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Abstract: Gas bearings have been widely applied to high-speed rotating machines due to their
low friction and high rotational speed advantages. Nevertheless, gas lubrication is low viscosity
and compressible. It causes the gas bearing-rotor system easy to produce self-excited vibration,
which leads to instability of the rotor system and hinders the increase of rotor system speed. It is
necessary to study the nonlinear behaviors of the aerostatic bearing-rotor system and the nonlinear
vibration of the gas bearing-rotor system, especially considering the distribution mass and flexible
and gyroscopic effects of the real rotor. In this paper, the nonlinear behavior of the gas bearing-rotor
system is investigated from the viewpoint of nonlinear dynamics. Firstly, the dynamics model of a
gas bearing rotor is established by combining the transient Reynolds equation and rotor dynamic
equation obtained by finite element method (FEM). The transient Reynolds equation is solved using
a hybrid method combining the differential transform method (DTM) and finite difference method
(FDM). Then the transient gas force is substituted into the FEM rotor dynamic equation. In the end,
based on the bifurcation diagram, the orbit of the rotor center, the frequency spectrum diagram
and Poincaré map, the rotor system’s nonlinear behaviors are studied using a solution for the rotor
dynamic equation with the Newmark method. Results show that there exists a limited cycle motion
in the autonomous rotor system and half-speed whirl in the nonautonomous rotor system.

Keywords: nonlinear vibration; gas bearing-rotor system; transient Reynolds equation; DTM

1. Introduction

With the merits of low noise, high precision, low friction, high rotational speed and
long life, gas bearings have been widely applied in high-precision and high-speed rotating
machines. Compared with traditional bearings, such as oil and ball bearings, gas bearings
work with low heat generation, oil-free pollution and a simple auxiliary apparatus [1–4].
However, due to the compressibility and low viscosity of the gas, gas bearings tend to
have nonlinear behavior, which limits their wide application [5,6]. Thus, it is necessary
to investigate the nonlinear vibration performance of the gas bearing-rotor system under
high-speed conditions.

In general, the finite difference method (FDM) or finite element method (FEM) is
used to solve the transient Reynolds equation to obtain the nonlinear gas film force. Then,
combined with the solution for motion equations of rotor, the nonlinear vibration per-
formance of the gas bearing-rotor system are studied. Wang [7] studied the nonlinear
behaviors of the rigid rotor supported by aerodynamic journal bearing and presented the
4T-periodic motion, but the investigations did not consider the unbalanced mass force.
Zhang [8] used FEM to solve the transient Reynolds equation to obtain the gas film force.
Then the trajectory of the journal, Poincaré maps, power spectra and bifurcation diagrams
were used to investigate the nonlinear behavior of the gas bearing-rigid rotor system. The
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results showed that there exists limited cycle motion in the autonomous rotor system, and
half-speed whirl and quasi-periodic motions in the nonautonomous system. In Refs. [7,9],
the rotor is assumed as the lumped mass model, and the rotor should be treated as the
distribution mass. Rashidi studied the influences of rotor mass, bearing number [10] and
preload [11] on the nonlinear performances of the lobe aerodynamic journal bearing-rigid
rotor system. Lu [12] investigated the nonlinear dynamic behaviors of the fixed-tilting-pad
self-acting gas bearing-rigid rotor system by using the hybrid method of DTM and FDM.
Moreover, the influences of pivot ratio and the preload coefficient on the nonlinear dynamic
behavior of the rotor system were studied. The results showed that the preload coefficient
can improve the stability of the gas bearing-rotor system while the pivot ratio affects the
nonlinear dynamic behaviors significantly. Li [13] studied the effects of the directions,
amplitudes and the numbers of surface waviness on the nonlinear characteristics of the
gas bearing-rotor system. The results showed that circumferential direction waviness can
improve the system’s stability, but axial direction waviness leads to damage to the system.
Moreover, the nonlinear performance of the rotor system is not sensitive to the frequency
of the waviness, and increasing the amplitude of the circumferential direction waviness can
also improve the stability. Larsen [14] also studied the sub-synchronous vibration of the
gas foil bearing-rotor system from the turbo compressor. However, this research focuses
on rotational speed and the degree of unbalance. The above work involving the nonlinear
behaviors of the gas bearings all study hydrodynamic gas bearings. Belforte [15] modified
the transient Reynolds equation of the aerostatic bearing to consider the inertial effect of the
gas, and results show that the inertial effect can be ignored when the modified Reynolds
number is larger than 1. Dal [16] also utilized the hybrid method and studied the pneumatic
hammer. The vibration amplitude of the rotor system with nonlinear behaviors can be large
enough, resulting in the rubbing of the bearing and rotor. Some research was done to study
the measures to control nonlinear vibration. Kumar [17] studied the limit cycle behavior,
and then investigated the effects of compressibility and bearing stability parameters on
bifurcating limit cycles. From this, the safe operating range diagrams of the rotor system
were obtained. As the gas film thickness is too small, the gas rarefaction effect should be
considered in studies on the performances of the rotor system supported by micro-bearings.
Considering the effect of the temperature on the rarefaction effect, Gharanjik [18] studied
the influence of the temperature on the nonlinear behavior of the non-circular micro gas
bearing-rotor system using the molecular gas lubrication (MGL) model. The results show
that high temperature would result in nonlinear vibration from the linear vibration. Liu
studied the nonlinear behavior of a rigid rotor supported by herringbone grooved journal
gas bearings (HGJBs) The results showed that the static load can improve HGJB stability.
In the past two decades, based on the rotor trajectory, phase maps, Poincaré maps, power
spectrum maps and bifurcation diagrams, Wang investigated the effects of the rotor mass,
rotate speed and unbalanced mass on the nonlinear vibration of gas bearings, such as
the aerodynamic journal bearing [7], aerostatic bearings [19,20], spherical aerodynamic
bearing [21] and so on.

