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Abstract: We analytically calculate some orbital effects induced by the Lorentz-invariance/
momentum-conservation parameterized post-Newtonian (PPN) parameter «3 in a
gravitationally bound binary system made of a primary orbited by a test particle. We neither
restrict ourselves to any particular orbital configuration nor to specific orientations of the
primary’s spin axis 1& We use our results to put preliminary upper bounds on a3 in the
weak-field regime by using the latest data from Solar System’s planetary dynamics. By
linearly combining the supplementary perihelion precessions Aww of the Earth, Mars and
Saturn, determined by astronomers with the Ephemerides of Planets and the Moon (EPM)
2011 ephemerides for the general relativistic values of the PPN parameters = v = 1,
we infer |az| < 6 x 107'% Our result is about three orders of magnitude better than
the previous weak-field constraints existing in the literature and of the same order of
magnitude of the constraint expected from the future BepiColombo mission to Mercury.
It is, by construction, independent of the other preferred-frame PPN parameters a, o, both
preliminarily constrained down to a ~ 10~° level. Future analyses should be performed by
explicitly including a3 and a selection of other PPN parameters in the models fitted by the

astronomers to the observations and estimating them in dedicated covariance analyses.
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1. Introduction

Looking at the equations of motion of massive objects within the framework of the parameterized
post-Newtonian (PPN) formalism [1-4], it turns out that, in general, the parameter ag [4—6] enters both
preferred-frame accelerations (see Equation (6.34) of [4]) and terms depending on the body’s internal
structure, which, thus, represent “self-accelerations” of the body’s center of mass (see Equation (6.32)
of [4]). The latter ones arise from violations of the total momentum conservation, since they generally
depend on the PPN conservation-law parameters as, (1, (2, (3, (4, Which are zero in any semiconservative
theory, such as general relativity. It turns out [4] that, for both spherically symmetric bodies and binary
systems in circular motions, almost all of the self-accelerations vanish independently of the theory of
gravity adopted. An exception is represented by a self-acceleration involving also a preferred-fram
effect through the body’s motion with respect to the Universe rest frame: it depends only on a3 (see
Equation (1) below). The aim of the paper is to work out in detail some orbital effects of such
a preferred-frame self-acceleration and to preliminarily infer upper bounds on a3 from the latest
observations in our Solar System. As a by-product of the use of the latest data from the Solar System’s
dynamics, we will able to bound the other preferred-frame PPN parameters o, as, as well.

The plan of the paper is as follows. In Section 2, the long-term orbital precessions for a test particle
are analytically worked out without any a priori assumptions on both the primary’s spin axis and the
orbital configuration of the test particle. Section 3 deals with the confrontation of our theoretical
predictions with the observations. The constraints on «j in the existing literature are critically reviewed
in Section 3.1, while new upper bounds are inferred in Section 3.2 in the weak-field regime by using the

latest results from Solar System’s planetary motions. Section 4 summarizes our findings.

2. Orbital Precessions

Let us consider a binary system made of two nearly spherical bodies, whose barycenter moves
relative to the Universe rest frame with velocity w. Let us assume that one of the two bodies of mass M
has a gravitational self-energy much larger than the other one, as in a typical main sequence star-planet
scenario. It turns out that a relative conservation-law/preferred-frame acceleration due to a3 arises (the
other purely (i.e., ©—independent) preferred-frame accelerations proportional to a3 in Equation (8.72)
of [4] either cancel out in taking the two-body relative acceleration or are absorbed into the Newtonian
acceleration by redefining the gravitational constant (G. See Chapter 8.3 of [4] and Equation (2.5) of [7]):

itis [4,5,7]:
013@

Ay = 5 W X P (1)
where ) is the angular velocity vector of the primary, assumed rotating uniformly, and:
&
= 2
e (2)

is its fractional content of gravitational energy measuring its compactness; c is the speed of light in

vacuum. In Equation (2):

(‘::—g/ p(’r>p(l’:)d3rd3r’ (3)
2 v
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is the (negative) gravitational self-energy of the primary occupying the volume V with mass density p,
and M c? is its total mass-energy. For a spherical body of radius R and uniform density, it is [8]:

3GM
=— 4
© 5Rc? @
The acceleration of Equation (1) can be formally obtained from the following perturbing potential:
azOw
Uy = =20 () 5)
as:
A,, =-VU,, 6)
In Equation (5), we defined:
u=w XY (7)

Note that, in general, @ and 1,@ are not mutually perpendicular, so that w is not a unit vector. For
example, in the case of the Sun, the north pole of rotation at the epoch J2000.0 is characterized by [9]:

g = 286.13° (8)
5o = 63.87° 9)

