ, x− < x < x+

0, x > x+

(9)

with y = x−x−
x+−x− , ψ = 2.5 + 0.4ln( η

η0
), Bγ, sγ, δγ fitted using Table I of in [43]. In addition,

Kelner and Aharonian also define the quantity x± [43],

x± =
1

2(1 + η)
[η + r2 ±

√
(η − r2 − 2r)(η − r2 + 2r)], (10)

where r = mπ
mp

.

3. Application of the Model to 1ES 1218+304

The redshift z = 0.182 for 1ES 1218+304 was determined in 1997 using the spectroscopic
measurements of the host galaxy [53]. 1ES 1218+304 has been first observed by Major
Atmospheric Gamma Imaging Cherenkov (MAGIC) at VHE [54] and then through the Very
Energetic Radiation Imaging Telescope Array System (VERITAS) [55]. The Fermi-Large Area
Telescope (Fermi-LAT) continuously monitors the HE γ-ray radiation from 1ES 1218+304
and lists it in its continuous catalogue as one of the hardest blazars above 0.10 GeV [56–58].
Its hard VHE γ-ray spectrum from MeV/GeV to TeV bands means that the emission is
most likely to be produced by fresh accelerated electrons, allowing the various acceleration
and cooling processes of the emitted particles to be tested [59].

We use the available multi-wavelength (non-simultaneous) archival data from the ASI
Science Data Center (SSDC) compiled by Foffano et al. [19] (the archival data contains
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multi-wavelength spectra from the radio band to the γ-ray. One obtains radio bands from
the NVSS points [60], infrared bands from WISE points, optical to ultraviolet from Swift-
UVOT [61] points, soft X-ray bands from the Swift-XRT [62] or from Beppo-SAX data, and
hard X-rays from Swift-BAT 105 months [63]. Additionally, we have information about
high-energy γ-ray bands from ten years of Fermi-LAT data [19].) and hard X-ray data from
Swift available on SSDC. Using the model in Section 2, we can calculate the TeV γ-ray
spectra, then the hard intrinsic spectrum of the source can be produced. The two origins of
the γ-photon will be considered separately.

We apply our model to generate the SED, and in the case of two soft photons, the param-
eters of the obtained SSC part are the same, and we assume that there is a broken power law
for the high-energy electron distribution between γe,min = 200.00 and γe,cut = 1.00 × 108 [41]
with a break at γe,b = 8.20 × 104. The density normalization is Ne,0 = 9.60 × 102 cm−3,
the energy index of the particles between γe,min and γe,b is set to n1 = 2.05, the energy
index of the particles between γe,b and γe,cut is set to n2 = 4.25, the magnetic field strength
is B = 0.16 G, the Doppler factor is δ = 20.00 [64], and the emission blob size r1 is
2.30 × 1016 cm. The Doppler factor and magnetic strength of the second radiation region
are the same as those of the first radiation region. For the two soft photons in the second
region, the parameters obtained from the model fitting are as follows: the radii of the emis-
sion blob are, respectively, r2,syn = 4.62 × 1017 cm, r2,CMB = 1.39 × 1018 cm, and assume
a power-law distribution from Ep,min,syn = 1.40 × 1011 eV to Ep,max,syn = 3.39 × 1015 eV,
Ep,min,CMB = 7.22 × 1010 eV to Ep,max,CMB = 1.02 × 1017 eV with high-energy cutoff in the
high energy, and obtain a spectral index αsyn = 2.30, αCMB = 2.00 and a normalization
coefficient Np,0,syn = 2.26 × 10−8 erg−1 cm−3, Np,0,CMB = 2.25 × 10−8 erg−1 cm−3. The
physical parameters of the hadronic components are listed in Table 1. Then, we calculate the
multi-wavelength spectrum using our model and find that the TeV γ-ray spectrum is due to
the interaction of protons with synchrotron radiation photons or CMB photons. In Figure 1,
we show the multi-wavelength spectrum from the X-ray to the TeV γ-ray bands.

Figure 1. The photons of proton–photon interaction are synchrotron radiation photons (left panel)
and CMB photons (right panel), and the predicted 1ES 1218+304 multi-wavelength spectrum is
compared with the observation data. Observations from [19] and hard X-ray data from Swift are
available on SSDC. Observations are represented by black dots. We employ the solid line to denote
the multi-wavelength spectrum with different colors. For the multi-wavelength SED, the dodger-blue
solid curve and dark-slate-gray solid curve represents the synchrotron radiation and IC scattering
of electrons, respectively. Finally, the sea-green solid curve represents the synchrotron radiation of
protons and the deep-sky-blue curve expresses the γ-rays generated from the decay of π0, whereas
the red solid curve denotes the total SED of photons.
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Table 1. Physical parameters of the hadronic component.