As shown in Refs. [8–21], the rotor in the gas bearing-rotor system is assumed a rigid
and lumped mass rotor. This model neglects the rotor elasticity and distributed mass.
Moreover, as the gas bearing is used in high-speed machines, the gyroscopic effect must be
considered. Therefore, the rotor dynamic equation should be established using the beam
element, which considers the gyroscopic effect. In the present paper, combined with the
nonlinear gas film force obtained by the solution for the transient Reynolds equation with
a hybrid method, the dynamic equation of a gas bearing-rotor system was solved using the
Newmark method to investigate the nonlinear characteristics of the rotor system.

2. Mathematical Model
2.1. Solution for Transient Reynolds Equation with Hybrid Method

The schematic diagram of aerodynamic bearing conditions is shown in Figure 1. X
direction, Y direction, Z direction and ϕ are horizontal, vertical, axial and circumferential
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directions, respectively. Zm plane is the mid-plane of the gas bearing along the axial
direction, while the ϕ0 and e0 is the attitude angle and eccentricity in the mid plane Zm. The
film thickness can be expressed as Equation (1). Then, the Reynolds equation is adopted
to research the characteristics of aerodynamic bearings and the corresponding Reynolds
equation is shown as Equation (2)
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H = 1 + εcos(ϕ − ϕ0) (1)
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The dimensionless parameters are shown next:

p = paP, h = cH, x = Rϕ, z = LZ, t =
τ

ω
, Λ =

6ηωR2

pac2 ,

where c is the radial bearing clearance, ε is eccentricity, ϕ0 is the attitude angle in the mid
plane, pa is atmosphere pressure, R is the bearing radius, L is the bearing length, η is the
gas dynamic viscosity, ω is the rotational speed, Λ is bearing number, p and P are the
dimensional and dimensionless pressures, h and H are the dimensional and dimensionless
film thicknesses, t and τ are the dimensional and dimensionless times. By using the DTM,
Equation (2) can be changed as:

3I ⊗ ∂H
∂ϕ ⊗ ∂Θ

∂ϕ + J ⊗ ∂2Θ
∂ϕ2 +

(
R
L

)2
J ⊗ ∂2Θ

∂Z2 = 2ΛH ⊗ ∂P
∂ϕ + 2ΛP ⊗ ∂H

∂ϕ + 4ΛH ⊗ ∂P
∂τ + 4ΛP ⊗ ∂H

∂τ (3)

where 

I(k) = H ⊗ H =
k
∑

l=0
Hi,j(k − l)Hi,j(l)