) RN CI ) )
so that the Sun’s spin axis @  is, in celestial coordinates:

PO =0.122 (10)
b9 = —0.423 (11)
O = 0.897 (12)

As far as w 1s concerned, in the literature on preferred-frame effects [10-15], it is common to adopt
the Cosmic Microwave Background (CMB) as the preferred frame. In this case, it is determined by the
global matter distribution of the Universe. The latest results from the Wilkinson Microwave Anisotropy
Probe (WMAP) yield a peculiar velocity of the Solar System barycenter (SSB) of [16]:

wssg = 369.0 £ 0.9 km s~ ! (13)
lssp = 263.99° 4+ 0.14° (14)
bssp = 48.26° + 0.03° (15)

where [ and b are the galactic longitude and latitude, respectively. Thus, in celestial coordinates, it is:

W39B = —0.970 (16)
w,®® = 0.207 (17)
W35 = —0.120 (18)
The components of u are then:
Uy = 0.135 (19)
u, = 0.856 (20)

u, = 0.385 1)
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with:

u = 0.949 (22)
9 = 71.16° (23)

) . e . ) .
where 1 is the angle between wgssg and @ . As far as the solar rotation ¢ is concerned, it is not

uniform, since it depends on the latitude . Its differential rotation rate is usually described as [17,18]:
Yo = A+ Bsin® p + C'sin* (24)

where A is the equatorial rotation rate, while B, C set the differential rate. The values of A, B,C
depend on the measurement techniques adopted and on the time period examined [17]; currently accepted

average values are [18]:

A =297240.009 prad s—* (25)
B = —0.48 4 0.04 pyrad s (26)
C = —0.36 £ 0.05 prad s ! 27)

As a measure for the Sun’s rotation rate, we take the average of Equation (24) over the latitude:

B 3
(Yo), = A+ 7+ gc =2.5940.03 prad s~ (28)

where the quoted uncertainty comes from an error propagation.
About the fractional gravitational energy of the Sun, a numerical integration of Equation (3) with the

standard solar model yields for our star [19]:
|06| ~ 3.52 x 107° (29)

The long-term rates of change of the Keplerian orbital elements of a test particle can be
straightforwardly worked out with a first order calculation within the Lagrange perturbative
scheme [20,21]. To this aim, Equation (5), assumed as a perturbing correction to the usual Newtonian
monopole Uy = —GMr~!, must be averaged out over a full orbital revolution of the test particle. After
evaluating Equation (5) onto the Keplerian ellipse, assumed as unperturbed reference trajectory, and
using the eccentric anomaly E as fast variable of integration, one has:

(Uas)p, = w {cosw (uy cos 2 + u, sin 2)
+ sinw [u, sin I 4 cos I (u, cos 2 — u, sin 2)]} (30)

where a,e, I, 2,w are the semimajor axis, the eccentricity, the inclination to the reference {x,y}
plane adopted, the longitude of the ascending node and the argument of pericenter, respectively, of the
test particle.

In obtaining Equation (30), we computed Equation (5) onto the Keplerian ellipse, assumed as
unperturbed reference trajectory. In fact, one could adopt, in principle, a different reference path

as unperturbed orbit, which includes also general relativity at the 1PN level, and use, e.g., the
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so-called Post-Newtonian (PN) Lagrange planetary equations [22,23]. As explained in [22], in order
to consistently apply the PN Lagrange planetary equations to Equation (5), its effects should be greater
than the 2PN ones; in principle, such a condition could be satisfied, as shown later in Section 3.2.
However, in the specific case of Equation (5), in addition to the first order precessions of order O («3),
other “mixed” ai3c™2 precessions of higher order would arise specifying the influence of 3 on the 1PN
orbital motion assumed as unperturbed. From the point of view of constraining o3 from observations,
they are practically negligible, since their magnitude is much smaller than the first order terms and the
present-day observational accuracy, as will become clear in Section 3.2.

