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Abstract:

 Single-vertex Feynman diagrams represent the dominant contribution to physical processes, but are frequently forbidden kinematically. This is changed when the particles involved propagate in a gravitational background and acquire an effective mass. Procedures are introduced that allow the calculation of lowest order diagrams, their corresponding transition probabilities, emission powers and spectra to all orders in the metric deviation, for particles of any spin propagating in gravitational fields described by any metric. Physical properties of the “space-time medium” are also discussed. It is shown in particular that a small dissipation term in the particle wave equations can trigger a strong back-reaction that introduces resonances in the radiative process and affects the resulting gravitational background.
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1. Introduction

The search for particle processes of astrophysical significance to which gravitation makes a non-negligible contribution is in general difficult, though potentially rewarding. The entire field of gravitational lensing is in fact based on the discovery of one such process in which light interacts with gravity, see e.g. [1]. It is hoped that a number of additional processes will point out new directions of investigation. The search is made more difficult, unfortunately, by the fact that the lowest order Feynman diagrams that represent the dominant contribution to a process are frequently forbidden by kinematics. Consider, for instance, the process in which an incoming massive particle of momentum [image: there is no content] and dispersion relation [image: there is no content]pμ=m12 produces a photon of momentum [image: there is no content], while the outgoing particle has momentum [image: there is no content]. Conservation of energy-momentum requires [image: there is no content]=pμ′+ℓμ. In the rest frame of p, we have [image: there is no content], which gives [image: there is no content], [image: there is no content] and again [image: there is no content]. Then, [image: there is no content] leads to [image: there is no content], which shows that for [image: there is no content], the case considered, we get [image: there is no content], and the process becomes physically meaningless. There are processes, however, in which massive particles emitting a photon are not kinematically forbidden. This is certainly the case when gravitation alters the dispersion relations of at least one of the particles involved [2]. We stress here that even the reduction of a Feynman diagram by a single vertex would result in a cross-section gain of a factor [image: there is no content], where M and R are the mass and radius of the gravitational source (units [image: there is no content]).

External gravitational fields have long been known to play the role of a medium, see e.g. [3,4] in the propagation of particles, be these treated classically or according to quantum mechanics. In the latter case, scattering by a Newtonian potential has been the subject of several investigations, [5,6,7], but bremsstrahlung [8,9,10,11], the emission of Cêrenkov radiation [12] and other processes [13] have also been studied in connection with various gravitational sources. As stated above, external gravitational fields do alter the dispersion relations of a particle propagating in a gravitational background at least to the extent that the particle is no longer on shell. It would therefore appear sufficient to somehow solve a wave equation to obtain the desired result. This is done in quantum electrodynamics where the electromagnetic field is however represented by a four-vector, of which only a single component is usually taken into account [14]. The case of gravity, represented by a second rank tensor, is considerably more complicated. Moreover, the theoretical prediction by Mashhoon [15,16,17,18], confirmed by other authors [19,20,21,22], of the existence of a coupling of gravity to spin, requires that the effect of a gravitational field be no longer limited to a single component of the metric. This has become even more pressing since the experimental observation of spin-rotation coupling for photons [23] and neutrons [24] and of other important spin-induced effects at the macroscopic level [25,26,27].

External gravitational fields contribute to the solution of covariant wave equations through a Berry phase [28,29]. This should be expected, because in metric theories of gravitation [30], general relativity in particular, the space parameter of Berry’s theory coincides with space-time. It has been shown that the wave equations for fermions and bosons can be solved exactly to first order in the metric deviation [image: there is no content] for any metric [image: there is no content] and that the phases so calculated [20,31,32,33,34] give reliable results in interferometry, gyroscopy [28] and optics [35,36], give the correct Einstein deflection, can be used in the study of neutrino helicity and flavour oscillations [37] and of spin-gravity coupling in general [31,34]. They also reproduce a variety of known effects, as discussed in [32,33,38].

