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Abstract: Supercritical CO2 foil bearings are promising bearing technology for supercritical CO2

high-speed turbomachinery. The partial derivative method including complete variable perturbation
of the compressible turbulent lubrication Reynolds equation is effective to predict the frequency
dependent dynamic stiffness and damping coefficients of supercritical CO2 bearings. In this research,
the structural perturbation of foil dynamic model was introduced into this method and then the
dynamic coefficients of supercritical CO2 foil bearings were calculated. The results of parametric
analysis show that the structural loss factor has little influence on the trend of dynamic coefficients
changing with the dimensionless support stiffness but mainly affects the value of stiffness coefficients
as well as damping coefficients. Due to the turbulence effect, the bearing number is not able to
directly determine the characteristics of supercritical CO2 foil bearings, which is different from air
bearings. Compared to the bearing number, the influence of the average Reynolds number on the
change of dynamic coefficients with dimensionless support stiffness is more obvious.

Keywords: supercritical carbon dioxide; compressible turbulent lubrication; real gas effect; damped
elastic support; structural perturbation; dynamical deformation; perturbation frequency

1. Introduction

The supercritical carbon dioxide closed-loop Brayton cycle is a promising power
generation system due to compact structure and high efficiency [1–3]. The characters of
high parameters and high efficiency of supercritical CO2 turbomachinery require
the rotor with high speed, which makes the bearing technology attract a lot of
attentions [4,5]. Supercritical CO2 lubricated bearings can simplify the rotor structure to im-
prove its dynamics as well as eliminate the pollution of lubricant oil completely [6–8]. The
compliant foil gas bearing technology from Capstone was used in the tests of supercritical
CO2 power system in Sandia, which is one of the key technologies of turbo-alternator-
compressor configuration [9]. Some of other successful supercritical CO2 turbomachinery
test projects also used the foil bearings [1,10].

At present, there are many research studies on the air foil bearing were published,
including both mechanism analysis [11–13] and prototype test [14,15]. Although the
foil bearings lubricated by both supercritical CO2 and air belong to compressible fluid
lubrication, their lubricating mechanisms are essentially different because the compressive
behavior of supercritical CO2 shows a real gas effect and the turbulence exists in the
supercritical CO2 bearing clearances [16]. Conboy developed a model for supercritical
CO2 foil thrust bearing based on Reynolds equation considering turbulence and real gas
effect [17]. Munroe used COMSOL for the multiphysics field analysis of supercritical CO2
foil thrust bearings [18]. Kim proposed an analysis tool for three-dimensional thermal
fluid analysis of radial foil bearings with turbulence and real gas effects [19]. These studies
mentioned above only related to the static characteristics of supercritical CO2 foil bearings.
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However, the theoretical calculation and design approach to supercritical CO2 foil
bearings are still deficient because the dynamic characteristics of bearings are the only basis
in the simulation on dynamics of rotor-bearing system [20,21]. For the bearings lubricated
with compressible fluid, their dynamic stiffness and damping coefficients change with
the perturbation frequency [22]. Chapman recognized the importance of subsynchronous
perturbation and derived subsynchronous dynamic coefficients of supercritical CO2 hy-
drostatic foil bearings by CFD [23]. However, the CFD-based method makes it difficult to
consider the dynamical structural deformation of foil. Bi presented the partial derivative
method embracing dynamical variations of complete variables in the Reynolds equation
for solving the dynamic coefficients of supercritical CO2 rigid cylindrical bearings under
different perturbation frequencies [24].

In this paper, the complete variables perturbed partial derivative method given in
Ref. [24] is furthered by introducing the structural perturbation theory for the dynamic
model of foil. Then, the method is able to calculate the frequency dependent dynamic
stiffness and damping coefficients of supercritical CO2 foil bearings with consideration
of dynamical deformation of the foil. The calculation model for foil bearing in this study
was verified by comparing with the experimental and numerical results in the literature.
Under different perturbation frequencies, the influences of foil support stiffness, structural
loss factor, bearing number, and average Reynolds number on the dynamic coefficients of
supercritical CO2 foil bearing are investigated in detail.

2. Mathematics for Dynamic Coefficients of Supercritical CO2 Foil Bearings
2.1. Supercritical CO2 Lubricated Foil Bearing

The schematic diagram of supercritical CO2 foil bearing studied in this paper is shown
in Figure 1. The foil bearing is composed of plate foil, bump foil, and bearing house. In
circumferential direction, one end of the two kinds of foil is fixed on the bearing house and
the other end is free.
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Figure 1. Schematic of the supercritical CO2 lubricated foil bearing. Figure 1. Schematic of the supercritical CO2 lubricated foil bearing.

The shaft rotate with angular velocity ω in the foil bearing from free end to fixed end
at its equilibrium position described by eccentricity ratio ε0 and attitude angle ϕ0. The
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thickness of lubricating film h is the distance between the shaft surface and the inner surface
of the plate foil, under the perturbation in the small neighborhood of equilibrium position;
its dimensionless form is composed of the static film thickness h0 and the perturbed one h̃d.

h = h0 + h̃deiΩt (1)
where Ω is dimensionless perturbation frequency, which equals the ratio of the perturbation
circular frequency υ to the rotating circular frequency ω of the shaft. The h0 and h̃d of
the fixed pad bearing with rigid surface can be determined directly by the geometric
and kinematic relationship between the shaft and pad. However, the h0 and h̃d of the foil
bearings need to be determined by introducing the structural perturbation (see Section 2.2.1)
which reflects the relation between the dynamical deformation and pressure.