In integrating Equation (5) over one orbital period I3, = 27n,; U= 27va3G—1 M1 of the test particle,
we kept both w and 1) constant. In principle, the validity of such an assumption, especially as far as
is concerned, should be checked for the specific system one is interested in. For example, the standard
torques, which may affect the Sun’s spin axis 1/3 are so weak, that they change over timescales of a My
or so [12,24]. In principle, also the time variations of the rotation rate ¢/ should be taken into account.
Indeed, in the case of the Sun, both the equatorial rate A [25] and the differential rates B, C' [26] vary
with different timescales, which may be comparable with the orbital frequencies of the planets used
to constrain 3. However, we will neglect them, since they are at the level of ~0.01 urad s=! [26].
Furthermore, the orbital elements were kept fixed in the integration, which yielded Equation (30). Itis a
good approximation in most of the systems, which could likely be adopted to constrain o, such as, e.g.,
the planets of our Solar System and binary pulsars. Indeed, /, {2, w may experience secular precessions
caused by several standard effects (oblateness of the primary, N-body perturbations in multiplanetary
systems, 1PN gravitoelectric and gravitomagnetic precessions a la Schwarzschild and Lense-Thirring).
Nonetheless, their characteristic timescales are quite longer than the orbital frequencies. Suffice it to
say that, in the case of our Solar System, the classical N-body precessions of the planets for which
accurate data are currently available may have timescales as large as (that figures hold for Saturn [27])
Pon_voqy & 10* y, while the orbital periods are at most B, < 30 y.

From Equation (30), the Lagrange planetary equations [20] yield (Ashby et al. [7], using the
true anomaly f as fast variable of integration, calculated the shifts of the Keplerian orbital elements

corresponding to a generic time interval from f to fy):

da
)

azOuwiyy/1 — e?
== 2¢ [u, sin I cosw + cos I cos w (uy, cos 2 — u, sin §2)
nya

— sinw (uy cos 2 + u, sin 2)] (32)

<d_i> _ _OsOWPCCOSW o T+ sin T (uy sin 2 — 1y cos 2)] 53)

2npay/'1 — €2

azOwesinw

2npay/1 — €2

(u, cot I + u, sin 2 — u,, cos §2) (34)
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dw azOw 2 :
— Yy =—" (=14 ¢€°) cosw (uy cos 2 + u, sin 2
< dt > 2npae/1 — e2 ! ) ( Y )
+ sinw (—uy cos I cos 2 + u,e?csc I — u, sin I + u, cos I sin Q)} (35)
dw azOuwy 9 .
— Y =—""T"{(—1+¢°) cosw (u, cos 2 + u, sin 2
< dt > 2npaey/1 — e2 {( ) ( ! )

+ sinw [—u.sin ] + (e* — cos ) (uy cos 2 — u, sin 2)

+ e2uz tan (é)] } (36)

where the angular brackets (...) denote the temporal averages. It is important to note that, because of
the factor n, a1 & /ain Equations (31)—(36), it turns out that the wider the system is, the larger the
effects due to a3 are. We also stress that the long-term variations of Equations (31)—(36) were obtained
without any a priori assumption concerning either the orbital geometry of the test particle or the spatial
orientation of 1) and w. In this sense, Equations (31)—(36) are exact; due to their generality, they can be
used in a variety of different specific astronomical and astrophysical systems for which accurate data are
or will be available in the future.

As a further check of the validity of Equations (31)—(36), we re-obtained them by projecting the
perturbing acceleration of Equation (1) onto the radial, transverse and normal directions of a trihedron

comoving with the particle and using the standard Gauss equations [20].
3. Confrontation with the Observations

3.1. Discussion of the Existing Constraints

Under certain simplifying assumptions, Will [4] used the perihelion precessions of Mercury and the
Earth to infer:
las| <2x 1077 (37)

More precisely, he assumed that 1,56 is perpendicular to the orbital plane and used an expression
for the precession of the longitude of perihelion w approximated to zeroth order in e. Then, he compared
his theoretical formulas to figures for the measured perihelion precessions, which were accurate to
a ~200—400 milliarcseconds per century (mas cty ') level. Previous bounds inferred with the same
approach were at the level [5]:

las| <2 x107° (38)

A modified worst-case error analysis of simulated data of the future spacecraft-based BepiColombo
mission to Mercury allowed Ashby et al. [7] to infer a bound of the order of |az| < 1071°.

Strong field constraints were obtained from the slowing down of the pulse periods of some isolated
pulsars assumed as rotating neutron stars; for an overview, see [28]. In particular, Will [4], from the
impact of Equation (1) on the rotation rate of the neutron stars and using statistical arguments concerning
the randomness of the orientation of the pulsars’ spins, inferred:

las| <2 x 10710 (39)
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where & is the strong field equivalent of the conservation-law/preferred-frame PPN parameter. This
approach was followed by Bell [29] with a set of millisecond pulsars obtaining [29,30]:

as| S 1071 (40)

