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Abstract: In the curling sport, the coefficient of friction between the curling stone and pebbled ice is
crucial to predict the motion trajectory. However, the theoretical and experimental investigations
on stone–ice friction are limited, mainly due to the limitations of the field measurement techniques
and the inadequacy of the experimental data from professional curling rinks. In this paper, on-site
measurement of the stone–ice friction coefficient in a prefabricated ice rink for the Beijing Winter
Olympics curling event was carried out based on computer vision technology. Firstly, a procedure
to determine the location of the curling stone was proposed using YOLO-V3 (You Only Look Once,
Version 3) deep neural networks and the CSRT Object tracking algorithm. Video data was recorded
during the curling stone throwing experiments, and the friction coefficient was extracted. Further-
more, the influence of the sliding velocity on the friction coefficient was discussed. Comparison with
published experimental data and models and verification of the obtained results, using a sensor-based
method, were conducted. Results show that the coefficient of friction (ranging from 0.006 to 0.016)
decreased with increasing sliding velocity, due to the presence of a liquid-like layer. Our obtained
results were consistent with the literature data and the friction model of Lozowski. In addition, the
experimental results of the computer vision technique method and the accelerometer sensor method
showed remarkable agreement, supporting the accuracy and reliability of our proposed measurement
procedure based on deep learning.

Keywords: curling stone; coefficient of friction; on-site measurement; computer vision technology;
sensor-based method; Beijing Winter Olympics

1. Introduction

Curling, also known as “chess on ice”, is a widespread winter sport combining strategy
and skill, and it requires a high level of concentration and precision [1–3]. In recent years,
especially following the success of the 2022 Winter Olympics in Beijing, the sport of curling
has attracted increasing interest from around the world [4].

In the curling game, the rotating stone following a curled trajectory, rather than keep-
ing a straight trajectory, is a well-acknowledged phenomenon. For a stone sliding with
a clockwise rotational velocity, a transverse motion component on the right-hand side
will develop, and vice versa [5,6]. For almost a century, many attempts have been made
by scholars to explain the curling motion. For instance, forward–backward asymmetry
friction over the running band of curling stones was adopted by many researchers to
predict the observed curling behavior. According to the different mechanisms explain-
ing the asymmetry, the forward–backward asymmetry friction models can be divided
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into six models, that is, the pressure difference model, the water layer model, the snow-
plow model, the evaporation-abrasion model, the scratch-guiding model, and the edge
model [3,7–11]. Recently, the mechanism for getting the stone to follow a curved trajectory
has been investigated using a pivot–slide-based model [12,13] and a split friction model
by Ziegler [14]. In short, although several models have been proposed in the surveyed
literature, the mechanism is still under scientific debate. This is primarily because of the
complicated motion process and a lack of sufficiently precise observation data [5,15].

It is well known that friction and motion are largely influenced by the characteristics
of the stone–ice contact surface. The curling stone (Figure 1) is specially made of about
20 kg of granite rock with a rough bottom. Through a raised annulus with a width of about
6 mm and a diameter of about 120 mm, i.e., a running band/RB, the bottom of the curling
stone is in contact with the curling ice. There are many small protrusions, called pebbles,
on the surface of the curling ice, roughly 104 pebbles per square meter of ice, that reduce
the curling distance [16,17]. The pebbles are produced by technicians spraying purified
water droplets onto the initially flat ice surface. The pebble sizes, with an average height of
1–2 mm and a diameter of 3–10 mm, are controlled by the size of the spray hole. As only
about 10–100 pebbles are in constant contact with the curling stone RB, the actual pressure
magnitude exerted by the stone on the pebbles is considerable, about 0.4–8.1 MPa [18].
The multiple features of these contact surfaces comprehensively affect the movement of
the stone and increase the fun of the game. In 2020, Kameda et al. [10] pointed out that
the curl distance was primarily determined by the stone RB (surface roughness and area),
instead of the ice surface conditions. The curl phenomenon can be regarded as the result of
multiple physical mechanisms working together, and the influence of these mechanisms
can be expressed by the stone–ice friction coefficient [18].
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Figure 1. Contact situation of curling stone and pebbled ice.