Parameter Synchrotron Radiation Soft
Photons CMB Photons

Ep,min [eV] 1.40 × 1011 7.22 × 1010

Ep,max [eV] 3.39 × 1015 1.02 × 1017

Np,0 [erg−1cm−3] 2.26 × 10−8 2.25 × 10−8

α 2.30 2.00
r2 [cm] 4.62 × 1017 1.39 × 1018

4. Discussion and Conclusions

In this paper, our model predicts a γ-ray spectrum in the VHE band with an energy
peak above ∼ TeV, consistent with the observations. We have discussed the interaction of
protons with low-energy photons from the synchrotron radiation of blazar 1ES 1218+304
or CMB photons. The lepton components contribute two peaks from the radio band to
the γ-ray band. The related hadronic components also contribute to the multi-wavelength
spectrum: the synchrotron emission and IC emission of Bethe–Heitler pairs contribute very
minimally, not drawn in the figure, that the proton synchrotron radiation has a partial
contribution in the case of CMB for soft photons, and the decay of π0 affects the γ-rays.

4.1. Power-Law Proton Distribution

Blazars are a special class of the AGN with the jet which contains large and significant
information about the physical process. Those physical processes include the injection,
acceleration, cooling, and escape, and shape the electron energy distribution. In the case of
non-relativistic and parallel excitations, we assume a monoenergetic injection upstream,
and if the size of the shocked flow is limitless, we can obtain a power-law electron energy
distribution in the downstream flow [65,66]. Generally, the estimation of the acceleration
timescales in valid magnetic magnitude is tacc ∼ 3κ/u2

s , us is the velocity of the shock in
the upstream coordinate system and κ expresses the spatial diffusion coefficient [67]. In the
condition of the Bohm limit, the average free path λ of particles is equal to the their gyro-
radius rg, ∆B ≤ B (∆ is the degree of change of the magnetic field) and κ ≤ κB = rgc/3, so

tacc ≤
γpmpc

eB
(

c
us

)2 =
rgc
u2

s
(11)

In the case of low-energy photons being synchrotron radiation soft photons or CMB
photons, we assume that the protons are accelerated to 3.39 × 1015 eV, 1.02 × 1017 eV by the
non-relativistic diffusive shock acceleration with us = 0.1c, respectively. The calculated radii
of the acceleration region are about Racc,syn = 2.12 × 1016 cm, Racc,CMB = 6.38 × 1017 cm.
The maximum Larmor radii is described as RL = Ep,max,syn/(eB) = 7.07 × 1013 cm,
RL = Ep,max,CMB/(eB) = 2.13 × 1015cm for protons, which is less than the acceleration
region. The distribution of the protons haves a high-energy cutoff Ep,max and in the timescale
of the cooling,

τsyn =
3mpc
4σTuB

γ−1
p (12)

From Rsyn = τsyn × c, we determine that the dissipation regions are about 4.61× 1017 cm,
1.53× 1016 cm. Since both the acceleration region and the dissipation region are smaller than
the radius r2 of the proton emission blob, it is reasonable to assume a power-law distribution
with a cutoff.

4.2. pγ → π

It is an open question whether the p-p process [68,69] is relevant for blazars, i.e., it
may lead to γ-ray production. In fact, the condition of a very high-energy density cloud is
difficult to achieve in blazars, and the process is usually neglected [41]. Additionally, pions
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produced by the interaction of protons with low-energy photons are known to generate
extreme high-energy γ-rays outside the jet. The model considers SSC, the γ-ray photon
spectrum, cascade pairs resulting from pγ interactions, and proton synchrotron radiation.
Pπ process Eγ ∼ 0.1Ep [40], the proton energy in this paper, is about Ep ∼ 101 − 108 GeV.
Based on this energy, the energy range of γ-rays produced by the pπ process is about Eγ ∼
1 − 107 GeV. The energy segments considered in this paper cover this range. Concerning
the decay of π±, we leave the discussion for the future, and just note the relationship with
neutrino data collected by IceCube [70].

