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Abstract: In industrial chain drives, the sleeve slides on the pin and impact loading occurs due to
the polygon effect, while the collision between the ball and cage usually produces an impact-sliding
motion in the rolling element bearings. Aiming at addressing the occurrence of surface damage
caused by the impact-sliding motion, a ball–disk test rig employing optical interference technology
was designed and built to realize load variation. Two kinds of commercial grease types, Klüber
Centoplex 3 and Centoplex 2EP, were used in the experiments when the glass disk slides at a constant
speed while the steel ball collides into them. The sliding and impact motions were controlled by
PLC programming. After the experiments, the mid-section grease film distributions were measured
using DIIM software. The results show that surface damage can rapidly occur even in the first
working cycle, and that the phenomenon is affected by the sliding speed, maximum load, and grease
consistency. When the sliding speed is low, multiple contacts of asperity peaks occur in the interior
contact region and develop into adhesive wear. When the sliding speed increases, surface wear starts
to occur at the side-lobe position of the elastohydrodynamic lubrication (EHL) horseshoe shape and
extends with time accompanied by obvious surface scratches. The wear mechanism investigated
provides valuable visible information for the further exploration of impact-sliding composite wear.
It is suggested that great attention should be paid to impact-sliding wear occurring with grease
lubrication since such working conditions are very common in industrial applications.

Keywords: grease lubrication; EHL; impact-sliding wear; optical interferometric technology;
impact load

1. Introduction

Fundamental mechanical components such as chain drives, rolling element bearings,
gears, etc., are often subjected to alternating loads during the working process, which
changes the lubrication state and causes fatigue and reliability problems in severe cases.
From the perspective of the presence or absence of tangential velocity, the alternating
load problems are categorized into two types: one is the pure squeeze condition with-
out tangential velocities, and the other is the rolling or sliding contact condition with
impact load.

The former has been studied extensively and thoroughly from the aspect of oil lubrica-
tion based on EHL theory. For example, Kaneta et al. [1] conducted numerical calculations
using multi-grid methods to simulate two kinds of pure-squeeze entrapments observed
in optical interference experiments. Fryza et al. [2] conducted an experimental study on
the concave phenomenon of EHL oil film with different initial impact gaps, approach
speeds, loading speeds, and various lubricants, and found that the shape of the concave
oil film directly depended on the loading speed. The film thickness mainly depended on
the approach speed and lubricant viscosity, where the effect of the impact time/speed was
estimated from the basic rheological properties of the lubricant. Wang et al. [3] obtained
a formula for the central film’s thickness in the case of a pure impact motion through
isothermal numerical research. Wang et al. [4] established a thermal EHL model to solve a
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lubrication problem wherein a steel ball impacts into a semi-infinite surface in free fall. Wu
et al. [5] used numerical methods to solve the effect of oil starvation on isothermal EHL
characteristics during pure impact motion.

Some scholars have also studied the pure-squeeze problem from the perspective of
wear. The research on the wear problem has been mainly carried out on wear test machines.
After the experiment, the wear scars on the surfaces of the two specimens are observed by
a scanning electron microscope (SEM) and surface topography apparatus. Wang et al. [6]
built a small-load impact load-testing machine and carried out impact wear experiments
on the TC4 alloy. Wang et al. [7] studied the effect of oil viscosity on the surface damage of
40Cr specimens under cyclic impact load through a self-made heavy-load-impact-tester.
Ji et al. [8] studied the impact of seawater and seawater/oil mixture as lubrication on the
impact crater, plastic deformation, and damage of the GCr15 bearing steel through an
impact wear test machine. Then, Wang et al. [9] explored the surface damage of GCr15
bearing steel under four grease contact conditions through experiments.