Studies on the stone–ice friction coefficient include experiment-based research and
theory-based research. For experiments, Penner [19] measured friction by manually drag-
ging a curling rock along the ice of a local curling rink at a constant velocity, and recorded
the required force. However, the coefficient of kinetic friction at velocities greater than
approximately 1 m/s and less than 0.15 m/s could not be obtained using this approach.
Furthermore, Nyberg et al. [20] designed a special device combining an electric motor and
force gauge to measure the friction force of a curling stone sliding over the ice. As shown in
Figure 2, the sliding velocity was improved in comparison with the measurement method
adopted by Penner [19]. In their study, the dependence of the stone–ice friction coefficient
on the sliding speed and roughness of the curling stone was investigated. In terms of the
theoretical research, although many theoretical models of kinetic ice friction have been
proposed [21–24], no adequate model has been developed and validated for curling stones.
One of the limited models was presented by Penner [19]. In this research, the calculation of
the coefficient of kinetic friction was from the perspective of energy transfer, rather than
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the actual physical mechanism between the interacting interfaces. In addition, using the ice
skating friction derivation method [25], Lozowski et al. [26] developed a numerical model
of the stone–ice friction coefficient, based on thermodynamic equilibrium. The effects of
multi-parameters of both the ice and curling stone, such as geometrical parameters, thermal
parameters, ice hardness, and stone sliding velocity, were incorporated in the model.
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In summary, the investigation of friction is limited mainly by the limitations of on-site
measurement technology and insufficient experimental data from professional curling
rinks. In recent years, artificial intelligence methods and strategies have been increasingly
developed to explore the complex tribological characteristics [27,28]. Computer vision
technology based on deep learning provides an insight into the motion trajectory, and
can be used as an effective measurement technique. With the progress of artificial intel-
ligence technology, deep-learning-based object detection methods showing impressive
performance in speed, accuracy, and automaticity, and have been extensively applied in
scenarios, such as structural health monitoring [29–31]. The object detection algorithms
based on deep learning mainly include one-stage and two-stage algorithms. You Only Look
Once/YOLO [32] is a one-stage object detection algorithm with real-time object recognition
and localization capabilities through a convolutional neural network.

To better understand the friction coefficient of a stone sliding on ice in the “Ice Cube”
rink designed for the 2022 Beijing Winter Olympics, this study adopted the YOLO-V3 model
and CSRT object tracking algorithm with a good balance in speed and precision to per-
form curling stone tracking and recognition. The main contributions in this paper are
summarized as follows:

(1) The friction coefficient of a curling stone sliding on pebbled ice in an actual rink for
the Beijing Winter Olympics was obtained, based on on-site measurement.

(2) A procedure to determine the location of the curling stone was proposed, based on
YOLO-V3 deep neural networks and the CSRT tracker. The method may be further
applied to actual competitions without the ethical issues of competition, which may
contribute to revealing the complex friction mechanism of stone–ice.

(3) A curling stone dataset containing 1000 images was created to supply the data for the
study of curling stone object recognition.

The remainder of the paper is organized as follows. In the second part, the deep-
learning-based methodologies for determining curling stone locations are proposed. De-
scriptions of the investigated curling rink, measurement methods, and data processing
are presented in the third part. In the fourth part, the effects of sliding velocity on fric-
tion, calculation model assessment, and accelerometer-based experimental verification are
discussed. Finally, conclusions are drawn from the experimental results and analyses.