J(k) = H ⊗ H ⊗ H =
k
∑

l=0
Hi,j(k − l)

l
∑

m=0
Hi,j(l − m)Hi,j(m)

Θ(k) = P ⊗ P =
k
∑

l=0
Pi,j(k − l)Pi,j(l)

(4)

Then, by substituting Equation (4) into Equation (3) and the central finite difference method,
we can get the discrete algebraic equations
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3
k
∑

l=0
Ii,j(k − l)

l
∑

m=0

Hi+1,j(l−m)−Hi−1,j(l−m)
2∆ϕ

Θi+1,j(m)−Θi−1,j(m)
2∆ϕ

+3
(

R
L

)2 k
∑

l=0
Ii,j(k − l)

l
∑

m=0

Hi,j+1(l−m)−Hi,j−1(l−m)
2∆Z

Θi,j+1(m)−Θi,j−1(m)
2∆Z

+
k
∑

l=0
Ji,j(k − l)

Θi+1,j(l)−2Θi,j(l)+Θi−1,j(l)
∆ϕ2

+
(

R
L

)2 k
∑

l=0
Ji,j(k − l)

Θi,j+1(l)−2Θi,j(l)+Θi,j−1(l)
∆Z2

= 2Λ
k
∑

l=0
Hi,j(k − l)

Pi+1,j(l)−Pi−1,j(l)
2∆ϕ

+2Λ
k
∑

l=0
Pi,j(k − l)

Hi+1,j(l)−Hi−1,j(l)
2∆ϕ

+4Λ
k
∑

l=0

l+1
∆τ Hi,j(k − l)Pi,j(l + 1)

+4Λ
k
∑

l=0

l+1
∆τ Pi,j(k − l)Hi,j(l + 1)

(5)

As shown in Figure 2, there exists two boundaries:

(1) coincidence boundary is P(1, j) = P(n + 1, j);
(2) atmosphere boundary is P(i, 1) = P(i, m + 1) = 1.
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As shown in Ref. [22], in order to accelerate the rate of convergence and improve the
accuracy of the calculations, the overall t domain is split into a number of sub-domains
and DTM is then used to solve the differential equation in each domain. Moreover, sim-
ilar to Ref. [12], the k is equal to 1 in each sub-domain. Then, in each sub-domain, by
solving Equation (5), the next time step, transient pressure of the gas film is obtained by
Equation (6), and then the transient gas film forced along X and Y directions can be com-
puted by the Equation (7). In addition, the H(0), H(1), H(2) in the process of the solution of
the hybrid method are obtained by Equation (8).

Pi,j(τ0 + ∆τ) = Pi,j(0) + Pi,j(1) + Pi,j(2) (6)
FX = −

L∫
0

2πR∫
0
(p − pa)sinϕdxdz

FY = −
L∫

0

2πR∫
0
(p − pa)cosϕdxdz

(7)
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
H(0) = 1 + X sin ϕ + Y cos ϕ

H(1)= (
.
X sin ϕ +

.
Y cos ϕ)∆τ

H(2) =
( ..

X sin ϕ +
..
Y cos ϕ

)
∆τ2

2

(8)

2.2. The Dynamic Equation of Aerodynamic Bearing-Rotor System

Figure 3 is the schematic view of the gas bearing-rotor system with multiple disks,
including a multi-diameter shaft, compressor and turbine end, four discs and two aerody-
namic bearings. The rotor system can be divided into 19 beam elements and have 20 nodes,
where rotor is assumed as Timoshenko beam (see Appendix A) elements and the disks,
compressor and turbine are assumed as lumped mass elements. The dynamic equation of
the bearing-rotor system can be expressed as Equation (9)
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M
..
q + C

.
q + ΩG

.
q + Kq = Q (9)

where M is mass matrix, C is damping matrix, G is gyroscopic matrix, K is the stiffness
matrix, Q is external forces including unbalanced mass force and gas film force and q/