Tighter bounds on |G3| were put from wide-orbit binary millisecond pulsars, as well [28]. They rely upon
the formalism of the time-dependent eccentricity vector e(t) = er+eg(t) by Damour and Schaefer [31],
where eg(t) is the part of the eccentricity vector rotating due to the periastron precession, while er is

the forced component. Wex [32] inferred:

las| < 1.5 x 1071 (41)
at the 95% confidence level, while Stairs et al. [33] obtained:

|G| <4 x 10720 (42)

at the 95% confidence level. Such strong-field constraints are much tighter than the weak-field ones by
Will [4]. Nonetheless, it is important to stress that their validity should not be straightforwardly
extrapolated to the weak-field regime for the reasons discussed in [15], contrary to what is often done in
the literature (see, e.g., [7]). More specifically, Shao and Wex [15] warn that it is always recommendable
to specify the particular binary system used to infer the given constraints. Indeed, using different
pulsars implies a potential compactness-dependence (or mass-dependence) because of certain peculiar
phenomena, such as spontaneous scalarization [34], which may take place. Moreover, they heavily rely
upon statistical considerations to cope with the partial knowledge of some key systems’ parameters, such
as the longitude of the ascending nodes and the pulsars’ spin axes. Furthermore, the inclinations are often
either unknown or sometimes determined modulo the ambiguity of / — 180° — /. Finally, assumptions
on the evolutionary history of the systems considered come into play, as well.

A general remark valid for almost all of the upper bounds on «3/ds3 just reviewed is, now, in
order before offering to the reader our own ones. We stress that the following arguments are not
limited merely to the PPN parameter considered in this study, being, instead, applicable to other
non-standard (with such a denomination, we refer to any possible dynamical feature of motion, included
in the PPN formalism or not, departing from general relativity) effects, as well. Strictly speaking,
the tests existing in the literature did not yield genuine “constraints” on either ag or its strong-field
version &3. Indeed, they were never explicitly determined in a least square sense as solved-for
parameters in dedicated analyses in which ad hoc modified models including their effects were fit to
observations. Instead, a somewhat “opportunistic”’ and indirect approach has always been adopted, so
far, by exploiting already existing observation-based determinations of some quantities, such as, e.g.,
perihelion precessions, pulsar spin period derivatives, efc. Theoretical predictions for as-driven effects
were, then, compared with more or less elaborated arguments to such observation-based quantities to
infer the bounds previously quoted. In the aforementioned sense, they should rather be seen as an
indication of acceptable values. For example, think about the pulsar spin period derivative due to
& [4]. In [28], it is possible to read: “Young pulsars in the field of the Galaxy [...] all show positive
period derivatives, typically around 1071* s/s. Thus, the maximum possible contribution from &3 must

also be considered to be of this size, and the limit is given by 43 < 2 x 107! [4]”. In principle, a
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putative unmodeled signature, such as the one due to as/ds, could be removed to some extent in the
data reduction procedure, being partly “absorbed” in the estimated values of other explicitly solved-for
parameters. That is, there could be still room, in principle, for larger values of the parameters of the
unmodeled effect one is interested in with respect to their upper bounds, indirectly inferred as previously
outlined. On the other hand, it must also be remarked that, even in a formal covariance analysis, there is
the lingering possibility that some still unmodeled/exotic competing physical phenomenon, not even
conceived, may somewhat lurk in the explicitly estimated parameters of interest. Another possible
drawback of the indirect approach could consist in that one looks at just one PPN parameter at a time, by
more or less tacitly assuming that all of the other ones are set to their standard general relativistic values.
This fact would drastically limit the meaningfulness of the resulting bounds, especially when it seems
unlikely that other parameters, closely related to the one that is allowed to depart from its standard value,
can, instead, simultaneously assume just their general relativistic values. It may be the case here with
ag and, e.g., the other Lorentz-violating preferred-frame PPN parameters o, aio. Actually, even in a full
covariance analysis targeted to a specific effect, it is not conceivable to estimate all of the parameters one
wants; a compromise is always necessarily implemented by making a selection of the parameters, which
can be practically determined. However, in Section 3.2, we will show how to cope with such an issue in
the case of the preferred-frame parameters o1, o, g by suitably using the planetary perihelia. Moreover,
the upper bounds coming from the aforementioned “opportunistic”” approach should not be considered
as unrealistically tight, because they were obtained in a worst possible case, i.e., by attributing to the
unmodeled effect of interest the whole experimental range of variation of the observationally determined
quantities used. Last, but not least, at present, it seems unlikely, although certainly desirable, that the
astronomers will reprocess observational data records several decades long by purposely modifying their
models to include this or that non-standard effect every time.

The previous considerations should be kept in mind in evaluating the bounds on a3 offered in the
next Sections.