2. Methodologies
2.1. Image Dataset Description
2.1.1. Video Data Acquisition

Videos were recorded with a high-definition camera with a resolution of 3840 × 2160 pix-
els at a rate of 60 frames per second.
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2.1.2. Image Acquisition, Annotation and Dataset Production

In this paper, images were first extracted frame-by-frame from the video stream.
Secondly, manual object localization, namely, the position identified by creating a bounding
box around the region of interest/ROI, i.e., the curling stone in this study, was conducted
for 1000 images. Finally, the annotated images were converted to the YOLO format to train
using the YOLO-V3 deep learning method and object tracking algorithm.

The labeled dataset was broken up into three sets, i.e., a training set, a validation set,
and a test set. The training set consisted of 600 images, the validation set consisted of
200 images, and the test set consisted of 200 images of the original image. The training
dataset was a set of examples used to train the parameters of the deep learning model. The
test dataset, independent of the training dataset, was used to evaluate the performance
characteristics of the model fit against the training dataset, and the validation dataset was
used for regularization by early stopping.

2.2. YOLO-V3 Deep Neural Network

The You Only Look Once, Version 3/YOLO-V3 [33] algorithm is an improved algo-
rithm based on YOLO and YOLO-V2. In contrast to two-stage target detection algorithms,
such as Faster R-CNN, it divides the image into different grids. Each grid is responsible for
the corresponding object, and supports multi-category target detection. Faster detection
speeds can be achieved while maintaining accuracy. Additionally, YOLO-V3 can achieve
its average precision with a higher detection speed than a one-stage network [34,35].

There are two main components to the YOLO-V3 detection model: a backbone network
and a detection network. Its network structure is shown in Figure 3. The algorithm uses
several excellent 3 × 3 and 1 × 1 convolution kernels, and some residual structures are
used in the later multi-scale predictions. Figure 3 shows the adoption of Darknet-53, based
on the residual network idea, as the backbone network for feature extraction. As part of the
training process of the network layer deepening model, the Darknet-53 model consisted
of five residual blocks to prevent gradient explosions. Each residual block consisted of
multiple residual units, which contained two DBL units. The DBL units each contained
a convolution layer (Con2d Layer), a batch normalization layer (BN Layer), and a leaky
rectified linear layer (LeakyReLU Layer). In this way, the number of layers in the network
could be significantly increased while avoiding the disappearance of gradients.

The detection network part adopted the FPN feature pyramid structure used in the
Faster R-CNN to reduce feature loss as much as possible and improve detection accuracy.
Among them, a total of 3 feature layers were extracted: the middle layer with the output
feature resolution of 52 × 52, the middle and lower layers of 26 × 26, and the bottom
layer of 13 × 13. The three feature layers passed the detection for small, medium, and
large resolution target objects, respectively. After obtaining 3 effective feature layers, multi-
feature fusion was performed, and the effective feature layers were predicted. As soon
as the prediction result was obtained, the decoding prediction module decoded the data
processed by the network, thereby obtaining the final result.
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2.3. Object Tracking Algorithms

Object tracking, locating an object in successive frames of a video, is a core research
scheme of computer vision and image processing technology. As for the commonly used
object tracking algorithms in OpenCV Python, Kernelized Correlation Filters/KCF tracker
uses a combination of BOOSTING and MIL tracking algorithm techniques, and both the
accuracy and speed are improved. The Discriminative Correlation Filter with Channel
and Spatial Reliability/CSRT tracker is an advanced algorithm with a higher accuracy
and lower speed than the KCF tracker. In this study, after conducting multiple trials with
different models, the CSRT Tracker model was adopted to track objects.

2.4. Computer Hardware Parameters

The computer hardware parameters of the training platform were as follows: Intel
Core i7-4790 @ 3.60 GHz CPU, 32 GB DDR4 RAM, NVIDIA GTX GeForce 2060 GPU with
11 GB memory, and the Windows 10 operating system.

3. Experiments
3.1. Experimental Description

The on-site measurement of curling stone motion was performed at the “Ice Cube”
rink designed for the 2022 Beijing Winter Olympics. Information about the investigated
curling ice rink and the measuring method are briefly presented in this section.