However, in industrial applications, the second type of problem is more common;
that is, the effects of both the tangential velocity and alternating load occur between the
two working surfaces. In the contact between the pin and sleeve in the roller chain or
sleeve chain, due to the polygon effect, impact loading frequently occurs while the sleeve
slides in a reciprocating manner with the pin. In high-speed angular contact rolling element
bearings, the collision between the ball and cage usually produces an impact-sliding motion
between the ball and the cage. For such problems, there are few studies to refer to that
concern the use of oil lubrication. For example, Ren et al. [10] numerically simulated
the influence of different loading conditions and different stroke lengths on the EHL line
contact’s reciprocating motion. Yin et al. [11] used a self-made impact-sliding wear tester to
study the effects of the impact kinetic energy and sliding velocity on the energy absorption,
mechanical response, interface deformation, and damage behaviors of 304 nuclear grade
stainless steel (304SS). Tan et al. [12] studied the applicability of laser shock peening (LSP)
to impact-sliding wear under different system stiffnesses through an impact-sliding test
device and explored the wear performance of an LSP treatment. Yin et al. [13] studied the
effect of ultrasonic surface rolling (USRP) on the impact-sliding wear behavior of Inconel
690 alloy tubes through a self-made cyclic impact-sliding wear test bench and revealed the
effect of the USPR treatment on the wear mechanism.

Aiming at the impact-sliding motion that occurs between the sleeve and pin of in-
dustrial chains, the following experiments were designed based on the visual research of
impact-sliding composite wear using optical interference technology on a self-made ball–
disk test rig. Considering the wide range of grease applications, this paper uses two types
of commercial grease as lubricants to study the origin and occurrence of impact-sliding
composite wear. Another reason for using grease lubrication is that under the same experi-
mental conditions, general PAO synthetic oil was used by the authors and due to the good
fluidity of the oil, no surface damage occurred under the same conditions. By using the
optical interference technique, the authors hope to clarify the occurrence of impact-sliding
wear under grease lubrication conditions.

2. Experimental Equipment and Conditions
2.1. Experimental Equipment and Principle

A ball–disk test rig (schematically shown in Figure 1) was designed and established
in order to complete the load-varying EHL experiments using optical interferometric
experiments. The test rig consists of a loading system, a motion control system, an image
acquisition system, and a mechanical main body. The motor and the screw are connected by
a coupling, and the rotation of the servo motor is controlled by PLC programming to realize
the process of impact loading. The load change in a load change cycle is shown in Figure 2.
The speed change of the glass disk was designed by PLC-programming control [14]. The
authors implemented PLC programming to control a servo motor for load variation.
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Figure 2. Variation of the loading curve.

The image acquisition system is mainly composed of five parts: a light source, a
microscope, a CCD camera, an image acquisition card, and a computer. In this experiment,
a two-color red and green laser light source was used (red wavelength λ = 653 nm; green
wavelength λ = 532 nm). The CCD camera is responsible for collecting light interference im-
ages amplified by the microscope. The collected signals are analog signals, and 350 frames
of images can be collected per second. The image acquisition card is responsible for AD
conversion and the capturing of images. A computer is used to control the collection and
store the optical interference images through software.

2.2. Experimental Materials and Parameters

The glass disk is made of K9 glass. The lower side of the glass disk that contacts the
steel ball is coated with a chromium film with a nominal thickness of 15 nm and a SiO2
underlayer with a nominal thickness of 120 nm, and the surface roughness of the coating
corresponds to Ra = 4 nm. The steel ball is made of GCr15 steel with a precision of G5. The
parameters of the disk and ball are shown in Table 1.

Table 1. Parameters of ball and disk.

Glass Disk Steel Ball

Material K9 glass GCr15 steel
Diameter (mm) 150 25.4
Thickness (mm) 15

Elastic modulus (GPa) 81 208
Poisson ratio 0.208 0.3
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The experimental grease types used were Klüber Centoplex 3 and Centoplex 2EP. The
specific parameters of the grease are shown in Table 2.

Table 2. Parameters of grease types.

Properties Centoplex 3 Centoplex 2EP

Base oil Mineral oil Mineral oil
Thickener Lithium soap Lithium soap

Applicable temperature range (◦C) −16 to 150 −20 to 130
Base oil viscosity (40 ◦C mm2/s) 100 180

Base oil viscosity (100 ◦C mm2/s) 10 14
Penetration (×0.1 mm) 220 to 250 265 to 295

NLGI 3 2

During the test, the ambient temperature was set as 24 ± 0.5 ◦C, and the humidity was
60 ± 5%. The glass disk rotates while the steel ball impacts the glass disk repeatedly. In the
test, sufficient grease was used to ensure that the tracks of the glass disk and the steel ball
were evenly and adequately greased. The selection of the test speed parameters was based
on the research of Han et al. [15]. The superiority of grease lubrication over oil lubrication
stems from the ability of grease to form a thick film under a lower entraining speed. The
variation in the grease film’s thickness versus the entraining speed shows a V-shape [15].
The bottom point of the V-shape is called the critical speed. Below the bottom point, a very
thick grease film thickness is generated, above which the grease film is consistent with the
film thickness of basic oil. Three sliding speeds—0.02 m/s, 0.05 m/s, and 0.1 m/s—were
selected. It should be pointed out that the results of Han et al. [15] were obtained under
pure-rolling conditions, while this experiment was completed under simple sliding-impact
conditions, so the selection of the above speed parameters is only for reference.