2.1.1. The Compressible Turbulence Reynolds Equation and Its Boundary Conditions

The dimensionless compressible turbulent lubrication Reynolds equations including
real gas effect for supercritical CO2 bearings were obtained by the partial derivative method
in [24] and are shown as follows.
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The static Equation (2) is for static pressure distribution p0 and the perturbed
Equation (3), which involves the dynamical variations of density, viscosity and the turbu-
lence, governs the perturbed pressure p̃d for obtaining the dynamic coefficients. For the
foil bearings, the structural perturbation reflects the relation between the p̃d and h̃d.

In the Equations (2) and (3), the dimensionless turbulent lubrication coefficients Gx
and Gz are shown below.

Gx =
(
1 + α1/12Reβ1

)−1
=
(
1 + 0.0136/12Re0.9)−1

Gz =
(
1 + α2/12Reβ2

)−1
=
(
1 + 0.0043/12Re0.96)−1 (4)

The values of the constants α1, α2, β1, and β2 in the Equation (4) are given by the
Ng-Pan turbulence model, which is reasonable for supercritical CO2 bearings [25].

The boundary conditions for the supercritical CO2 foil bearings are absolutely same
to the ones which are appropriate for the air foil bearings. The boundary conditions for
Equations (2) and (3) are shown below.

p0(θ, λ = ±L/D) = p0(θ = 0, λ) = 1
p̃d(θ, λ = ±L/D) = p̃d(θ = 0, λ) = 0

(5)

Due to large flexibility, the plate foil is not able to bear the pressure lower than ambient
pressure. The Reynolds boundary condition Equation (6), governing the separation of the
plate foil from the bump foil, should be supplied to the simulation of the foil bearings.
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i f p0_trend(θ, λ) < 1

p0(θ, λ) = 1, ∂p0
∂θ = 0

p̃d(θ, λ) = 0, ∂ p̃d
∂θ = 0

(6)

2.1.2. The Damped Elastic Support Comprehensive Dynamic Model for Foil System

The hydrodynamic lubricating film is generated by relative motion of the shaft and
the inner surface of the plate foil. As shown in Figure 2, the foil system can be modeled as
the acting surface of hydrodynamic lubrication with damped elastic support.
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The comprehensive foil model containing elastic support and structure damping is
given below.

p − pa = kwt + c f
∂wt

∂t
(7)

where the wt is the displacement of plate foil. The p-pa is the force onto the foil, which is
generated by the pressure difference between the hydrodynamic pressure of the lubricating
film and the ambient pressure. The k and cf are the support stiffness and structure damping
of the damped elastic support system equivalent to the foil.

Taking the dimensionless pressure p = p/pa, dimensionless plate foil displacement
wt = wt/C0 and dimensionless time t = ωt into Equation (7), the dimensionless dynamic
equation for the foil system can be obtained.

p − 1 = kwt + c f
∂wt

∂t
(8)

where the dimensionless support stiffness k and dimensionless structure damping c f
are as follows.

k = C0
pa

k

c f =
ωC0
pa

c f
(9)

The structure damping c f depends on the interaction among the plate foil, bump foil
and bearing house, which can be described by the structural loss factor γ based on its
relationship with the excitation frequency υ f and the support stiffness k. The structure loss
factor γ can be determined by energy dissipation extracted from the dynamical loaded test;
its value range is between 0.2 and 0.4 in [26] while Rubio [27] measured values between
0.06 and 0.21.

γ =
c f

k
υ f =

c f

k

υ f

ω
(10)

Pronobis pointed out that the excitation frequency υ f should be equal to the shaft
rotation frequency ω rather than the shaft perturbation frequency υ, because the deforma-
tion speed of the foil under the instability critical state is equal to the rotation speed of the
shaft [28]. The instability rotation speed calculated by the eigenvalue method is consistent
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with the transient dynamic calculation as long as the υ f /ω = 1 is satisfied. Taking Equation
(10) into Equation (8), the dimensionless foil dynamic equation can be obtained as follow.

p − 1
k

= wt + γ
∂wt

∂t
(11)

2.2. The Structural Perturbation Theory of Foil Bearings
2.2.1. The Relation between the Perturbation of Foil Displacement and Perturbed Pressure

The dynamical variation of the displacement of plate foil wt is expressed as the
superposition of the static displacement wt0 and the perturbed displacement w̃t.

wt = wt0 + w̃teiΩt (12)

Considering the dynamical displacement of plate foil, the static film thickness h0 and
the perturbed film thickness h̃d are shown as follows.