3.1.1. Curling Ice Rink for Beijing Winter Olympics

The prefabricated ice rink, located in the Notational Aquatics Center, in Beijing, China,
as shown in Figure 4, was constructed to host the curling event in the 2022 Beijing Winter
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Olympics. In contrast to traditional ice rinks built directly on rigid concrete bases, the
prefabricated rink was built on a swimming pool, using a steel frame and concrete slab
supporting system. The ice sheet was 80 mm thick, into which a network of cooling pipes
and honeycomb web elements were embedded [36,37]. The thickness of the ice sheet in
a traditional curling rink is about 50 mm. The pebbled ice was carefully prepared by the
ice-making technician, and the ice surface temperature was maintained at −5 ◦C. The
temperature and humidity ratios of the air closest to the ice sheet and the air 1500 mm
above the ice sheet were 7~9 ◦C/2~3 g/kg and 12~14 ◦C/3~3.5 g/kg, respectively.
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3.1.2. Methods of Measurements

A high-precision camera with a resolution of 3840 × 2160 pixels attached at 2000 mm
above the ice surface was adopted to record the curling stone motion at 60 frames/s.
As pointed out by the previous surveyed literature, the stone rotation and sweeping of
the pebbled ice generate transverse motion. For simplicity, in the present study, video
recording of the movement of the stones was performed without rotation and sweeping.
The comprehensive stone motion, combined with rotation and sweeping, will be carried
out in future studies. The sliding distance of the stone recorded in each test was about
3 m, due to the limitation of the camera monitoring the area. A total of 100 groups of
experiments with different initial velocities were conducted.

3.2. Data Processing

As shown in Figure 5, the stone–ice friction coefficient was obtained by performing the
following processing flow on the recorded video data. The CSRT tracker algorithm was used
to track curling stone motion, and the pixel coordinates of the marked points were obtained
frame-by-frame. Before calculating the acceleration in real coordinates, the pixel coordinates
were required to be converted into real ones. The coordinate transformation coefficient
k was obtained according to the relationship between the actual distance determined
by the ruler placed on the ice surface and the distance between pixel points. Therefore,
determination of the real displacements, speeds, and accelerations of the curling stone was
archived. Using the actual position coordinates, the average speed in a small timestep, as
an approximate value of instantaneous speed, was calculated by substituting the formula
v = ∆x/∆t.
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Figure 5. Flowchart for calculating the coefficient of friction from raw data.

Figure 6 shows the relationship between the sliding speed of a curling stone and the
corresponding time during a throwing motion. Linear fitting of the sliding speed was
performed, and the slope of the straight line was related to the deceleration produced
by friction force. Finally, the corresponding friction coefficient of a stone sliding on an
ice surface was calculated according to the formula µ = a/g, where g is the gravitational
acceleration. For an example given in Figure 6, a deceleration of 0.115 m/s2 can be obtained,
and the stone–ice friction coefficient would be calculated as 0.0117.
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Figure 6. Example of the sliding speed of curling stone obtained during movement.

During the above-mentioned data processing approach, the change in friction coeffi-
cient a was ignored, i.e., the sliding speed linearly decreased with time. Furthermore, it
seemed reasonable to adopt a constant friction coefficient within a short sliding distance of
less than 3 m. Assuming a stone sliding at an initial speed of v0 with a constant acceleration
a, the displacement–time relationship would be described as y = ν0t + 1

2 at2, where y is
the displacement of the stone and t is the time interval. Figure 7 shows the stone-sliding
distance versus time curve and the fitting results using the linear function and quadratic
function, respectively. It can be observed that the quadratic function corresponding to
a uniformly decreased motion showed good agreement with the measured data, when



Lubricants 2022, 10, 265 8 of 15

compared with the linear equation corresponding to a uniform motion. According to the
result of fitting the sliding distance with a quadratic function, the friction coefficient was
taken as 0.0116, which was consistent with the above obtained value of 0.0117.
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4. Results and Discussion

In this section, the results of the measured friction coefficient using deep-learning-
based methods are presented. The velocity-dependent stone–ice friction coefficient was
described using a mixed lubrication regime. Moreover, the friction coefficient obtained
from on-site measurement in this study was compared with that of other curling rinks (the
predicted values were compared by different theoretical models), and the experimental
results were based on another measurement method, using an accelerometer sensor.

