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Abstract: Within the framework of the third quantization, we consider the possibility that an initially
recollapsing baby universe can enter a stage of near de Sitter inflation by tunnelling through a
Euclidean wormhole that connects the recollapsing and inflationary geometries. We present the
solutions for the evolution of the scale factor in the Lorentzian and Euclidean regions as well as the
probability that the baby universe indeed crosses the wormhole when it reaches its maximum size.
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1. Introduction

The idea that our Universe is not unique but instead resides in a collection of universes,
dubbed the multiverse, has appeared several times in cosmology and within vastly different contexts,
e.g., in Everett’s many worlds interpretation [1], in chaotic inflation [2,3], in the string theory
landscape [4], in the ekpyrotic scenario [5,6], and many others [7–15]. While there is no unique
precise interpretation of the term “multiverse” [9], a transversal idea is the possibility that different
universes interact with each other via quantum effects. Such effects are of increased relevance in the
context of the very early universe, when the energy density and curvature of the universe are expected
to approach the Planck scale. Therefore, they could prove important in solving the question of the
initial conditions of the universe and avoiding a Big-Bang-type of singularity [16].

As one of the many current proposals that attempt to provide a framework to study the dynamics
of the multiverse, the third quantization scheme draws parallelisms with quantum field theory [17–20].
By quantizing the wave function of the spacetime and matter fields, which satisfies a possibly non-linear
Wheeler–DeWitt equation, and defining creation and annihilation operators of individual universes
with a particular spacetime–matter configuration, the third quantization treats the multiverse as
a quantum system of particles (universes) with interactions (topology changes) [19,20]. At the
semiclassical level, these interactions are often associated to the existence of Euclidean wormholes
or instantons, which where first considered in the decay process of a false vacuum [21] (for further
works on Euclidean wormholes and instantons in various contexts, please check the references
cited in [22]). Although classically forbidden due to their Euclidean geometry, such solutions can
nevertheless be traversed by means of quantum tunnelling effects and therefore connect remote patches
of the universe, or in this case the multiverse.

In this work, we review how such a Euclidean wormhole appears in the third quantization
treatment of a toy model of the multiverse filled by a minimally coupled massive scalar field and
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where homogeneity and isotropy is assumed for each sub-universe [20,22,23]. This wormhole solution
connects two different Lorentzian regions, one corresponding to a small recollapsing baby universe
and the other corresponding to a larger asymptotically de Sitter universe. Thus, the possibility arises
for a baby universe to quantum tunnel through the wormhole and emerge as an inflating universe.
We summarize the results of our recent paper [22], presenting the explicit solutions for the evolution
of the scale factor in the two Lorentzian and the Euclidean regions as well as showing how the
tunnelling probability varies with the inflationary scale and the momentum of the scalar field.
To compute the tunnelling probability, we considered the tunnelling boundary conditions introduced
by Vilenkin [24,25].

2. The Model

Let us consider a spatially closed Friedmann–Lemaître-Robertson–Walker universe containing
a minimally coupled scalar field ϕ with a potential V(ϕ). For such a universe the Wheeler–DeWitt
(WDW) equation reads [26]

h̄2 ∂2φ

∂a2 −
h̄2

a2
∂2φ

∂ϕ2 + σ2
(

H2
ϕa4 − a2

)
φ = 0 (1)

where φ(a, ϕ) is the wave function of the spacetime and matter fields, a is the scale factor, σ := 3π/(2G),
with G being the gravitational constant, and H2

ϕ := (8πG/3)V(ϕ). Notice that the scalar field ϕ is
made dimensionless by the rescaling ϕ→

√
4πG/3ϕ. By identifying the scale factor a as an intrinsic

time variable, which can be motivated from a semiclassical approximation, the WDW equation (1) can
be regarded as an analogue to the Klein-Gordon wave equation in the minisuperspace [16] and in this
picture the wave function φ assumes the role of the quantum field of spinless “particles”.