3.2. Preliminary Upper Bounds From the Planetary Perihelion Precessions

Pitjeva [35] recently processed a huge observational data set of about 680,000 positional
measurements for the major bodies of the Solar System spanning almost one century (1913-2011) by
fitting an almost complete suite of standard models to the observations. They include all the known
Newtonian and Einsteinian effects for measurements, propagation of electromagnetic waves and bodies’
orbital dynamics up to the 1PN level, with the exception of the gravitomagnetic field of the rotating
Sun. Its impact, which is negligible in the present context, is discussed in the text. In one of the
global solutions produced, Pitjeva and Pitjev [36] kept all of the PPN parameters fixed to their general
relativistic values and, among other things, estimated corrections Acw to the standard (i.e., Newtonian
and Einsteinian) perihelion precessions of some planets: they are quoted in Table 1.

By construction, they account, in principle, for any mismodeled/unmodeled dynamical effect, along
with some mismodeling of the astrometric and tracking data; thus, they are potentially suitable to
put preliminary upper bounds on a3 by comparing them with Equation (36). See Section 3.1 for a

discussion on potential limitations and strength of such an indirect, opportunistic approach. We stress
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once again that an examination of the existing literature shows that such a strategy is widely adopted
for preliminarily constraining several non-standard effects in the Solar System; see, e.g., the recent
works [37-41]. Here, we recall that, strictly speaking, it allows one to test alternative theories of gravity
differing from general relativity just for ag, all of the other PPN parameters being set to their general
relativistic values. If and when the astronomers will include a3 in their dynamical models, then it could
be simultaneously estimated along with a selection of other PPN parameters. Similar views can be found
in [42].
From Table 1, it turns out that the perihelion of the Earth preliminarily yields:

las| <9 x 1071 (43)
while Mars and Saturn provide bounds of the order of:
las] <2 x 10710 (44)

The bound of Equation (43) is about three orders of magnitude tighter that the weak-field bound reported
in [4].

Table 1. Preliminary upper bounds on a3 obtained from a straightforward comparison of the
figures of Table 4 in [36] for the supplementary rates Aco of the planetary perihelia, reported
here in the second column from the left, with the theoretical predictions of Equation (36).
Pitjeva and Pitjev [36] used the EPM201 1ephemerides [35]. The supplementary perihelion
precessions of Venus and Jupiter are non-zero at the 1.60 and 20 level, respectively. In the
solution that yielded the supplementary perihelion precessions listed, the PPN parameters
were kept fixed to their general relativistic values. The Earth provides the tightest bound:
las] < 9 x 107!, We also report the figures for the 1PN Lense-Thirring and the 2PN
perihelion precessions. All of the precessions listed in this Table are in milliarcseconds per
century (mas cty ).

Atz [36] LT 2PN |os]

Mercury —2.0£3.0 -2.0 7x1073 2.930 x 1078
Venus 2.6+ 1.6 —0.2 6x107* 1.10 x 107?
Earth 0.19+£0.19 —0.09 2x107%  9x107H
Mars  —0.020+0.037  —0.027 6x107° 28x 1071
Jupiter 58.74+283  —7x107* 9x1077 4.388 x 1078
Saturn —0.324+047 —1x107* 9x107% 24x10710

The use of the individual supplementary precessions Aco of the Earth, Mars and Saturn is
justified, since the current level of accuracy in determining them from observations makes other
competing unmodeled effects negligible. By restricting ourselves just to the PN contributions, the 1PN
Lense—Thirring precessions [43], quoted in Table 1, are too small for the aforementioned planets. The
2PN precessions, computed within general relativity from [44,45] for a binary system made of two bodies
A and B with total mass M;:

(45)

TWoPN =

3(GM)™?  [13 (m2 +m%\  32mamp
a2 (1 —e2)? | 2 M2 3 M2
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are completely negligible (see Table 1). As remarked in Section 3.1, the assumption that the other
preferred-frame PPN parameters o, s are zero when a non-zero value for a3 is admitted seems unlikely.
The availability of more than one perihelion extra-precession A allows us to cope with such an issue.
Indeed, it is possible to simultaneously infer bounds on o4, s, iz, which are, by construction, mutually
independent of each other. From the following linear system of three equations in the three unknowns
aq, g, A3t

Aw! = gl + apwl,, + aztol,,, j = Earth, Mars, Saturn (46)

where the coefficients @ ,,,, @ 4, , @.q, are the analytical expressions of the pericenter precessions (as far
as o 1s concerned, w ,, comes from Equation (35), while @ ,,, @, can be found in [46]) caused by

a1, (g, v, and by using the figures in Table 1 for Ao/, one gets:

ap = (—2+2)x107° (47)
g = (34+4) x107° (48)
az = (—4+6)x 107" (49)