4.1. Impact of Velocity on Friction Coefficient

Statistical methods were adopted to present our experimental results. The speed range
was divided into 14 groups (0.35~0.45 m/s, 0.45 m/s~0.55 m/s, . . . , 1.35 m/s~1.45 m/s),
and the average value and corresponding standard deviation of the friction coefficient in
each interval were calculated. Figure 8 presents the influence of the average sliding velocity
on the friction coefficient between the ice and curling stone. It can be seen that the curling
stone on the ice had a low coefficient of friction, ranging from 0.006 to 0.016. Similarly to
other ice friction conditions, such as ice–ice friction [38], the low values of stone–ice friction
were attributed to the presence of a thin lubricating water film on the ice surface. With
regard to the velocity-dependent friction strength, results from the measurements showed
descending coefficient of friction values as the curling stone sliding velocity increased, and
different forms of functions were used to describe the trend of decreasing friction strength
(Figure 8). However, the fitting results were poor because of the scatter of the friction
coefficient values, which could have been attributed to the uncertainty of the complex
contact conditions between the stone RB and pebbled ice. Another reason could have been
related to the measurement method, i.e., the friction coefficient was determined based on
the change in sliding speed, instead of the required force to maintain a constant speed of
the stone.

According to the thickness of the liquid-like layer, three different friction regimes are
typically distinguished: dry friction, mixed friction, and hydrodynamic friction. In the
mixed friction regime, the thickness of the liquid-like layer is lower than the characteristic
roughness, and the friction coefficient decreases with the thickness of the liquid-like layer,
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which is formed with increasing temperature, pressure, or sliding velocity. Therefore, the
phenomenon of higher velocity resulting in a more pronounced effect on the reduction
in the friction indicated that more lubricating water film was formed with the increasing
sliding speed, due to frictional heating and the stone–ice friction belonging to a mixed
lubrication regime.
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As presented in Figure 9, publicly available friction data of curling stones based
on experimental measurements were collected to compare with our obtained values. It
can be noted that the friction coefficient in our work was mainly measured at speeds of
0.5 m/s to 1.4 m/s, whereas the literature data was usually obtained at speeds of less
than 0.5 m/s. Regarding the speed dependency of the friction, it can be observed that
the literature data agreed with our measured results. However, as stone–ice friction is a
very complex tribological system, the differences in the absolute values could have been
related to different experimental parameters, such as the ice rink, ice surface temperature,
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surface roughness, air temperature, and humidity. Table 1 summarizes some available
experimental parameters for the measurement of the stone–ice friction coefficient.
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Table 1. Experimental parameters of stone–ice friction coefficients.

Reference Curling Rink Ice Surface
Temperature

Air Temperature and
Relative Humidity Sliding Velocity

Penner [19] Nanaimo curling
rink in Canada −5 ◦C Not available 0.15~1 m/s

Nyberg et al. [20]

Curling ice
prepared by Daniel

Svensson at
Curlingcompaniet

−3.5 ◦C 6~7 ◦C and 55% 0.1~2.3 m/s

This study
Prefabricated

curling rink for
Winter Olympics

−5 ◦C 7~9 ◦C and ~39% 0.4~1.4 m/s

4.2. Assessment of the Theoretical Models for Stone–Ice Friction

In this section, the performance of the two published theoretical models mentioned
in the introduction for calculating stone–ice friction coefficients is discussed, based on the
data we obtained.