.
q/

..
q

is the displacement, velocity and accelerated matrix, respectively. Rayleigh damping was
considered in this paper, i.e., C only contains Rayleigh damping. The system is autonomous
when Q includes only the gas film force, while the system is nonautonomous when Q
includes unbalanced mass and gas film forces. The solution for the dynamic equations of the
gas bearing-rotor system is an iterative procedure combining the Newmark method with
the hybrid method, as shown in Figure 4. The iterative procedure is described as follows:

(1) The initial steady equilibrium state is calculated using the steady Reynolds equation,
and then the inertial displacement is determined, while the inertial velocity is assumed
to be zero;

(2) The displacement, velocity and accelerated matrix are obtained by solution for
Equation (9) using the Newmark method;

(3) Renew the displacement, velocity and acceleration of the journal;
(4) The transient gas film force is obtained by solving the transient Reynolds equation

with the hybrid method;
(5) Renew the external force matrix and go back to step 2, then the displacement, velocity

and accelerated matrix of the next time step is determined using the Newmark method;
(6) The computing process step 2 to step 5 is repeated until the computing time is complete.
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In this paper, the time step of the calculation is π/5000 and the total time in the process
is 1500 periods; the time series data of the first 1000 periods are excluded from the nonlinear
behavior investigation to ensure that the analyzed data meets the steady-state conditions.
The gas bearing-rotor system parameters are shown in Table 1.

Table 1. The parameters of aerostatic bearing-rotor system.

Parameters Value Parameters Value

Rotor mass 848 g Span between turbine and compressor 286.28 mm
Length of rotor 367.73 mm Bearing diameter 25 mm

Span between two bearings 112.75 mm Bearing length 38 mm
Span between two inner discs 169.70 mm
Span between two outer discs 195.28 mm

Disc mass 310 g
Turbine mass 169 g

Compressor mass 136 g
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3. Results and Discussion
3.1. The Verification of the Hybrid Method

In order to prove the validity of the hybrid method, the results obtained by the hybrid
method are compared with the results from references published and computed using
traditional FDM.

Case 1:
The calculation parameters are L/R = 2, Λ = 0.1, Q = 0.1292 and M = 0.05 or

0.15. The root locus obtained using the hybrid method is compared with the results of
Ref. [15]. The hybrid method is used to solve the transient Reynolds equation and the
other calculation conditions are the same as Ref. [15]. As shown in Figure 5, the root locus
obtained using the hybrid method is in good agreement with the results from Ref. [15],
which means that the program of the hybrid method in this paper is right. Moreover, the
results show that the rotor system without unbalanced mass will approximate to a point,
namely, stable focus, after transient time, shown the left of Figure 5 when the M = 0.05. On
the other hand, with the increasing rotor mass M = 0.15, the behavior of the rotor system
will keep a stable focus, i.e., closed cycle. From the trajectory portrait, it can be seen that
there exists a limit cycle.
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Case 2:
The calculation parameters are L = 36 mm, R = 12.5 mm, c = 15 µm, the unbalanced

mass me = 0, ω = 10000 rpm, time step ∆τ = π/2500, while the rotor parameters are
shown in Table 1. In this case, the simulation time is 40 periods which is 0.2 million steps.
The time history along different directions and orbit of the shaft center obtained by the
hybrid are compared with the results obtained by the traditional FDM, which is shown in
Figure 6. The results showed that the simulation results from the hybrid and traditional
FDM are almost the same. However, the consumption time of the hybrid method is reduced
by almost 38% compared with traditional FDM, which means that the hybrid method is
more efficient. In addition, the trajectory portrait grows with simulation time, and finally
forms a limit cycle. The center of the limit cycle is not zero caused by gravity.
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3.2. The Nonlinear Vibration of Autonomous System

The rotor system is autonomous when the external force only includes gas film force.
The nonlinear characteristics of the autonomous rotor system were studied with the calcu-
lation parameters of case 2.

As shown in Figure 7, the bifurcation diagrams of displacement along X and Y direc-
tions are given without unbalanced mass. According to Figure 7, when the rotational speed
is less than 8000 rpm, the rotor motion will approximate to a stable balance point, and the
gravity is equal to the gas film force. The typical characteristics, including trajectory and
time history at 6000 rpm are shown in Figure 8. As shown in Figure 8, the trajectory of the
rotor system decreases with the simulation time. It approximates to a point, namely, stable
focus, after transient time.
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Figure 8. The trajectory and time history of the rotor system at 6000 rpm without unbalanced mass:
(a) trajectory, (b) time history.