The dispersion relations of a particle propagating in a gravitational background can be derived from the respective covariant wave equations. The gravitational phases mentioned above change, in effect, a particle four-momentum by acting on the wave function of the field-free equations. This result applies equally well to fermions and bosons and can be extended to all orders in [image: there is no content] [30]. The calculation of even the most elementary Feynman diagrams does require an appropriate treatment when gravitational fields are present. The procedures developed in [2] fill in part of this gap and apply to linearised gravitational, or inertial fields of any type up to intermediate intensities. The present paper focuses on the applications of the procedures outlined in [2] rather than on the individual reactions, though the aim still is to find physical processes capable of leading to potentially observable results. Below, we give examples of processes that can be treated in ways that are similar. Because of the intrinsic resemblance, gravitational bremsstrahlung [39,40,41,42,43] will be added to this category in due time.

Additional interesting possibilities do moreover arise when particles propagate in a gravitational background. In the Conclusions, for instance, we briefly discuss properties of the “space-time medium”, such as dispersion.



2. The Process [image: there is no content]

Let us assume, for simplicity, that P in Figure 1 is an incoming fermion and that the photon ℓ and outgoing fermion [image: there is no content] are produced on-shell. The solution of the covariant Dirac equation for P, exact to O([image: there is no content]), is [37]:

Figure 1. [image: there is no content] and ℓ are the outgoing fermion and photon, and P indicates the incoming fermion.
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Ψ(x)=−12m−iγμ(x)Dμ−me−iΦT[image: there is no content](x)≡T^[image: there is no content],



(1)




where [image: there is no content], [image: there is no content] is the covariant derivative, [image: there is no content] the spin connection and the matrices [image: there is no content] satisfy the relations [image: there is no content]. Both [image: there is no content] and [image: there is no content] can be obtained from the usual constant Dirac matrices by using the tetrad fields [image: there is no content] and the relations:


γμ(x)=eα^μ(x)γα^=δα^μ+hα^μ(x)γα^,Γμ(x)=−14σα^β^eα^νeνβ^;μ,



(2)




where [image: there is no content]. A semicolon and a comma are also used as alternative ways to indicate covariant and partial derivatives respectively. We use units [image: there is no content]; the signature of [image: there is no content] is −2,ΦT=Φs+ΦG,


Φs(x)=P∫PxdzλΓλ(z),ΦG=−14∫Pxdzλγαλ,β(z)−γβλ,α(z)Lαβ(z)+[image: there is no content]∫Pxdzλγαλkα,



(3)




[image: there is no content] and [image: there is no content] satisfies the usual, flat space-time Dirac equation. It is convenient to re-write Equation (1) in the form [image: there is no content], where:


g(x)=12mγμ([image: there is no content]+[image: there is no content](x)pα^+ΦG,μ(x)+me−iΦT,



(4)




and:


ΦG,μ=−[image: there is no content]∫Pxdzλ(γμλ,β−γβλ,μ)pβ+[image: there is no content]γαμpα.



(5)




We claim that the transition amplitude for the process of Figure 1 can be calculated by introducing the generalized four-momentum:



[image: there is no content]=[image: there is no content]+[image: there is no content]pα^+[image: there is no content]≡[image: there is no content]+[image: there is no content],



(6)




for the incoming fermion, as Equation (4) itself suggests. The part that contains the gravitational field is indicated by [image: there is no content]. In Equation (6), [image: there is no content], [image: there is no content] and [image: there is no content] are quantities that must be calculated, once the metric is known. They are related to the Fourier transforms of the corresponding expressions that appear in Equations (2), (3) and (5). [image: there is no content] is not on-shell. In fact:


Pμ[image: there is no content]≡me2=m2+2pμhμα^[image: there is no content]+pμΦG,μ,



(7)




where [image: there is no content]pμ=m2, because [image: there is no content] is the momentum of the free fermion represented by [image: there is no content] in Equation (1). The transition amplitude is then:


Mf→f′γ=−iZeημνu¯0([image: there is no content]→)εμ^(λ)γν^g(|[image: there is no content]|)u0(p→),



(8)




where [image: there is no content]≡p→−[image: there is no content]→−[image: there is no content], ε(λ)μ^ represents the polarization of the photon and [image: there is no content] is the charge of the fermion. It may be argued that a transition amplitude [image: there is no content] must be added to Equation (8) at O([image: there is no content]), because the contraction in Equation (8) is, in general, accomplished by means of [image: there is no content], and [image: there is no content] contains a part that is independent of [image: there is no content]. The transition amplitude [image: there is no content], estimated in [2], is given: by [6]


[image: there is no content]=−iZeγμν(|[image: there is no content]|)u¯0([image: there is no content]→)εμ^(λ)γν^u0(p→).