In the process of theoretical derivation by Penner [19], the complex contact conditions
between the stone and pebbled ice were simplified as n points with square contact areas.
According to the relationship between the energy produced by friction force and the
energy transferred into the ice, the coefficient of kinetic friction was obtained with the
following equation:

µ =
1√
2
(kiρici)

1
2 n

1
4 p−

3
4 Fn
− 1

4 ∆Tν−
1
2 (1)

where ki, ρi, and ci are the thermal conductivity, density, and specific heat capacity, re-
spectively, of the ice; n is the contact point between the stone and ice; p is the inter-
face pressure, according to the assumption made by Makkonen and Tikanmaki [39] and
Lozowski et al. [40], i.e., the ice hardness multiplied by the actual contact area is equal to
the exerted load, giving an ice hardness of 35 MPa; Fn is the total normal force between the
stone and ice; ∆T is the temperature difference between the ice surface temperature and
the bulk ice temperature; and v is the stone sliding velocity.

Lozowski et al. [26] derived a friction coefficient function based on thermodynamic
equilibrium, without considering the details of dry and wet friction. On the basis of an
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assumption that the total friction force exerted on the curling stone is composed of shear
stress force and the ploughing force, the numerical model of the stone–ice friction coefficient
was calculated as follows:

µ =
2

Hν

[
kg∆Tg√

πκgtp
+

ki∆Ti√
πκitb

]
(2)

with
∆Tg = Tmelt − Tg

∆Ti = Tmelt − Ti

tp =
2rp
ν

tb ∈
[
tmin
b , tmax

b
]

tmin
b = b

ν

tmax
b = 2

√
2rb+b2

ν

where H is the ice hardness (35 MPa); Ti, Tg, and Tmelt are ice surface temperature, curling
stone RB temperature and melting point temperature of the ice, respectively; tb is the
contact time between the curling stone RB and a point on the pebble; tp is the contact time
between the pebble and a point on the curling stone RB; rp is the radius of the top contact of
a pebble (1.5 mm); v is the stone sliding speed; b is the width of the curling stone RB (6 mm);
r is the inner radius of the curling stone RB (60 mm); kg and ki are the thermal conductivities
of the ice (2.3 Wm−2K−1) and the Blue Hone granite (2.94 Wm−2K−1), respectively; and
κi and κg are the thermal diffusivities of the ice (1.23 × 10−6 m2s−1) and the Blue Hone
granite (1.49 × 10−6 m2s−1), respectively.

Figure 10 presents the obtained results from on-site measurement and the values
calculated from the Penner model and the Lozowski model. It can be seen that most of
the experimental results in this study were within the range of the upper and lower limits
predicted by the Lozowski model. In terms of the two theoretical models, as shown in
Equations (1) and (2), both of the predicted friction coefficient values were related to the
sliding speed in the form of µ ∝ ν−

1
2 . Therefore, the curve shapes of the friction coefficients

versus the speed of the two models seemed to be consistent with each other. However, it
can be found that the calculated values by the Penner model were lower than the Lozowski
model under the same ice parameters, such as hardness and thermal conductivity. In fact,
the heat generated by friction in the Penner model was only considered to be conducted
into the ice, while the heat transferred to the stone and melted ice was ignored. Hence,
the energy dissipated by friction was calculated lower than the actual value, resulting in a
decrease in the friction coefficient.

4.3. Verification of the Measured Values Using Accelerometer-Based Method

In recent years, sensor technology has been increasingly used in sports engineering
to acquire various sport information [41–44]. To verify the friction results obtained using
computer vision technology, a sensor-based measurement method was also adopted to
measure the stone–ice friction. An accelerometer weighing 30 g was attached to the curling
stone, using an epoxy resin adhesive. The measurement range and voltage sensitivity of
the accelerometer were ±5 g and 1002 mV/g, respectively. The acceleration signal of the
curling stone in the sliding direction was collected at a sampling frequency of 50 Hz by
the TEST data acquisition system. As in the previous case, the stone was released without
initial rotation velocity to avoid the curling phenomenon.
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Figure 11 shows the collected time–history curve of the acceleration of the curling
stone, thrown on a standard pebbled ice sheet. A slight fluctuation of the raw signal during
stone motion was observed, and the friction coefficient was obtained by averaging the raw
data. This averaging approach has been used to obtain steel–ice friction coefficients by
a tribometer [24,45]. According to the average acceleration data presented in Figure 12,
the friction coefficient of a stone sliding on ice with an average speed of ~0.85 m/s was
obtained as 0.014 ± 0.003 using the formula µ = a/g, where a is the measured acceleration
and g is the gravitational acceleration.