After the experiments, the film thickness was measured by a dichromatic light inter-
ference intensity modulation technique (DIIM), and the film thickness resolution was 1 nm,
which was effective for efficiently and accurately measuring the lubricating film thickness
in the range of 0~4 µm [16].

3. Results and Discussion

The glass disk rotates, and the steel ball performs a reciprocating impact motion in the
vertical direction. The variations in the sliding speed and the impact load are controlled
through PLC programming. During each experiment, the sliding speed of the glass disk is
kept constant. Under the premise of ensuring that the maximum impact load is constant,
different cycle times are obtained by changing the impact speed. While keeping the impact
velocity constant, the maximum impact load is increased, and the cycle time is extended
accordingly. The experimental parameters are shown in Table 3. In total, seven experiments
were carried out.

Table 3. Experimental parameters.

Experiment No. Sliding Speed
(vs/m·s−1)

Maximum Load
(wmax/N)

Period
(T/s) Grease Type

1 0.02 66 6 Centoplex 3
2 0.05 66 6 Centoplex 3
3 0.1 66 6 Centoplex 3
4 0.05 66 6 Centoplex 2EP
5 0.1 66 6 Centoplex 2EP
6 0.05 66 0.48 Centoplex 2EP
7 0.1 95 8 Centoplex 2EP



Lubricants 2022, 10, 284 5 of 16

3.1. Centoplex 3 Grease

In order to visually explore the effect of the sliding speed on the occurrence of grease-
lubricated wear, Figure 3 shows optical images of the grease film during a single loading–
unloading cycle with the grease Centoplex 3 (Experiment No.1 in Table 3). The entraining
speed was 0.02 m/s, below the critical speed in the pure rolling condition studied by Han
et al. [15]. The maximum impact load was 66 N, generating a maximum Hertz contact
pressure of 0.67 GPa. The impact cycle lasted for 6 s. The white arrow in each optical
image indicates the entraining direction. Figure 4 shows the mid-section film thickness
curves corresponding to the first three optical images in Figure 3. From Figure 3d onwards,
multiple direct contacts of asperity peaks in the contact region have occurred and the
minimum film thickness has become 0, so it is unnecessary to provide the mid-section film
thickness. Figure 3a shows the first image captured by the camera in the loading process.
At this time, the two contacting solids have undergone slight elastic deformation, as the
horseshoe shape in the contact indicates an EHL state. The central film thickness is about
0.2 µm, while the minimum film thickness at the constriction is 0.1 µm. At the time instant
1/9 T shown in Figure 3b, the contact area is clearly enlarged, and the horseshoe-shaped
film has disappeared. The corresponding mid-section film thickness (Figure 4b) in the
contact region is thin, only about 25 nm. Several asperity peaks in the middle of the contact
area already show evidence of direct contact, but no damage has occurred. In Figure 3c, the
contact area is enlarged further while the central film thickness is reduced to 5 nm, and the
direct contact points have clearly increased. In Figure 3d, as the load increases, more direct
contact points emerge, and all of those points are connected to patches and significant wear
occurs inside the contact area. Near the outlet region, the grease at the local contact is
depleted. In Figure 3e, the wear situation becomes more severe with the increase in the
load. In Figure 3f, the load has reached the summit, so the contact area is again enlarged,
and the wear area has expanded to almost the entire contact region. The surface damage
is severest in the contact center and obvious surface scratches at the outlet of the contact
can clearly be seen. Then, the load starts decreasing. However, surface damage takes place
persistently throughout the unloading process, although the contact area is reduced due to
the reduced load. In Figure 3g–i, the messy surface damage is observed. At the left inlet
area where no surface damage is seen, a local complete grease film has been reproduced.
In Figure 3j, the load is zero, but due to the local surface damage, the distribution of the
grease film is distorted.
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plex 3 grease).