In the third quantization scheme, this analogy is taken one step further as the wave function of
the spacetime and matter fields is elevated to an operator φ̂(a, ϕ), which can be Fourier expanded as

φ̂(a, ϕ) =
∫ dK√

2π

[
eiKϕφK(a) b̂K + e−iKϕφ∗K(a) b̂†

K

]
(2)

where K is related to the momentum of the scalar field ϕ. By quantizing the wave function of the
spacetime and matter fields as in (2), the third quantization draws parallels with the formalism of a
quantum field theory (cf. Figure 1 of [20]) and the operators b̂K and b̂†

K can be interpreted as operators
for the annihilation and creation, respectively, of universes (“particles”) with a definite value of K and
amplitude φK. As such, the third quantization leads to a natural interpretation of the wave function
of the spacetime and matter fields in terms of one-universe and multi-universe states which can be
constructed by successive application of the operators b̂K and b̂†

K on the void [20]. Of course, in general
the wave function φ(a, ϕ) does not have a definite value of the momentum of the scalar field ϕ since
the multiverse is composed of a distribution of sub-universes with different values of K which in
addition are coupled to each other. However, in the approximation that H2

ϕ is constant, the different K
modes decouple1 and each amplitude ϕK(a) can be associated to a semiclassical solution of the WDW
equation. For such a sub-universe, we can obtain an effective Friedmann equation at the semiclassical
level by inserting the expansion (2) into the WDW equation (1), leading to:

1 In the case of a massless scalar field with a cosmological constant, this decoupling is exact. In addition, the Starobinsky type
of potentials, which have gained special attention since the results of the Planck mission [27], present a near constant plateau
on which inflation can occur. In that case, as long as the field is far from the origin, we can consider, as a first approximation,
that the value of the potential remains constant as the universe expands.
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(
ȧ
a

)2
= H2

dS

(
1− 1

H2
dSa2

+
4

27
K2

K2
max

1
H6

dSa6

)
Kmax :=

π√
3

M2
P

h̄2H2
dS

(3)

Here, a dot indicates a derivative with respect to the classical cosmic time t and we assume
that Hϕ assumes a constant value HdS throughout the evolution of the model. On the right hand
side of Equation (3), the first term inside the brackets leads to an asymptotically de Sitter inflation for
large a, the second term arises from the presence of spatial curvature and the third term is related to
the momentum of the scalar field ϕ. As will become apparent below, the value of the ratio K/Kmax,
which modulates the amplitude of this last term, will be critical in the evolution of the individual
sub-universes for small values of the scale factor.

In order to obtain the time evolution of each sub-universe, we can rewrite the effective Friedmann
Equation (3) as (ȧ/a)2 = H2

dSa−6(a2 − a2
+)(a2 − a2

−)(a2 + a2
0), where the values a+, a− and a0 can be

defined for K ∈ [0, Kmax] as [23]

a+(K) :=
1√

3HdS

√
1 + 2 cos

(αK
3

)
(4)

a−(K) :=
1√

3HdS

√
1− 2 cos

(
αK + π

3

)
(5)

a0(K) :=
1√

3HdS

√
−1 + 2 cos

(
αK − π

3

)
(6)

and satisfy a+ ≥ a− ≥ a0. The dependency of the critical values a+, a− and a0 on K is encoded in
the phase αK := 2 arcsin (K/Kmax) ∈ [0, π]. Based on the presence of two real and positive roots,
a+ and a−, for which H2 = 0, we can divide the spacetime described by the effective Friedmann
Equation (3) into three separate regions:

(i) For 0 < a < a−, we find a baby universe that expands from a = 0 until the maximum value a− at
which point, classically, it starts to collapse. During the expanding phase, the analytical solution
a(η), where η is the conformal time defined by dη = a−1dt, was obtained for the first time
in [22] and reads

a2(η) = a2
− − (a2

0 + a2
−)

sn2 [HdS (η− − η)
∣∣ k2]

1− k2 sn2 [HdS (η− − η) | k2]
. (7)

Here, sn(u|m) is the Jacobi elliptic function [28], we have introduced the constants
HdS := (a2

0 + a2
+)

1/2HdS and k2 := (a2
0 + a2

−)/(a2
0 + a2

+) and η− is the value of the conformal
time when a = a−.

(ii) For a+ < a, we obtain an asymptotically de Sitter universe with a minimum allowed value a+ for
the scale factor. As in the previous case, a solution for a(η) was obtained in [22] in terms of
Jacobi elliptic functions sn(u|m) and cn(u|m) [28]:

a2(η) = a2
+ + (a2

+ − a2
−)

sn2[HdS (η − η+)
∣∣ k2]

cn2[HdS (η − η+) | k2]
, (8)

where η+ is the value of the conformal time when a = a+.