Figure 12 presents the friction coefficient values using an accelerometer-based method.
The results obtained by the method based on the accelerometer sensor were generally con-
sistent with those obtained by our proposed procedure based on the YOLO-V3 deep neural
network. Therefore, the method based on deep learning was effective and reliable, and
could be further used to monitor the change in friction coefficient for curling competitions
in real time.
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5. Limitation and Future Work

The purpose of this study was to investigate the stone–ice friction coefficient in a
prefabricated ice rink for the 2022 Beijing Winter Olympics, using a deep-learning-based
method. This study had the following limitations, which need to be further studied in
the future:

(1) Only a curling stone with a linear motion trajectory was considered. The transverse
motion component caused by stone rotation and ice sweeping was neglected, which
is most common in ice rinks. Further studies on the friction mechanism of a curling
stone following a curled trajectory are needed.

(2) In this prefabricated rink for the 2022 Beijing Winter Olympics, a surface topography
analysis of the pebbled ice was not conducted, due to the limitations of the exper-
iment equipment. Further research is needed to study the influence of the surface
topography characteristics of pebbled ice on the stone–ice friction coefficient to reach
a more nuanced conclusion.

(3) It should be noted that the friction coefficient obtained in this research is not applicable
for the description of friction strength under ice-sweeping circumstances. During the
ice-sweeping process, the thickness of the liquid-like layer is increased, which was
ascribed to the ice temperature increasing by frictional heating and the melting point
of the ice decreasing by considerable pressure. In fact, the thickness of the liquid-like
layer on the ice surface has a great influence on the friction strength.

6. Conclusions

In this paper, an experimental investigation on the coefficient of friction between a
curling stone and pebbled ice was conducted at the “Ice Cube” rink, using a computer
vision technology method. The displacement, velocity, and acceleration of sliding stones
were extracted frame-by-frame from video data using our proposed procedure based on
the YOLO-V3 deep neural network and CSRT Object tracking algorithm. The effect of
the sliding velocity on the stone–ice friction coefficient was discussed, and comparisons
of our obtained results with other research reported values were performed. In addition,
assessment of the theoretical models for stone–ice friction and verification of the obtained
results through a sensor-based method were conducted. With respect to experimental
results and discussion, some of the following conclusions could be drawn:

1. The proposed measurement method based on computer vision technology could be
used to obtain the friction coefficient of a curling stone and ice, and the obtained
results were in accordance with the law of stone–ice friction, and in good agreement
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with the related literature data. The computer vision technology based on deep
learning can be further employed to monitor the ice quality of the curling rink in
real time.

2. The coefficient of friction between a curling stone and ice, ranging from 0.006 to 0.016,
was significantly affected by the stone sliding speed. Increasing the curling stone
sliding speed resulted in lower friction coefficient values, due to the formation of a
lubricating water film generated by the friction heat.

3. The Lozowski model had a better performance in describing the relationship between
the speed and friction. Most of our experimental results were included within the
upper and lower limits predicted by the Lozowski model. Under the same ice param-
eters, the predicted value of the Penner model was lower than that of the Lozowski
model, because it ignored the heat generated by friction transferred to the stone and
melted ice.

4. The accelerometer-based method was additionally employed to measure the stone–ice
friction coefficient. The good agreement between the obtained values of our proposed
procedure based on the YOLO-V3 deep neural network and that of the accelerometer
sensor supported the effectiveness and reliability of the deep-learning-based method.
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