(9)




However, [image: there is no content] contains the part [image: there is no content] of (6) that comes from [image: there is no content], but not the new part that contains the gravitational contribution due to the propagation of the fermion in the field of the source. To O([image: there is no content]), this process is indistinguishable from bremsstrahlung and is dealt with, more properly, in that context. It will not be discussed further in this work.



The calculation now requires that a metric be selected.

Let us consider the particular instance of a fermion that is propagating with momentum [image: there is no content], impact parameter [image: there is no content] and [image: there is no content], from [image: there is no content] toward a gravitational source of mass M and radius R placed at the origin and described by the metric γ00=2ϕ,γij=2ϕδij, where [image: there is no content]. This metric is frequently used in lensing problems [36,44]. One finds Γ0=−1/2ϕ,jσ0j,Γi=−1/2ϕ,jσij and ei^0=0,e0^0=1−ϕ,ek^l=1+ϕδkl. All spin matrices are now expressed in terms of ordinary, constant Dirac matrices. We also assume that the on-shell conditions pμ′p′μ=m2,ℓμℓμ=0 remain valid. Extension of the calculation to include different particles or higher order gravitational contributions to [image: there is no content],ℓ and Equation (1) can be derived to all orders in [image: there is no content] [30]. The Fourier transforms of the quantities that appear in Equation (4) must now be calculated. We obtain:



h0α^(q)[image: there is no content]=8π2δ(q0)δ(qx)δ(qy)p0GMK0(bqz),h3α^(q)[image: there is no content]=8π2δ(q0)δ(qx)δ(qy)pGMK0(bqz)



(10)






ΦG,2(q)=0,ΦG,3(q)=−8π2δ(q0)δ(qx)δ(qy)p02p+pGMK0(bqz)



(11)




Four-momentum conservation to zeroth order only is required because Equations (10) and (11) are already of O([image: there is no content]). Though the gravitational field selected above is stationary, energy conservation must be introduced, because the energy contribution of the field is contained in the generalized momentum of P. We further approximate the Bessel function [image: there is no content], itself a distribution, by [image: there is no content] and eliminate [image: there is no content] from Equations (10) and (11). Conservation of energy-momentum will reappear as a factor [image: there is no content] in the expression for the radiated power W defined below. By removing [image: there is no content] from [image: there is no content] and [image: there is no content], we obtain [image: there is no content] and [image: there is no content] of Equation (6). We find:



P0≃p0+GMbp0=p0+P˜0,P1≃GMbp02p+p=P˜1,P2=0,P3≡P=p−GMbp=p+P˜



(12)




We calculate the power radiated as photons in the process of Figure 1 according to the formula, see e.g. [45]:



W=18(2π)2∫δ4(P−[image: there is no content]−ℓ)[image: there is no content]Pp0′d3[image: there is no content]d3ℓ



(13)




There are two ways to calculate [image: there is no content]. In the first one, we replace [image: there is no content] with [image: there is no content] in the field-free ([image: there is no content]=0) expression given by Σ|M|2=Z2e2[−4m2(pα′pα)+8([image: there is no content]pα)]. The gravitational contribution to M then appears in [image: there is no content] exclusively. We also remove the terms [image: there is no content] that do not contain gravitational contributions and therefore refer to the kinematically-forbidden transition. This yields, to O([image: there is no content]), the expression:



Σ|Mf→f′γ|2=Z2e2−4(pα′P˜α)+8([image: there is no content]P˜α)



(14)




In a second, alternate approach, we calculate [image: there is no content] directly ([image: there is no content]≠0) from Equation (8). By summing over final spins and averaging over initial spins and polarizations, we obtain:



Σ|Mf→f′γ|2=Z2e22(2m)2Tr(p′+m)γβp+P˜+m(p+m)2+(p+m)P˜*+H(p+m)γβ



(15)




where a≡γμaμ and [image: there is no content]. On carrying out the traces of the Dirac matrices, the contribution from H vanishes. By further eliminating from [image: there is no content] the terms that refer to the kinematically-forbidden transition, we again find Equation (14). This supports our claim that the generalized momentum [image: there is no content] introduced in Equation (6) leads to the correct value of the transition probability by the substitution of [image: there is no content] with [image: there is no content] in the field-free expression. The integration over d3[image: there is no content] in Equation (13) is performed by means of the identity:


∫d3[image: there is no content]2p0′=∫d4[image: there is no content]Θ(p0′)δ(p′2−m2)



(16)




while that over θ, the angle between [image: there is no content] and [image: there is no content], can be carried out by writing the on-shell condition for [image: there is no content] in the form:


δ(2|[image: there is no content]||[image: there is no content]|cosθ−Pα[image: there is no content]+2P0ℓ0+m2)



(17)




We find:



W=Z2e24πGMbp02+p2p2ℓ2



(18)




The radiation spectrum is given by:



dWdℓ=Z2e2ℓ2πGMbp02+p2p2



(19)




Equation (17) and the condition:


|cosθ|≈12pℓ1−2GMb2GMbp02+p2−2ℓ2p01+GMb≤1



(20)




lead, for [image: there is no content], to the inequality [image: there is no content]. It then follows that the hardest photons are emitted in the backward direction with energy [image: there is no content] and power:


W[image: there is no content]∼2Z2e2p28π(GMb)



(21)




which would obviously take its highest values in the neighbourhood of a very compact source.
For [image: there is no content], the inequality Equation (20) is satisfied for [image: there is no content], and we also find:



W[image: there is no content]∼Z2e24πGMbm2ℓ2p21+2p2m2



(22)




which diverges for small values of p. This infrared divergence is well known and arises as a consequence of the finite energy resolution [image: there is no content] of the outgoing fermion. The process, as calculated, is, in fact, indistinguishable from that in which massless particles with energy [image: there is no content] are also emitted and from processes in which vertex corrections are present (virtual massless particles emitted and reabsorbed by the external lines of Figure 1). When these additional diagrams are calculated, all infrared divergences disappear [46]. In the particular case at hand, p in Equation (22) can be simply replaced by [image: there is no content]. Below this value, the process is not kinematically allowed.
The process discussed in this section may be considered as the decay of a fermion of effective mass [image: there is no content]Pα into a photon and a fermion of mass m with a lifetime [image: there is no content], which is indeed small. Quantitatively, for electrons with [image: there is no content], [image: there is no content], in the neighbourhood of a canonical neutron star, we find [image: there is no content].



3. The Process [image: there is no content]

Using the replacements [image: there is no content] and [image: there is no content] in Figure 1, we can calculate the process by which a photon produces a fermion f of momentum [image: there is no content] and an anti-fermion [image: there is no content] of momentum q after propagating in a gravitational field. In addition [image: there is no content], because of the presence of the antiparticle. Conservation of energy-momentum now requires that [image: there is no content], while the dispersion relations are pμ′p′μ=m2,qαqα=m2 and the generalized photon momentum is [image: there is no content]. In the centre of mass frame of the (f,[image: there is no content])-system, we now have [image: there is no content]→+[image: there is no content]=[image: there is no content]=0 and also [image: there is no content]. This and [image: there is no content] again show that if the effect of the gravitational field vanished ([image: there is no content]), we would re-obtain the meaningless result ℓ0=[image: there is no content]=0. It is therefore the presence of the gravitational field that enables the process. The effect of the gravitational field on the polarization of the photon is given by [image: there is no content], where the matrices [image: there is no content] and [image: there is no content] are given in [36] and act on the matrix [image: there is no content]. The contributions of these terms reduce to [image: there is no content]. In the approximation [image: there is no content] to be used below, the derivatives of [image: there is no content] behave as [image: there is no content], and the whole contribution of [image: there is no content] and [image: there is no content] to the photon polarization can be neglected. We assume that ℓ1=ℓ2=0,ℓ3≡ℓ and use the following result:



ΦG,1=[image: there is no content]∫−∞zdz0γ00,1ℓ+[image: there is no content]∫−∞zdz3γ33,1ℓ=2GMℓb(1+zb2+z2)








which, for [image: there is no content], becomes [image: there is no content]. Similarly, we find:


ΦG,3=−GMℓb2+z2−GMℓ∫−∞zdzz(b2+z2)3/2=−2GMℓb2+z2∼−2GMbℓ








in the same approximation. Factorizing [image: there is no content], we find the generalized momenta L0=ℓ,L1∼2GMℓ/b,L2=0,L3=ℓ(1−2GM/b). By applying the substitutions indicated above, we can derive the transition amplitude for the process γ→f+[image: there is no content]:


Σ|Mγ→f[image: there is no content]2|=Z2e24(pα′qα)+8(qαqα)



(23)




and the rate at which energy is radiated as an anti-fermion:


W1=18(2π)2∫d3[image: there is no content]d3qq0p0′L0δ4(q+[image: there is no content]−L)Σ|Mγ→f[image: there is no content]2|q0



(24)




The integration over d3[image: there is no content] can be carried out by means of the identity Equation (16), and the on-shell condition for [image: there is no content] becomes:



δ(Lα−qα(Lα−qα)−m2)=δ(LαLα−2L0q0+2|[image: there is no content]||[image: there is no content]|cos[image: there is no content])



(25)




Integrating over [image: there is no content], the angle between [image: there is no content] and [image: there is no content], we find:



W1=Z2e24π∫dqqL0|[image: there is no content]|[image: there is no content]LαLα+m2



(26)




We also find [image: there is no content] after replacing [image: there is no content] with [image: there is no content], factorizing [image: there is no content] and writing 1/|[image: there is no content]|≃(1+GM/b)/ℓ. We finally obtain:



W1=Z2e28πGMbm2q2ℓ21−ℓ2m2



(27)




from which [image: there is no content] can be immediately obtained. We also have [image: there is no content], while |cos[image: there is no content]|≤1 leads to [image: there is no content], which is always satisfied in the interval π/2≤[image: there is no content]≤π.


4. The Process [image: there is no content]

We now consider the process in which a fermion-antifermion couple in the initial state annihilates into a photon. We assume that the fermion that propagates in the gravitational background has generalized momentum P. By conservation of energy-momentum, we then have [image: there is no content]+qμ=ℓμ, and the generalized momentum is given by P0=p0+p0GM/b≡p0+P0˜,P1=P2=0,P3=p3(1+GM/b)−p0GM/b≡p3+P3˜. The transition amplitude becomes:



Σ|M|f[image: there is no content]→γ2=Z2e24(qαPα˜)+8([image: there is no content]Pα˜)



(28)




from which all terms referring to the kinematically-forbidden transition have been eliminated. We also find:


W2=Z2e2(2π)2∫d3qd3ℓq0P0δ4(P+q−ℓ)4(qαPα˜)+8([image: there is no content]Pα˜)



(29)




The integration over [image: there is no content] can be easily performed by using the identity ∫[image: there is no content]2q0=∫d4qΘ(q0)δ(q2−m2). We find:



W2=[image: there is no content]2π2∫d3ℓΘ(P0−ℓ0)1P0δ([image: there is no content]−ℓα)(Pα−ℓα)−m2[image: there is no content](ℓα−Pα)+2([image: there is no content]Pα)



(30)




The on-shell condition for q becomes:



δ(q2−m2)=δ([image: there is no content]−ℓα)(Pα−ℓα)−m2=12ℓ|[image: there is no content]|δcos[image: there is no content]+[image: there is no content]Pα−2ℓ0P0−m22ℓ|[image: there is no content]|



(31)




and the integration over [image: there is no content] then yields:


W2=Z2e24πGMb∫dℓℓP0|[image: there is no content]|p3p0+m2



(32)




In order to carry out the integration over ℓ, we first calculate:



1P0|[image: there is no content]|≃1p3p01−[image: there is no content]2GMb−p0p3GMb



(33)




which must be substituted in Equation (32). The integration over ℓ gives:


W2=Z2e28πGMb1−m21p3p0−1p32ℓ2



(34)




from which we obtain the radiation spectrum:


dW2dℓ=Z2e24πGMb1−m21p3p0−1p32ℓ



(35)




The condition |cos[image: there is no content]|≤1 then requires that:



(m2+p3p0)GMbp0+p3+p02p3GMb≤ℓ≤(m2+p3p0)GMbp0−p3+p02p3GMb



(36)




Notice that the process calculated in this section is not the time-reverse of γ→f+[image: there is no content], because in the latter process, gravitation is assumed to act on the incoming photon line and not on the outgoing fermion line.



