Supplementary material S1
The following non-dimensional parameters are used in this work.
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Where [ is the length of the solution domain in x direction, £ is the equivalent
Young's modulus. 779and ppare the ambient viscosity and density of the lubricant. The

non-dimensional equations are as follows.

Non-dimensional Reynolds equation and the boundary condition at micro meshes:
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P(X),Y)=P(X,.Y)=P(X.Y,)=P(X.Y,)= 1;0

The non-dimensional film thickness equation is
H(X,Y)= I:h +06,(x,¥)+6, (x,y)+v(x, y)]
=H0+51(X,Y)+52(X,Y)+V(X,Y)

And the non-dimensional elastic deformation equation is
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The non-dimensional viscosity-pressure and density-pressure functions are
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Finally, the non-dimensional load balance equation is
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The solution domain for micro meshes is {(X,Y)|O <X<1,0<Y< 1} . AX and

AY are the grid space in X and Y directions, respectively, and AX=AY . i and j

represent the nodes in X and Y, respectively. The density of grids is MxN.
The discrete Eq(2a) is given as follows,
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The discrete film thickness equation is
H,=H,+8,,+6, +V,, )

In order to discretize the non-dimensional elastic deformation equation Eq(4), Liu
et al. [1] used parabolic-elliptic interpolation function to estimate the pressure
distribution in one micro mesh element, and then utilized the interpolation function to
discretize Eq(4) which turns into Eq(10).
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where D is the elastic deformation coefficient matrix, and it is only determined
based on the specific micro meshes.
Based on the same interpolation function of pressure distribution, the non-
dimensional load balance equation is given in Eq(11).
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where e is also the coefficient matrix. The calculation of D and e is given in work[1].
Eq(8) can be reformatted to Eq(12).
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where the superscript (s) means the (s)th iteration step, as the AX=AY,
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To a given j, the coefficient matrix of Eq(12) is tridiagonal. Thus chasing method
can be used to solve the corresponding linear equation set.
However, when h —0,

all =gl —=2050 (14a)



ﬂl(,sf) = _(81 (l/)Z Jj +g+(l/)2 Jj +811( )1/2 +€ £+)1/2)%0 (14b)

7 =gl —=250 (14c)

Therefore, the coefficient matrix of Eq(12) will lose its diagonal dominance. This
is the reason why it is hard to get a converged solution under ultrathin lubricant film.
Zhu and Hu [2, 3] utilized the elastic deformation equation Eq(10) to solve this problem.

They transpose the RHS terms involving the unknown pressures in Eq(12), P, S1+]1) ,
Bf;+1) , and R(+S1+jl) to the left. In this manner, Eq(13) turns to follow
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Because element D,ii has the maximum value when & = /, following inequality

always holds,
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which means that the coefficient matrix of Eq(13) keeps diagonal dominance even
under ultrathin lubricant film.
Eq(12) is solved iteratively by under relaxation method, the equation is

P,=P,+w(P-P,) (17)
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where wis the under-relaxation factor, which is smaller than one, and Prew is the
pressure distribution values for the next iteration step.
The convergent criterion for pressure distribution
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Where P is the newest pressure distribution, Poi 1s the pressure distribution obtained in
the last iteration loop, and & is a constant which is equal to 1x107 in this paper.
The convergent criterion for load capacity is
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where Wea is the calculated load capacity, W is the applied load, and &» is a constant
which equals to 1x107 in this paper.
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