It can be noticed that the bound on a3 of Equation (49) is slightly weaker than the ones listed in
Table 1, obtained individually from each planet; nonetheless, it is free from any potential correlation
with aq, as. It is also interesting to notice how the bounds on «;, as of Equations (47) and (48) are
similar, or even better in the case of aw, than those inferred in [46] in which the INPOP10aephemerides
were used [47]. In it, all of the rocky planets of the Solar System were used to separate (the oy, as
planetary signals are enhanced for close orbits) o, cs from the effects due to the unmodeled Sun’s
gravitomagnetic field and the mismodeled solar quadrupole mass moment, which have an impact on
Mercury and, to a lesser extent, Venus. Interestingly, our bounds on a3 of Equations (43), (44) and (49)
are roughly of the same order of magnitude of the expected constraint from BepiColombo [7]; the same
holds also for Equations (47) and (48). We remark that the approach of Equation (46) can, in principle,
be extended also to other planets and/or other orbital elements, such as the nodes [47], to separate more
PPN parameters and other putative exotic effects. To this aim, it is desirable that the astronomers will
release corrections to the standard precessions of more orbital elements for an increasing number of
planets in future global solutions.

It may be worthwhile noticing from Table 1 that Pitjeva and Pitjev [36] obtained marginally significant
non-zero precessions for Venus and Jupiter. They could be used to test the hypothesis that ag # 0 by
taking their ratio and confronting it with the corresponding theoretical ratio, which, for planets of the
same central body, such as the Sun, is independent of « itself. From Table 1 and Equation (36), it is:

Aw‘\/'en

: =0.044 £+ 0.034 (50)
ALTJJup

- Ven

iﬁ;p = 2.251 (S1)
Thus, the existence of the ai3-induced precessions would be ruled out, independently of the value of o
itself. However, caution is in order in accepting the current non-zero precessions of Venus and Jupiter as
real; further independent analyses by astronomers are required to confirm or disproof them as genuine

physical effects needing explanation.
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Finally, we mention that the use of the supplementary perihelion precessions determined by Fienga
et al. with the INPOP10a ephemerides [47] would yield less tight bounds on |a;]|, because of the lower
accuracy of the INPOP10a-based Acu with respect to those determined in [36] by a factor ~ 1.4 — 4
for the planets used here. More recent versions of the INPOP ephemerides, i.e., INPOP10e [48] and
INPOP13a [49], have been recently produced, but no supplementary orbital precessions have yet been
released for them.

4. Summary and Conclusions

In this paper, we focused on the Lorentz invariance/momentum-conservation PPN parameter a3 and
on some of its orbital effects.

We analytically calculated the long-term variations of the standard Keplerian orbital elements of a test
particle orbiting a compact primary. Our results are exact in the sense that we did not restrict ourselves
to any a priori peculiar orientation of the primary’s spin axis. Furthermore, the orbital geometry of the
non-compact object was left unconstrained in our calculations. Thus, they have a general validity, which
may allow one to use them in different astronomical and astrophysical scenarios.

We used the latest results in the field of the planetary ephemerides of the Solar System to preliminarily
infer new weak-field bounds on «3. From a linear combination of the current constraints on possible
anomalous perihelion precessions of the Earth, Mars and Saturn, recently determined with the EPM2011
ephemerides in global solutions in which all of the PPN parameters were kept fixed to their standard
general relativistic values, we preliminarily inferred |az| < 6 x 107!, It is about three orders of
magnitude better than previous weak-field constraints existing in the literature. Slightly less accurate
bounds could be obtained from the supplementary perihelion precessions determined with the INPOP10a
ephemerides. We obtained our limit on a3 by allowing also for possible non-zero values of the other
preferred-frame PPN parameter o, ce, for which we got a; < 2 x 107%, ay < 4 x 107%. All such
bounds, by construction, are mutually independent of each other. ~ An alternative strategy, requiring
dedicated and time-consuming efforts, would consist in explicitly modeling the effects accounted for by
az (and, possibly, by other PPN parameters, as well) and re-processing the same planetary data set with
such ad hoc modified dynamical models to estimate g along with other selected parameters in dedicated

covariance analyses.

Conflicts of Interest
The authors declare no conflict of interest.
References

1. Nordtvedt, K. Equivalence Principle for Massive Bodies. II. Theory. Phys. Rev. 1968, 169,
1017-1025.

2. Will, CM. Theoretical Frameworks for Testing Relativistic Gravity. II. Parametrized
Post-Newtonian Hydrodynamics, and the Nordtvedt Effect. Astrophys. J. 1971, 163, 611-628.



Galaxies 2014, 2 493

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Will, C.M.; Nordtvedt, K., Jr. Conservation Laws and Preferred Frames in Relativistic Gravity.

I. Preferred-Frame Theories and an Extended PPN Formalism. Astrophys. J. 1972, 177,757-174.
Will, CM. Theory and Experiment in Gravitational Physics; Cambridge University Press:
Cambridge, UK, 1993.