(iii) For a− < a < a+, we observe a Euclidean region with H2 < 0. While this region is classically
forbidden, from a quantum-mechanical point of view it can be interpreted as a Euclidean
wormhole that connects the regions of a < a− and a > a+. The evolution inside the wormhole,
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which can be obtained by applying a Wick rotation to the Euclidean conformal time η̃ = −iη,
was derived in [22]:

a2(η̃) = a2
+ −

(
a2
+ − a2

−

)
sn2
[
HdS (η̃+ − η̃)

∣∣∣ 1− k2
]

. (9)

Here, η̃+ is the value of the Euclidean conformal time when a = a+.

In Figure 1, we present the evolution of the scale factor in terms of η and η̃, as obtained in (7)–(9).
The thick blue line indicates the evolution of a baby universe that traverses the wormhole instead of
collapsing and then emerges as an inflating universe. The thin grey lines show the classical continuation
of the evolution of the baby universe (into the future) and of the asymptotically de Sitter universe
(into the past).

Figure 1. The blue thick line represents the evolution of the squared scale factor for a baby universe
(i) that once it reaches its maximum size traverses the Euclidean wormhole (ii) and emerges as an
expanding universe (iii) that starts to inflate. The classical continuation of the evolution in the baby
and inflating universes is shown as a thin grey line.

The solutions presented in (7) and (8) show how fundamentally different types of sub-universes
such as small recollapsing baby universes and larger expanding inflationary universes can exist in the
multiverse within the aforementioned framework of the third quantization. In addition, the existence
of a Euclidean wormhole solution, described by (9), that connects these two types of universes leads to
the possibility that a baby universe created in the multiverse with a momentum K avoids the collapsing
phase altogether by quantum-mechanically traversing the wormhole and emerging as an expanding
universe that evolves towards de Sitter inflation. This is similar to the tunnelling effect observed in
the models of creation from nothing by Vilenkin [24] and of an axion-induced Giddings–Strominger
instanton [29]. In fact, the effective Friedmann equation (3) and its solutions (7)–(9) can be seen as a
generalization of the results obtained in those works.

3. Tunnelling

Once a baby universe reaches its maximum size a−, it can continue its classical evolution and
start to collapse or it can enter the wormhole and eventually become an inflating universe, a process
which is quantum-mechanical in nature. Following Vilenkin’s tunnelling conditions, the probability of
this process to occur can be calculated as [24,25]:

PK(a− → a+) ≈ exp
(
− 2σHdS

h̄

∫ a+

a−
da
∣∣∣∣1a
√
(a2 − a2

+)(a2 − a2
−)(a2 + a2

0)

∣∣∣∣) . (10)
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This integral was solved in Ref. [22] and the results show that the tunnelling probability can
be expressed as a linear combination of the complete elliptic integrals of the first, second and third
kind [28], K(m), E(m), Π(n|m), respectively:

PK(a− → a+) ≈


exp

(
−

M2
P

h̄2H2
dS

)
for K = 0 ,

exp

(
−

M2
P

h̄2H2
dS

[
CK K

(
k̃2)+ CE E

(
k̃2)+ CΠ Π

(
κ2
∣∣ k̃2)]) for 0 <

K
Kmax

< 1 ,
(11)

where the linear coefficients CK, CE and CΠ are defined as

CK := 3πH3
dS k̃2

[
1
3
+

1
κ2 + k̃2

(
1
3
− 1

κ4

)]
, (12)

CE := − 3πH3
dS k̃2

[
1
3
+ k̃2

(
1
3
− 1

κ2

)]
, (13)

CΠ := 3πH3
dS k̃2

(
1− k̃2

κ2

)(
1− 1

κ2

)
, (14)

and we have, k̃2 := (a2
+ − a2

−)/(a2
+ + a2

0) and κ2 := (a2
+ − a2

−)/a2
+. Notice that the presence of the

factor −(h̄2H2
dS/M2

P)
−1 in the exponent means that the tunnelling probability is highly suppressed

for realistic values of the scale of inflation, h̄2H2
dS/M2

P, which lie in the range 10−11 ∼ 10−10 [30].
However, we find that this suppression can be counterbalanced in the cases of baby universes with
large values of K, as PK approaches unity when K ≈ Kmax. This can be understood as a consequence
of the narrowing of the Euclidean region as we consider values of K closer to the maximum allowed
value Kmax, thus making it easier for the wormhole to be traversed. These effects are clearly visible
in Figure 2, where we present a 3-dimensional plot of the tunnelling probability as a function of
K/Kmax and h̄2H2

dS/M2
P, as well as different curves of PK obtained by fixing one of these variables.

In a blue dashed line we present the tunnelling probability in the case of creation from nothing [24],
which corresponds to the first line in Equation (11).