When the rotor speed is more than 8000 rpm, the behavior of the rotor system is in the
bifurcation state, and the rotor motion will tend to limit cycles. The typical characteristics
including trajectory, time history and frequency spectrum at 12,000 rpm are shown in
Figure 9. As shown in Figure 9, after a short time, the locus is a closed cycle and the
temporal waveform presents a sine wave state. Moreover, there exists 0.5× less rotational
frequency in the frequency spectrum, which is the half-speed whirl. This is the nonlinear
vibrations caused by the nonlinear force of the gas bearing. This means that the behavior of
rotor system without unbalanced mass will be changed with increasing rotational speed.
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3.3. The Nonlinear Vibration of Nonautonomous System

When the external forces include gas film force and unbalanced mass force, the rotor
system is nonautonomous system. The nonlinear characteristics of the autonomous rotor
system were studied with the calculation parameters of case 2.

As shown in Figure 10, the bifurcation diagrams of displacement along X and Y
directions are given with unbalanced mass. According to Figure 10, with increasing
rotational speed, the different nonlinear behavior of the rotor system is presented at
different rotational speed. When the rotational speed is less than 7800 rpm, the rotor
system is in 1T-period motion. With increasing rotational speed, the 1T-period motion of
gas rotor system is changed as 2T-period motion at rotational speed range of 7800 rpm to
19,400 rpm. The motion state of the system is changed as 1T-period motion under speed
greater 19,600 rpm. The typical characteristics of 1T-period motion including trajectory,
time history and frequency spectrum at 6000 rpm, are shown in Figure 11. As shown in
Figures 11 and 12, the gas rotor system is under 1T-period motion, and the orbit presents
as an ellipse, while there exists only one point in the Poincaré map and the spectrum
diagram contains only rotating frequency caused by the unbalanced mass force. Under
the 1T-period motion, the dynamic performance of the gas bearing-rotor system is under a
linear vibration state.
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Figure 12. The Poincaré section of the rotor system at 6000 rpm with unbalanced mass.

When the rotor speed is more than 7800 rpm, the behavior of the rotor system is in
the bifurcation state and the rotor motion will tend to 2T-period motion, during which the
system motion is under half-speed whirl. The typical characteristics of 2T-period motion
including trajectory, time history and frequency spectrum at 12,000 rpm are shown in
Figure 13. As shown in Figure 13, the orbit of 2T-period motion is not an ellipse and
changes into an “8” shape, while there exists 0.5× rotational frequency in the frequency
spectrum. Correspondingly, there exists two points in the Poincaré map as shown in
Figure 14. Under the 2T-period motion, the dynamic performance of the gas bearing-rotor
system is under a nonlinear vibration state caused by the nonlinear gas force. The nonlinear
gas force results in the existence of two frequencies, i.e., 0.5× and 1× rotational frequency,
in the spectrum plot shown in the bottom right corner of Figure 14.
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4. Conclusions

In this paper, the nonlinear performances of aerodynamic bearing-rotor system are
investigated using the combined hybrid method and FEM. Based on the bifurcation di-
agrams, trajectory and Poincaré section of the rotor, the nonlinear characteristics of the
autonomous and nonautonomous rotor system are presented and the main conclusions are
given as follows:

(1) By comparing our results with the results from reference papers and traditional FDM
solutions, the higher efficiency of the hybrid method is proven and correctness of the
method is also verified.

(2) When the rotational speed of an autonomous rotor system is less 8000 rpm, the
behavior of the system is in the stable point state. The behavior of the rotor system is
in the bifurcation state. The rotor motion will tend to limit cycles when the speed is
more than 8000 rpm.