Nordtvedt, K., Jr.; Will, C M. Conservation Laws and Preferred Frames in Relativistic Gravity.
II. Experimental Evidence to Rule Out Preferred-Frame Theories of Gravity. Astrophys. J. 1972,
177, T75-792.

Nordtvedt, K. Post-Newtonian Gravitational Effects in Lunar Laser Ranging. Phys. Rev. D 1973,
7,2347-2356.

Ashby, N.; Bender, PL.; Wahr, J M. Future gravitational physics tests from ranging to the
BepiColombo Mercury planetary orbiter. Phys. Rev. D 2007, 75, 022001.

Turyshev, S.G. Experimental Tests of General Relativity. Annu. Rev. Nucl. Part. Sci. 2008, 58,
207-248.

Seidelmann, P.K.; Archinal, B.A.; A’'Hearn, M.E.; Conrad, A.; Consolmagno, G.J.; Hestroffer, D.;
Hilton, J.L.; Krasinsky, G.A.; Neumann, G.; Oberst, J.; et al. Report of the IAU/IAG Working
Group on cartographic coordinates and rotational elements: 2006. Celest. Mech. Dyn. Astron.
2007, 98, 155-180.

Warburton, R.J.; Goodkind, J.M. Search for evidence of a preferred reference frame. Astrophys. J.
1976, 208, 881-886.

Hellings, R.W. Testing Relativity with Solar System Dynamics. In General Relativity and
Gravitation Conference; Bertotti, B., de Felice, F., Pascolini, A., Eds.; Reidel: Dordrecht,
The Netherland, 1984; pp. 365-385.

Nordtvedt, K. Probing gravity to the second post-Newtonian order and to one part in 10 to the 7th
using the spin axis of the sun. Astrophys. J. 1987, 320, 871-874.

Damour, T.; Esposito-Farese, G. Testing local Lorentz invariance of gravity with binary-pulsar
data. Phys. Rev. D 1992, 46, 4128—4132.

Damour, T.; Esposito-Farese, G. Testing for preferred-frame effects in gravity with artificial Earth
satellites. Phys. Rev. D 1994, 49, 1693—-1706.

Shao, L.; Wex, N. New tests of local Lorentz invariance of gravity with small-eccentricity binary
pulsars. Class. Quantum Grav. 2012, 29, 215018.

Hinshaw, G.; Weiland, J.L.; Hill, R.S.; Odegard, N.; Larson, D.; Bennett, C.L.; Dunkley, J.;
Gold, B.; Greason, M.R.; Jarosik, N.; ef al. Five-Year Wilkinson Microwave Anisotropy Probe
Observations: Data Processing, Sky Maps, and Basic Results. Astrophys. J. Suppl. Ser. 2009,
180, 225-245.

Beck, J.G. A comparison of differential rotation measurements—(Invited Review). Sol. Phys.
2000, 791, 47-70.

Snodgrass, H.B.; Ulrich, R.K. Rotation of Doppler features in the solar photosphere. Astrophys. J.
1990, 351, 309-316.

Ulrich, R.K. The influence of partial ionization and scattering states on the solar interior structure.
Astrophys. J. 1982, 258, 404—413.



Galaxies 2014, 2 494

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Bertotti, B.; Farinella, P.; Vokrouhlicky, D. Physics of the Solar System; Kluwer Academic Press:
Dordrecht, The Netherland, 2003.

Kopeikin, S.; Efroimsky, M.; Kaplan, G. Relativistic Celestial Mechanics of the Solar System;
Wiley-VCH: Berlin, Germany, 2011.

Calura, M.; Fortini, P.; Montanari, E. Post-Newtonian Lagrangian planetary equations. Phys.
Rev. D 1997, 56, 4782—4788.

Calura, M.; Montanari, E.; Fortini, P. Lagrangian planetary equations in Schwarzschild spacetime.
Class. Quantum Gravity 1998, 15, 3121-3129.

Souami, D.; Souchay, J. The solar system’s invariable plane. Astron. Astrophys. 2012, 543, A133.
Javaraiah, J. A Comparison of Solar Cycle Variations in the Equatorial Rotation Rates of the
Sun’s Subsurface, Surface, Corona, and Sunspot Groups. Sol. Phys. 2013, 287, 197-214.
Javaraiah, J. Long-Term Variations in the Solar Differential Rotation. Sol. Phys. 2003, 212,
23-49.

Database. Available online:  http://ssd.jpl.nasa.gov/txt/p_elem_t2.txt (accessed on 22
September 2014).