5. Conclusions

External gravitational fields in radiative processes can be included in the calculation of a transition probability by simply replacing the momentum [image: there is no content] of a particle with its generalized version [image: there is no content] in the corresponding expression for the zero-field process. The examples given involve spin-[image: there is no content] and spin-1 particles, but the procedure can be extended to any spin. An essential point here is that the dispersion relations are altered by the external gravitational field and can be calculated if the corresponding wave equations can be solved to O([image: there is no content]) or higher [20,34,35,36,37]. It follows, in particular, that kinematically-forbidden processes similar to that of Figure 1 become physical, and their transition probabilities can be determined. The calculation of the gravitational contributions are greatly simplified and can be extended to higher order in [image: there is no content]. The applications are not confined to fields of a Newtonian type, but extend to any gravitational field. In this respect, the procedure presented goes beyond the results that apply to external electromagnetic potentials [14], not only because the metric has in general ten components rather than just four, but also because time-independence is not a requirement.

The transition amplitudes derived are O([image: there is no content]) to leading order and can therefore be considerably larger than those normally studied in the literature. The examples given are limited to a single type of physically-relevant metric, and we cannot conclude that the resulting spectra are general and can be used to identify the processes. The actual determination of the spectra requires the use of metrics specific to the problems studied. However, the results suggest that particle processes, like bremsstrahlung, Čerenkov radiation, or positron production in the neighbourhood of compact astrophysical objects, or in cosmology, need to be reconsidered.

Space-time has so far been treated as a linear optical medium, though it is by no means clear what its ultimate properties will be as a result of quantum gravity. It is not in particular known whether its index of refraction will remain unaltered in response to high intensity fluxes of particles. There is scope for research on this and other properties of space-time.

Our final considerations regard the back-reaction that physical processes may have on the gravitational background. We show below that the back reaction is not always negligible and provide an example of how a very small disturbance in the wave equation can grow rapidly and alter the background gravitational field.

Equation (1) requires that [image: there is no content] be a solution of the field-free Dirac equation and, of course, of the equation (ημν∂μ∂ν+m2)[image: there is no content](x)=0. The approximation procedure still holds true, however, when [image: there is no content] satisfies more general equations [28,32]. With the addition of a dissipation term, the equation for [image: there is no content] becomes:



ημν∂μ∂ν+m2−2mσ∂0[image: there is no content]=0



(37)




where we take σ=α|⟨[image: there is no content]|T^|[image: there is no content]⟩|2=α(mp0GM2b)2 [37] and α is a dimensionless, arbitrary parameter, [image: there is no content], that reflects the coupling strength of the dissipation term. When we substitute [image: there is no content](x)=exp(mσx0)ϕ0(x) into Equation (37), we obtain:


∂02−∂z2+m2(1−σ2)ϕ0(x)=0



(38)




An example of a problem with a similar behaviour is offered by a fluid heated from below. For small temperature gradients, the fluid conducts the heat, but as the gradient increases, conduction is not sufficient to lead the heat away, so the fluid starts to convect. In realistic problems, the exponential growth of [image: there is no content] does not continue indefinitely, but is restricted at times [image: there is no content] by nonlinearities or dispersive effects that may have been initially neglected.

The effect of the new solution [image: there is no content] on W can be found as follows. We first neglect the change [image: there is no content] in W because, in general, [image: there is no content]. Setting [image: there is no content] for simplicity, the effect of the exponentially increasing term on Equation (13) then amounts to the transformations [image: there is no content] and [image: there is no content], where we have used the relation [image: there is no content]. W has therefore a resonance at [image: there is no content] of width [image: there is no content]. Over times [image: there is no content] GeV−1, Ψ=T^[image: there is no content] increases exponentially until the compensating mechanisms mentioned above kick in; for a proton of energy [image: there is no content] GeV in the field of a canonical neutron star [image: there is no content] s. Considerably higher values of τ can, of course, be obtained for the lighter fermions. As Ψ grows, so does the energy momentum tensor associated with it and the gravitational field it generates, altering, in the process, the gravitational background.
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