Figure 5 shows the optical interferometric images with a higher sliding speed of
0.05 m/s in the first cycle (Experiment No.2 in Table 3). Due to the same occurrence of local
direct contact of the asperity peaks, only five mid-section film thicknesses corresponding
to the first five images of Figure 5 are given in Figure 6. The white arrow in each image
indicates the entraining direction. Figure 5a shows the first image captured by the camera in
the loading process while the time instant is 1/1800 T, different from that in Figure 3a. This
is due to the randomness of the camera’s shutter speed. In addition, the other time instants
selected are the same as those in Figure 3. In Figure 5a, the horseshoe shape is not obvious.
Compared with Figure 3, only the sliding speed increased, as seen in Figure 5b,c; tiny
direct contacts occur not only in the contact center, but also at the two sides of the contact.
Moreover, the number of direct contact points improve when progressing to the rest of the
images. The corresponding mid-section film thicknesses in either Figure 6b or Figure 6c are
thicker than those in Figure 4b or Figure 4c, respectively. Obvious surface damage is seen
in Figure 5d, and the degree increases in the following loading–unloading process. The
wear severity in each image is alleviated compared with that in the corresponding image in
Figure 3. In Figure 6f,g, surface damage mainly occurred at the location of the side lobes.
In Figure 6h,i, multiple damaged points—shown in black—can be seen in the rear part of
the contact and scratches can also be noticed. Since the glass disk was sliding, the wear
surface in Figure 6i has moved out of the contact and the load became zero; thus, no black
points can be seen in Figure 6j.
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Figure 6. Five mid-section film thickness. (vs = 0.05 m/s, wmax = 66 N, and T = 6 s for Cento-
plex 3 grease).

Figure 7 shows the optical interferometric images when the sliding speed of the
glass disk is 0.1 m/s, while Figure 8 gives the corresponding mid-section film thickness
curves along the entraining direction (Experiment No.3 in Table 3). The other conditions
remain unchanged. The increase in the sliding speed of the glass disk further increased
the film thickness. Surface damage only occurred at the location of the two side lobes
of the horseshoe shape of the grease film and the severity also increased along with the
loading–unloading cycle. Since no damage occurred along the mid-section of the contact
along the entraining direction, the mid-section film thickness profiles for all images are
presented. Due to the surface damage at the side lobes, the contact area has been molded
into a trumpet shape, as shown in Figure 7g–i.
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Figure 7. Interferograms of occurrence of surface wear during loading–unloading process
(vs = 0.1 m/s, wmax = 66 N, and T = 6 s for Centoplex 3 grease).

From the comparison of Figures 3, 5 and 7, it can be seen that under the condition of a
low sliding speed, the adhesive wear of the contact area is the most serious. The change in
the location of the wear occurrence is due to the increase in the sliding speed of the glass
disk. It must be mentioned that in the optical images of Figures 3, 5 and 7, no traces of
thickener clusters can be seen. This can be attributed to two causes. Firstly, the minimum
speed of 0.02 m/s selected in the study is already the critical speed of Centoplex 3 under
pure rolling conditions. Secondly, according to the research conclusions of Han et al. [17],
the fiber clusters of the grease thickener in the region decreased significantly with the
increase in the slide-to-roll ratio.
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Although in the pure rolling condition, which is below the critical speed, a thick grease
film can be maintained for a quite long time [15], under an impact-sliding motion, the
higher the sliding speed of the glass disk, the better the maintenance of the lubrication
state. That is to say, the superiority of film formation in grease lubrication is lost in the
first cycle of an impact-sliding motion. Since impact-sliding motions are very common, the
significance of this phenomenon is worth heeding.

3.2. Centoplex 2EP Grease

In order to study the effect of the grease’s consistency, Figure 9 shows the optical
images of the grease film of the first cycle with the grease Centoplex 2EP for vs = 0.05 m/s,
wmax = 66 N, and T = 6 s, and three corresponding mid-section film thickness curves are
shown in Figure 10 (Experiment No.4 in Table 3). The entraining speed is 0.025 m/s, below
the so-called critical speed of Centoplex 2EP studied by Han et al. [15]. Compared to
Figure 5, the other conditions remain unchanged. Figure 9a shows the 1/1800 T moment
when the contact area is in the EHL state, and there is no cavitation area in the outlet area.
After that, the load is increased, and the film thickness is reduced. Multiple direct contacts
of asperity peaks emerge soon after the impact motion and develop into a disorderly area
in the contact center. This tendency is the same as the results with Centoplex 3. Wear
continued to occur in the unloading process. The occurrence of the wear phenomenon is
similar to what is shown in Figure 3. Since the viscosity of the base oil of Centoplex 2EP is
higher than that of Centoplex 3, and few thickener clusters enter the contact, the reason for
the difference likely stems from the NLGI grade. The Centoplex 2EP grease contains EP
additives, but the effect of EP additives is not the aim of the study. As far as the authors
know, the EP additives in lubricants do play a role but this role is usually limited. From
Table 2, the difference in the NLGI grades of the two grease types seems to explain the
phenomena in Figures 5 and 9.