4.3. The Free-Path of the Photomeson Process

In our model, protons mainly lose energy by interacting with the synchrotron emission
photons or CMB photons. For the process of proton–photon interaction, the energy loss
rate t−1

pπ can be estimated in the proton’s rest frame using the following formula [71,72]:

t−1
pπ(γp) =

c
2γ2

p

∫ ∞

ϵ̄th

ϵ̄σpπ(ϵ̄)κp(ϵ̄)dϵ̄
∫ ∞

ϵ
′
s

n
′
(ϵ

′
)

ϵ
′2 dϵ

′
(13)

where ϵ̄ = 2γpϵ
′
s and ϵ

′
are the energy of soft photons in the proton’s rest frame,

γp = Ep/(mpc2) is the Lorentz factor of protons, ϵ
′
s ≈ h × νs where νs ∼ 1017 Hz is

the peak frequency of synchrotron emission, and n
′
(ϵ

′
) is the photon number density in

the co-moving frame of the emission region. For the proton–photon process, σpπ(ϵ̄) and
κp(ϵ̄) express the photomeson cross-section and proton inelasticity, and imply the threshold
value ϵ̄th = 145 MeV. We are just trying to obtain an estimate, so we assume the approx-
imate value < σpπ(ϵ̄)κp(ϵ̄) >∼ 0.70 × 10−28 cm2 integrate over the entire wavelength
range [73,74]. Thus, for the case where the soft photons are synchrotron radiation photons
or CMB photons during the proton–photon interaction of 1ES 1218+304, the maximum
cooling times are, respectively, tpπ,syn ≈ 3.42 × 1013 s, tpπ,CMB ≈ 3.25 × 1013 s, which
corresponds to a travel path lpπ,syn ≈ 1.02 × 1024 cm, lpπ,CMB ≈ 9.74 × 1023 cm. The
different travel paths may be mainly due to the different frequency ranges of soft photons.

In this paper, the emission region r2 is lesser than the free-path of the photomeson
process lpπ . For this, we give a thought to the total efficiency of the total process which is
expressed by ηpπ [75] as follows:

ηpπ =

∫ γp,max
γp,min

τpπ Np(Ep)γpdγp∫ γp,max
γp,min

Np(Ep)γpdγp
(14)

where the opacity of the photon–meson process expressed as τpπ(γp) = tpπ(γp)−1/t−1
dyn

and tdyn = r2/c is the dynamical timescale in the co-moving coordinates system. Actually,
the effective rate under this circumstance is approximately 0.06 and 0.04, respectively, and
the difference may be due to the fact that the synchrotron soft photon density is greater
than the CMB photon density. We used averaged state data and did not compare variable
timescales with observation timescales, which can be considered later in the work.

4.4. The Contribution to the Total Spectrum

Whether it is synchronous soft photons or CMB photons, BH-ic’s and BH-syn’s contri-
bution to the total spectrum are small. Proton synchrotron radiation has a larger frequency
range and a slightly stronger contribution when CMB photons are soft photons, whereas
the opposite is true of π0→ γ. The coordinates of the third peak are, respectively, (27.01,
−10.10) and (27.24, −10.36). From Figure 2, we can see that there is a difference in the γ-rays
from the two soft photons. Before, logv ≈ 27.26 Hz synchrotron soft photons correspond
to a larger flux at the same frequency, and after logv ≈ 27.26 Hz, the opposite is true.
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Figure 2. Comparison of the π0→ γ-ray patterns of the two soft photons in the pγ process. The
observed data points are represented by blue dots, the IC is represented by a pink solid line. When
the soft photon is the synchrotron radiation photon, the gamma rays and total flux are represented
by the light green dashed line and the red dotted line, respectively. For the soft photon is the CMB
photon, the gamma rays and total flux are represented by the yellow solid line and dark red solid
line, respectively.

The flux of the primary γ-rays is attenuated by their interactions with the EBL. For a
source at distance, the flux of unattenuated high-energy gamma rays is

Fprimary,γ(d) ∝
1
d2 exp{−d/λγ}, (15)

For the flux per unit area Fsecondary, γ(d) =
Φγ(d)
(4πd2)

, this solution gives

Fsecondary,γ(d) =
pλγ

4πd2 [1 − e−d/λγ ] ∝

{
1/d, d ≪ λγ,
1/d2, d ≫ λγ.

(16)

It is clear from Equations (15) and (16) that for a sufficiently high proton flux, secondary
gamma rays should dominate the spectrum of very distant sources above E ∼ TeV, since
their flux suppression is less severe at large distances [39].