4. Summary and Discussion

In this proceedings contribution, we presented our recent results regarding the existence of
Euclidean wormholes in a multiverse scenario which can connect baby and inflating universes [22].
Using the third quantization scheme, a key feature in our framework2, we were able to describe
the evolution of such a multiverse in terms of the creation and annihilation of individual universes,
each of them identified by the number K related to the kinetic energy of the scalar field in that
particular universe. By solving the effective Friedmann equation for each value of K we were able
to find two classically disconnected solutions that correspond to small recollapsing baby universes
and to larger expanding universes that evolve towards a de Sitter expansion and that are joined by
an intermediate Euclidean wormhole solution. The existence of this wormhole allows for a baby
universe to be transformed into a new expanding universe, leading to inflation in a new region
of the multiverse. The solutions found can be seen as generalizations of the previous works by
Vilenkin [24] and Giddings–Strominger [29]. In the former work only a (positive) cosmological constant
is considered and therefore an inflating universe is created from nothing through tunnelling effects.
In the latter, the existence of a wormhole solution that connects regions of spacetime with different
topologies is supported by the presence of an axion which plays a similar role to the scalar field in the
model analysed in this work.

2 The third quantization is based in drawing parallels with quantum field theory. Therefore, the operators b̂ and b̂† in
Equation (2) can be regarded as the annihilation and creation operators, respectively, of sub-universes with a give value of K.
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Figure 2. The tunnelling probability PK(a− → a+) plotted as a function of the ratio K/Kmax and
the inflationary scale h̄2H2

dS/M2
P. In the two bottom panels we plot the tunnelling probability when

(left panel, from bottom/darker to top/lighter) fixing K/Kmax = 0, 1
4 , 1

2 , 3
4 , 95

100 ; and when (right panel,
from bottom/darker to top/lighter) fixing h̄2H2

dS/M2
P = 1

8 , 3
8 , 5

8 , 7
8 . The tunnelling probability for the

case of the creation of an expanding universe from nothing (K = 0) is indicated by a dashed blue line.

The probability that a baby universe tunnels through the wormhole when it reaches its maximum
size can be computed by using the Vilenkin tunnelling conditions [24,25]. In our model, this probability
is in general highly suppressed due to the fact that the scale of inflation is several orders of magnitude
below the Planck scale. Nevertheless, in universes where the scalar field has sufficient initial
kinetic energy, the Euclidean region may become narrow enough for the tunnelling probability to be of
order of unity. This is seen in Figure 2 where the tunnelling probability is extremely peaked around the
maximum allowed value of Kmax. As a consequence, unless the creation of baby universes with large
values of K is highly suppressed, the patches of the multiverse that undergo an inflationary phase
should correspond to cases of K ≈ Kmax.

Finally, we note that the presence of a term in the Friedmann equation with a a−6-dependency
suggests that these models could lead to a suppression of the primordial power spectrum on large
scales by limiting the total number of e-folds of inflation. This possibility and its implications for the
quadropole problem of the cosmic microwave background has been considered in our recent paper [31]
(see also [32]). Of course, if the value of K is too high, the near-scale-invariance of the primordial power
spectrum around the Planck pivot scale [27] is not recovered. Likewise, if the value of K is too small
the effect of this pre-inflationary era would be washed away. Therefore, a comparison with available
observational constraints on the primordial power spectrum could in principle be used to set upper
limits on K.
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fruitful discussions. J.M. is thankful to UPV/EHU for a PhD fellowship.

Author Contributions: All the authors contributed equally to this work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
WDW Wheeler–DeWitt

References

1. Everett, H. “Relative State” Formulation of Quantum Mechanics. Rev. Mod. Phys. 1957, 29, 454.
2. Linde, A.D. Chaotic Inflation. Phys. Lett. B 1983, 129, 177–181.
3. Linde, A.D. Eternally existing self-reproducing chaotic inflanationary universe. Phys. Lett. B 1986, 175,

395–400.
4. Susskind, L. The anthropic landscape of string theory. In Universe or Multiverse? Carr, B., Ed.; Cambridge