Figure 11 shows the optical interferograms in the first cycle when the sliding speed of
the glass disk is 0.1 m/s, and Figure 12 displays the first five corresponding mid-section
film thickness curves (Experiment No.5 in Table 3). With a higher sliding speed, multiple
direct contacts firstly happen at the location of two side lobes, causing obvious surface
damage that invades the contact center and causes the disorderly appearance of the majority
of the contact circle. The wear pattern in Figure 11 does not resemble what is shown in
Figure 7, although the sliding speed is the same. Wear initially occurs at the side lobes of the
contact area due to the lower consistency of the Centoplex 2EP grease. The mid-sectional
film thickness in Figure 12 is significantly lower than that of Centoplex 3 grease at the
same instant. Therefore, fewer contact points and scratches were found in the center of
the contact area. During the unloading process, more severe surface damage occurs, so
the shape of the contact area becomes similar to that shown in the unloading process of
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Figure 3. The comparison between Figures 6 and 11 or between Figures 5 and 9 shows that
the consistency of the grease significantly affects the occurrence of wear in the contact zone.
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2EP grease).

In order to study the effect of the working period, Figure 13 shows the optical images
of the grease film of the first cycle under the condition of Experiment No. 6. Figure 14
gives the corresponding mid-section film thickness curves. The impact cycle lasts for only
0.48 s. Figure 13a shows the results of the 1/133 T instant when the steel ball and the
glass disk have just contacted. Due to the high impact velocity, a grease film entrapment
appears in the center of the contact area. At the instant 3/133 T shown in Figure 13b, due
to the presence of tangential velocity, the grease entrapment is transported to the right
side of the contact area. In Figure 13c, the previous entrapment has almost been moved
out of the contact area, only a small patch remains at the right side, and there is a newly
formed shallow entrapment at the left side. The new entrapment is also transported to the
right side of the contact area, as shown in Figure 13e, and cannot be seen in Figure 13f any
longer. The occurrence of the entrapment is due to the obvious transient effect by shorter
working period. In Figure 13f, local direct contact occurs on both sides of the contact
area. In Figure 13g, since the load reaches the maximum value, the grease film thickness is
further reduced compared to Figure 13f, and the number of direct contacts of asperity peaks
increases. In Figure 13h, the contact area decreases as the load decreases. In Figure 13i–j, as
the load decreases, the contact area is further reduced until it returns to the fluid lubrication
state. Figure 14 shows that a short working period is beneficial to a impact-sliding motion.
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Figure 14. Mid-section film thickness (vs = 0.05 m/s, wmax = 66 N, and T = 0.48 s for Centoplex
2EP grease).

Figure 15 presents the optical images of Experiment No. 6 but in the fifth working
cycle. A smaller impact entrapment is seen in Figure 15a. Obvious surface damage has
occurred inside the contact area. Figure 16 gives the results of the 22nd working cycle, in
which significant surface damage has occurred, demonstrating that with grease lubrication,
an even shorter working period is beneficial but can sustain only tens of cycles.