(3) With increasing the speed of the nonautonomous rotor system, the behavior of the
system is changed from 1T-period motion to 2T-period motion.
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Appendix A

In the manuscript, the rotor is described by Timoshenko beam elements and its element
mass matrix is shown as:

Me = M0e + Mse

The M0e and Mse are shown as follows:

M0e =
ρe Aele

840(1 + Φe)
2



m1 0 0 m2 m3 0 0 m4
0 m1 −m2 0 0 m3 −m4 0
0 −m2 m5 0 0 m4 m6 0

m2 0 0 m5 −m4 0 0 m6
m3 0 0 −m4 m1 0 0 −m2
0 m3 m4 0 0 m1 m2 0
0 −m4 m6 0 0 m2 m5 0

m4 0 0 m6 −m2 0 0 m5



Mse =
ρe Ie

30(1 + Φe)
2le



m7 0 0 m8 −m7 0 0 m8
0 m7 −m8 0 0 −m7 −m8 0
0 −m8 m9 0 0 m8 m10 0

m8 0 0 m9 −m8 0 0 m10
−m7 0 0 −m8 m7 0 0 −m8

0 −m7 m8 0 0 m7 m8 0
0 −m8 m10 0 0 m8 m9 0

m8 0 0 m10 −m8 0 0 m9


And the coefficients of M0e and Mse are obtained by:

m1 = 312 + 588Φe + 280Φ2
e , m6 = −

(
6 + 14Φe + 7Φ2

e
)
l2
e

m2 =
(
44 + 77Φe + 35Φ2

e
)
le, m7 = 36

m3 = 108 + 252Φe + 140Φ2
e , m8 = (3 − 15Φe)le

m4 = −
(
26 + 63Φe + 35Φ2

e
)
le, m9 =

(
4 + 5Φe + 10Φ2

e
)
l2
e

m5 =
(
8 + 14Φe + 7Φ2

e
)
l2
e , m10 =

(
−1 − 5Φe + 5Φ2

e
)
l2
e

Φe =
12Ee Ie

κeGe Ae l2
e
, κe =

6(1+υe)(1+µ2)
2

(7+6υe)(1+µ2)
2
+(20+12υe)µ2

where κe is the shear constant, Ee is the Young’s modulus, υe is Poisson’s ratio, µ is the
ratio of the inner shaft radius to outer shaft radius, Ge =

2(1+υe)
Ee

is the shear modulus, Ie is
the second moment of area of the cross section about the neutral plane, le is length of the
element and the subscript e represents element. Its element stiffness matrix and gyroscopic
matrix are shown as:
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Ke = Ee Ie
(1+Φe)l3

e



12 0 0 6le −12 0 0 6le
0 12 −6le 0 0 −12 −6le 0
0 −6le l2

e (4 + Φe) 0 0 6le l2
e (2 − Φe) 0

6le 0 0 l2
e (4 + Φe) −6le 0 0 l2

e (2 − Φe)
−12 0 0 −6le 12 0 0 −6le

0 −12 6le 0 0 12 6le 0
0 −6le l2

e (2 − Φe) 0 0 6le l2
e (4 + Φe) 0

6le 0 0 l2
e (2 − Φe) −6le 0 0 l2

e (4 + Φe)



G0e =
ρe Ie

15(1+Φe)
2le



0 g1 −g2 0 0 −g1 −g2 0
−g1 0 0 −g2 g1 0 0 −g2
g2 0 0 g3 −g2 0 0 g4
0 g2 −g3 0 0 −g2 −g4 0
0 −g1 g2 0 0 g1 g2 0
g1 0 0 g2 −g1 0 0 g2
g2 0 0 g4 −g2 0 0 g3
0 g2 −g4 0 0 −g2 −g3 0


where

g1 = 36, g3 = −
(

4 + 5Φe + 10Φ2
e

)
l2
e , g2 = (3 − 15Φe)le, g4 =

(
−1 − 5Φe + 5Φ2

e

)
l2
e ·

Moreover, the mass matrix and gyroscopic matrix of the disk element are shown
as follows:

Med =


md 0 0 0
0 md 0 0
0 0 Id 0
0 0 0 Id

, Ged =


0 0 0 0
0 0 0 0
0 0 0 Ip
0 0 −Ip 0


where, md is the mass of disk, Id is the diametral moment of inertia of the disk and Ip is
the polar moment of inertia of the disk.

In the end, by assembling the mass, stiffness and the gyroscopic matrix of beam
and disk elements, the general form of the equation for an n degree of freedom system
considering the Rayleigh damping C becomes the Equation (9) in Section 2.2.
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