University Press: Cambridge, UK, 2007; pp. 247–266.
5. Khoury, J.; Ovrut, B.A.; Steinhardt, P.J.; Turok, N. The Ekpyrotic Universe: Colliding Branes and the Origin

of the Hot Big Bang. Phys. Rev. D 2001, 64, 123522.
6. Steinhard, P.J.; Turok, N. Cosmic evolution in a cyclic universe. Phys. Rev. D 2002, 65, 126003.
7. Carr, B.J. Universe or Multiverse? Cambridge University Press: Cambridge, UK, 2007.
8. Smolin, L. The Life of the Cosmos; Oxford University Press: Oxford, UK, 2003.
9. Tegmark, M. Parallel Universes. Sci. Am. 2003, 288, 40–51.
10. Freivogel, B.; Susskind, L. Framework for the string theory landscape. Phys. Rev. D 2004, 70, 126007.
11. Mersini-Houghton, L. Thoughts on Defining the Multiverse. arXiv 2008, arXiv:0804.4280.
12. Mersini-Houghton, L. Birth of the Universe from the Multiverse. arXiv 2008, arXiv:0809.3623.
13. Bouhmadi-López, M.; Vargas Moniz, P. Quantization of parameters and the string landscape problem.

J. Cosmol. Astropart. Phys. 2007, 705, 5.
14. Robles-Pérez, S.; Martín-Moruno, P.; Rozas-Fernández, A.; González-Díaz, P.F. A dark energy multiverse.

Class. Quantum Gravity 2007, 24, F41–F45.
15. Alonso-Serrano, A.; Bastos, C.; Bertolami, O.; Robles-Pérez, S. Interacting universes and the cosmological

constant. Phys. Lett. B 2013, 719, 200–205.
16. Kiefer, C. Quantum Gravity, 3rd ed.; Oxford University Press: Oxford, UK, 2012.
17. Caderni, N.; Martellini, M. Third quantization formalism for Hamiltonian cosmologies. Int. J. Theor. Phys.

1984, 23, 233–249.
18. McGuigan, M. Third quantization and the Wheeler-DeWitt equation. Phys. Rev. D 1988, 38, 3031.
19. Strominger, A. Baby universes. In Quantum Cosmology and Baby Universes, Proceedings of the 7th Jerusalem

Winter School for Theoretical Physics, Jerusalem, Israel, 27 December 1989–4 January 1990; Coleman, S., Hartle, J.,
Piran, T., Weinberg, S., River Edge, N.J., Eds.; World Scientific: Singapore, 1991.

20. Robles-Pérez, S.; González-Díaz, P.F. Quantum state of the multiverse. Phys. Rev. D 2010, 81, 083529.
21. Coleman, S.R.; De Luccia, F. Gravitational effects on and of vacuum decay. Phys. Rev. D 1980, 21, 3305.
22. Bouhmadi-López, M.; Krämer, M.; Morais, J.; Robles-Pérez, S. What if? Exploring the multiverse through

Euclidean wormholes. Eur. Phys. J. C 2017, 77, 718.



Galaxies 2018, 6, 19 8 of 8

23. Robles-Pérez, S.; González-Díaz, P.F. Quantum entanglement in the multiverse. J. Exp. Theor. Phys.
2014, 118, 34–53.

24. Vilenkin, A. Quantum Creation of Universes. Phys. Rev. D 1984, 30, 509.
25. Vilenkin, A. The quantum cosmology debate. AIP Conf. Proc. 1999, 478, 23.
26. Linde, A.D. Particle physics and inflationary cosmology. arXiv 2005, arXiv:hep-th/0503203v1.
27. Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.;

Banday, A.J.; Barreiro, R.B.; et al. Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys.
2016, 594, A20.

28. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions, 9th ed.; National Bureau of Standards:
Gaithersburg, MD, USA, 1970.

29. Giddings, S.B.; Strominger, A. Axion Induced Topology Change in Quantum Gravity and String Theory.
Nucl. Phys. B 1988, 306, 890–907.

30. Bartolo, N.; Caprini, C.; Domcke, V.; Figueroa, D.G.; Garcia-Bellido, J.; Guzzetti, M.C.; Liguori, M.;
Matarrese, S.; Peloso, M.; Petiteau, A.; et al. Science with the space-based interferometer LISA. IV: Probing
inflation with gravitational waves. J. Cosmol. Astropart. Phys. 2016, 1612, 26.

31. Bouhmadi-López, M.; Krämer, M.; Morais, J.; Robles-Pérez, S. Pre-inflation from the multiverse: Can it solve
the quadrupole problem in the cosmic microwave background? arXiv 2017, arXiv:1711.05138.

32. Bouhmadi-López, M.; Chen, P.; Huang, Y.; Lin, Y. Slow-roll inflation preceded by a topological defect phase
à la Chaplygin gas. Phys. Rev. D 2013, 87, 103513.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Model
	Tunnelling
	Summary and Discussion
	References