Figures 17 and 18 show the optical images and some corresponding mid-section film
thickness curves with a larger maximum impact load, namely, 95 N. The larger load results
in a maximum Hertzian pressure of 0.76 GPa. The impact cycle is 8 s, indicating that the
impact velocity is a little higher than that in Figure 11. The times used in Figure 17b–e
were selected to be the same as those in Figure 11b–e: 2/3 s, 4/3 s, 2 s, and 8/3 s. In each
image of Figure 17b–e, since the actual load is higher, the damage is severer. Compared
with Figure 11, the wear is more severe at each moment because of the heavier load. In
the unloading process, severer surface damage occurs and at 1 T; the contact is all black.
The mid-section film thickness (Figure 18) is also thinner than each corresponding one in
Figure 12.
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As in all EHL experiments conducted on ball–disk test rigs using the optical interfero-
metric technique, the significance of this work lies in the visualization of the occurrence
of surface damage. The central plateau, side lobes, and outlet constriction of an EHL oil
film shape were revealed by optical experiments [18,19] but also validated by numerical
analyses [20,21]. The famous surface dimple phenomenon was first observed by Kaneta
et al. [22,23] and then simulated successfully by Yang et al. [24,25]. The process by which
the surface damage originates and develops in the impact-sliding motion using grease
lubrication is explored according to different entraining speeds. For metal–metal contacts,
experiments that replace a glass disk with a steel disk may lead to a significant difference.
As a part of the authors’ research plan, the surface damage in steel–steel contacts will
be investigated in the future. Moreover, a mixed EHL mathematical model should be
established for further investigation.

3.3. Surface Damage of Steel Ball

Figure 19 shows the optical microscope photos of the worn surface of the steel ball
under the condition of using Centoplex 2EP grease for experiment Nos. 3~6 (corresponding
to Figure 7, Figure 9, Figure 11, and Figure 16, respectively). It can be seen that obvious
adhesive wear and scratches occurred on the ball’s surface. The damage pattern on the
surface of the steel ball is consistent with the phenomena in Figures 7, 9, 11 and 16.
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3.4. Central and Minimum Film Thicknesses

Figure 20 shows the comparison of the central and minimum film thicknesses in the
loading–unloading process in the above tests. The horizontal coordinate is the dimension-
less parameter, t is the time, and T is the impact period. In Figure 20a, only Experiment
No. 6, i.e., vs = 0.05 m/s, wmax = 66 N, and T = 0.48 s, makes the central film thickness
experience a rapid increase before dropping. At the position of t/T = 0.37–0.7 during the
impact process, the central film thicknesses of Experiment Nos. 3 and 4 remained basically
unchanged, and then the values were gradually increased. The value of the other five
curves also decreased during the impact, but because of the direct contact, the value of the
central film thickness decreased to 0. The variation behavior regarding the minimum film
thickness was relatively simple for experiments 1~3 and 5~7, and it decreased rapidly at
the initial stage of impact and then reached 0 quickly. Figure 20 shows that the Centoplex 3
grease is favorable because its NLGI grade is higher. Moreover, a short working period
is recommended.
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4. Conclusions

The authors built a variable load optical interference test rig, and then completed
impact-sliding optical interference experiments using two complex lithium grease types:
Centoplex 3 and Centoplex 2EP. The occurrence and development of impact-sliding com-
posite wear was observed. The conclusions are summarized as follows:

1. The sliding speed affects the position of the wear. When the sliding speed of the
glass disk is low, due to the thin film thickness formed, multiple direct contacts of
asperity peaks occur simultaneously in the contact area, and gradually expand into
pieces, resulting in adhesive wear. With a higher sliding speed, wear occurs first at
the side lobes of the horseshoe shape and causes surface scratches in the subsequent
movements. Both types of wear occur when the sliding speed is modest.

2. During the impact process, due to the nature of the sliding speed, the wear not only
occurs during the linear loading process, but also continues to occur during the linear
load reduction process. The lower the consistency of the grease, the more severe the
wear. When the maximum value of the load increases, the impact time is prolonged,
and the degree of wear is more severe.

3. The current experiments show that the superiority of grease lubrication—shown
under the pure rolling condition at a lower speed—is lost due to the impact-sliding
motion, regardless of whether the sliding speed is lower or higher. If the working
period is long, obvious or significant surface wear occurs in the first working cycle. A
shorter working period is beneficial due to the transient effect. However, after several
working cycles, obvious surface wear will still be seen.

4. These experiments simulated the slide-impact working condition under a grease-
lubricated point contact scheme, and the wear mechanism was also investigated,
providing valuable information for the further exploration of composite wear through
impact motion. Great attention should be paid to the occurrence of sliding-impact
wear when employing grease lubrication, since such working conditions are common
in industrial applications.

5. For metal–metal contacts, experiments that replace the glass disk with a steel disk
may have a significant impact. As a part of the authors’ research plan, surface damage
in steel–steel contacts will be investigated in the future. Moreover, a mixed EHL
mathematical model should be established for further investigation.
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