4.5. Luminosity Estimates

Assuming that the jet is made of a plasma of electrons and protons, the jet ki-
netic power Lkin [76] can be expressed as Lkin≈ Le + Lp + LB in the stationary frame
of the host galaxy [77–83]. The electron power Le is characterized by the energy density
u
′
e = mec2

∫ γe,max
γe,min

Ne(γe)γedγe in the co-moving frame where the bulk Lorentz factor Γb is
approximated by δ when the angle between the sight of observer line and the jet axis is
about 1

Γb
,

Le = πr1
2Γ2

bcu
′
e (17)

For the proton power Lp,

Lp = πr2
2Γ2

bcu
′
p (18)
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and the energy density of protons is expressed by u
′
p =

∫ Ep,max
Ep,min

Np(Ep)EpdEp. Additionally,
the power of magnetic field LB may be calculated as

LB =
1
8

r2
2Γ2

bcB2. (19)

According to the above calculation, jet kinetic power in the case of low-energy soft
photons from electron–synchrotron radiation is Lkin,syn ≈ 6.44 × 1043 + 9.37 × 1041 +

8.19 × 1045 ≈ 8.26 × 1045 erg s−1. In the case where the CMB photon is a low-energy
soft photon, the jet kinetic power is Lkin,CMB ≈ 6.44 × 1043 + 2.33 × 1043 + 7.41 × 1046 ≈
7.42 × 1046 erg s−1. The electronic power Le is the same in these two cases, whereas there is
a large difference in proton power Lp and the magnetic field power LB. The super massive
black hole (SMBH) mass of BL Lac 1ES 1218+304 is 6 ×108 M⊙ [76] and its Eddington lu-
minosity is LEdd ≃ 7.5 × 1046 erg s−1. The jet kinetic power Lkin is less than the Eddington
luminosity LEdd and this indicates that the SMBH fully provides the radiation pressure. The
background photons like EBL photons also can be used as the seed photons in the galactic
space. The wavelength range of EBL photons is approximately 3.00× 1011 ∼ 3.00× 1015 Hz
and its distribution may be found in [84]. Zheng and Kang [40] proposed that the pro-
tons (Ep = 4.80 × 108 ∼ 3.02 × 1019 eV) interact with the background photons out of the
emission blob and produce the high-energy γ-rays.

4.6. The Selection of Seed Photons

p + γCMB → p + e+ + e−. Essey et al. [39] have taken into account both of these
contributions, and argue that for proton energy Ep = 1.00 × 1018 eV and higher, the
Bethe–Heitler pair production of CMB photons contributes a large part of the secondary
photons. In this paper Ep = 7.22 × 1010 ∼ 1.02 × 1017 eV. In this range, we consider
synchrotron radiation soft photons and CMB photons as seed photons. From Figure 3,
we can see that when the density of the two soft photons is distributed with energy, the
synchrotron soft photon has a wider energy range and greater energy density. From
Figure 1, we find that in this proton energy range, the π0 → γ-ray process contributes the
majority of the secondary photons.

Figure 3. Logarithmic distribution plot of the density of two soft photons as a function of energy, with
the red solid line representing the CMB photon and the black solid line representing the synchrotron
radiation soft photon.
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5. Conclusions

Assuming suitable electron and proton spectra, we obtain satisfactory fits to the
observed spectra of distant blazar 1ES 1218+304. This indicates that the very hard intrinsic
blazar spectrum in the γ-ray band can be explained by secondary γ-rays produced by the
interaction of high-energy protons with synchrotron radiation soft photons or CMB photons
in intergalactic space. Our model indicates that (1) the non-relativistic shock acceleration
and the synchrotron emission can produce the proton’s power-law distribution with high-
energy cutoff; (2) if the low-energy soft photons in the proton–photon interaction process
are different, the contribution of proton synchrotron radiation and π0 decay contribute
to the total spectrum differently; (3) we find that in Ep ≈ 1010 ∼ 1017 eV, the π0 → γ-
ray process contributes the majority of the secondary photons; and (4) the parameters of
proton spectrum Ep,max, Ep,min, Np,0, α, the radius r2 of the proton’s emission blob play an
important role in determining the proton power, and the radius of the electron radiation
zone affects the electronic power. Furthermore, the energetic protons may escape the
dissipation region and then interact with the background photons. Perhaps protons interact
with proton synchrotron radiation photons in the jet. We leave this issue for the future.
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