Stairs, I.LH. Testing General Relativity with Pulsar Timing.  Living Rev. Relat. 2003, 6,
doi:10.12942/1rr-2003-5.

Bell, J.LF. A Tighter Constraint on Post-Newtonian Gravity Using Millisecond Pulsars.
Astrophys. J. 1996, 462, 287.

Bell, J.F.; Damour, T. A new test of conservation laws and Lorentz invariance in relativistic
gravity. Class. Quantum Gravity 1996, 13, 3121-3127.

Damour, T.; Schaefer, G. New tests of the strong equivalence principle using binary-pulsar data.
Phys. Rev. Lett. 1991, 66, 2549-2552.

Wex, N. Small-eccentricity binary pulsars and relativistic gravity. In Proceedings of the 177th
Colloquium of the IAU, Bonn, Germany, 30 August-3 September 1999.

Stairs, I.H.; Faulkner, A.J.; Lyne, A.G.; Kramer, M.; Lorimer, D.R.; McLaughlin, M.A.;
Manchester, R.N.; Hobbs, G.B.; Camilo, F.; Possenti, A.; et al. Discovery of Three Wide-Orbit
Binary Pulsars: Implications for Binary Evolution and Equivalence Principles. Astrophys. J.
2005, 632, 1060-1068.

Damour, T.; Esposito-Farese, G. Nonperturbative strong-field effects in tensor-scalar theories of
gravitation. Phys. Rev. Lett. 1993, 70, 2220-2223.

Pitjeva, E.V. Updated IAA RAS Planetary Ephemerides-EPM2011 and Their Use in Scientific
Research. Sol. Syst. Res. 2013, 47, 386—402.

Pitjeva, E.V.; Pitjev, N.P. Relativistic effects and dark matter in the Solar system from observations
of planets and spacecraft. Mon. Not. R. Astron. Soc. 2013, 432, 3431-3437.

Avalos-Vargas, A.; Ares de Parga, G. The precession of the orbit of a charged body interacting
with a massive charged body in General Relativity. Eur. Phys. J. Plus 2012, 127, 155.

Xie, Y.; Deng, X M. f(T) gravity: Effects on astronomical observations and Solar system
experiments and upper bounds. Mon. Not. R. Astron. Soc. 2013, 433, 3584-35809.

Cheung, Y.K.E.; Xu, F. Constraining the String Gauge Field by Galaxy Rotation Curves and
Perihelion Precession of Planets. Astrophys. J. 2013, 774, 65.



Galaxies 2014, 2 495

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Deng, X.M.; Xie, Y. Preliminary limits on a logarithmic correction to the Newtonian gravitational
potential in the solar system. Astrophys. Space Sci. 2013, 350, 103—107.

Li, Z.W.; Yuan, S.F; Lu, C.; Xie, Y. New upper limits on deviation from the inverse-square
law of gravity in the solar system: A Yukawa parameterization. Res. Astron. Astrophys. 2014,
14, 139-143.

Nordtvedt, K. Improving gravity theory tests with solar system “grand fits”. Phys. Rev. D 2000,
61, 122001.

Lense, J.; Thirring, H. Uber den EinfluB der Eigenrotation der Zentralkorper auf die Bewegung
der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift
1918, /9, 156-163. (In German)

Damour, T.; Schafer, G. Higher-order relativistic periastron advances and binary pulsars. Nuovo
Cimento B 1988, 101, 127-176.

Wex, N. The second post-Newtonian motion of compact binary-star systems with spin. Class.
Quantum Gravity 1995, 12, 983-1005.

Iorio, L. Constraints on the Preferred-Frame «;, oy Parameters from Solar System Planetary
Precessions. Int. J. Mod. Phys. D 2014, 23, 1450006.

Fienga, A.; Laskar, J.; Kuchynka, P.; Manche, H.; Desvignes, G.; Gastineau, M.; Cognard, .;
Theureau, G. The INPOP10a planetary ephemeris and its applications in fundamental physics.
Celest. Mech. Dyn. Astron. 2011, 111, 363-385.

Fienga, A.; Manche, H.; Laskar, J.; Gastineau, M.; Verma, A. INPOP new release: INPOP10e.
2013, arXiv:1301.1510.

Verma, A.K.; Fienga, A.; Laskar, J.; Manche, H.; Gastineau, M. Use of MESSENGER
radioscience data to improve planetary ephemeris and to test general relativity. Astron. Astrophys.
2014, 561, A115.

(© 2014 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).



	Introduction
	Orbital Precessions
	Confrontation with the Observations
	Discussion of the Existing Constraints
	Preliminary Upper Bounds From the Planetary Perihelion Precessions

	Summary and Conclusions
	Conflicts of Interest