h0 = hJ0 + wt0 = 1 + ε0 cos(θ − ϕ0) + wt0 (13)

h̃d = h̃Jd + w̃t = ε̃d cos(θ − ϕ0) + ε0 ϕ̃d sin(θ − ϕ0) + w̃t (14)
The expressions of wt0 and w̃t require to be obtained by perturbing the damped elastic

support model of the foil system. Taking the perturbation expansions of foil displacement
Equation (12) and pressure (p = p0 + p̃deiΩt) into the dimensionless foil dynamic Equation
(11), the zero order and first order terms are separated and then the structural perturbation
of foil bearings is obtained below.

wt0 =
p0 − 1

k
(15)

w̃t =
p̃d

k(1 + iΩγ)
(16)

Equation (15) is the relation between the static plate foil displacement wt0 and static
pressure p0, while Equation (16) is the relation between the perturbed foil displacement
w̃t and perturbed pressure p̃d. The damped elastic support foil dynamic model was
modeled as dynamical complex stiffness k(1 + iΩγ), which expresses the elastic support
and structure damping together by the superposition of the static support stiffness (real
part) and perturbed stiffness (imaginary part).

2.2.2. The Partial Differential Equations for Complex Perturbed Pressure

Taking Equation (16) into Equation (14), the expression of perturbed film thickness h̃d
can be obtained below.

h̃d = ε̃d cos(θ − ϕ0) + ε0 ϕ̃d sin(θ − ϕ0) +
p̃d

k(1 + iΩγ)
(17)

Two perturbation variables ε̃d and ϕ̃d are involved in Equation (17). Let Pε=∂ p̃d/∂ε̃d,
Pϕ = (1/ε0)(∂ p̃d/∂ϕ̃d), and taking partial derivative of h̃d to ε̃d and ε0 ϕ̃d, the Hε and Hϕ are
defined as Equation (18).

Hε =
∂h̃d
∂ε̃d

= cos(θ − ϕ0) +
Pε

k(1 + iΩγ)
Hϕ =

1
ε0

∂h̃d
∂ϕ̃d

= sin(θ − ϕ0) +
Pϕ

k(1 + iΩγ)
(18)

In Equation (3), replacing the p̃d by Pε, Pϕ and the h̃d by Hε, Hϕ, respectively, yields
two partial differential equations for Pε and Pϕ, shown as Equations (19) and (20).
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The dynamic coefficients of the supercritical CO2 foil bearing based on the equations above
include the coupling perturbations of the complete variables in the compressible turbulent lubrication
Reynolds equation and the dynamic model of foil.

The complex pressure distributions Pε and Pϕ were solved numerically by finite difference
method. Then, the dynamic coefficients in the coupled coordinate system of x-y and ε-ϕ are obtained
by numerical integration below.

− R
L
∫ L

2R
− L

2R

∫ 2π
0 Pε sin θdθdλ = kxε + iΩcxε

− R
L
∫ L
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− L
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− L

2R

∫ 2π
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(21)

The dynamic coefficients in the x-y Cartesian coordinate system shown in Figure 1 can be
obtained by the transformation below.[

kxx
kxy

]
= [A]

[
kxε

kxϕ

]
=

[
sin ϕ0 cos ϕ0
cos ϕ0 − sin ϕ0

][
kxε

kxϕ

]
[
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]
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[
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]
;
[
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]
= [A]

[
cxε

cxϕ

]
;
[

cyx
cyy

]
= [A]

[
cyε

cyϕ

] (22)

where the [A] is rotation matrix.
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3. Numerical Results and Discussion
3.1. Program Verification

In order to verify the calculation program in this paper, the Reynolds equation for the supercriti-
cal carbon dioxide lubricating film was regressed and then used for air foil bearing. The calculation
results of the minimum air film thickness are compared with the experimental results published
in [29] and the numerical results with FEM foil model [30]. The structure and material parameters of
the foil bearing corresponding to the experimental data in the literature are listed in Table 1. Based on
these parameters, the Iordanoff formula [31] is used to calculate the support stiffness (per unit area)
of the uniform linear spring, the value of which is 1.04 × 1010 N/m3.

Table 1. Structure and material parameters of the foil bearing corresponding to the test data.

Parameters Value Unit

Bearing length L 38.1 mm
Bearing radius R = D/2 19.05 mm

Circumferential length of top foil lx 120 mm
Radius Clearance C0 31.8 µm
Top foil thickness tt 101.6 µm

Bump foil thickness tb 101.6 µm
Bump foil pitch S 4.572 mm

Half bump length l 1.778 mm
Bump height hb 0.508 mm

Number of bumps 26 /
Young’s modulus of elasticity Eb 214 GPa

Poisson’s ratio νb 0.29 /

Figure 3a,b show the comparison of the minimum gas film thickness of the two-dimensional
uniform spring model with the results of experiments [29] and simulations [30] at rotating speeds
of 30,000 r/min and 45,000 r/min, respectively. The calculation results of the minimum gas film
thickness obtained by the program in this paper decrease with the increase of the load, and the
variation trend is consistent with the test results. It can be seen that whether it is 30,000 r/min or
45,000 r/min, the calculated result of the minimum air film thickness at the axial middle section of
the foil bearing is larger than the experimental result, while the results at the edge are in contrary.
This shows that the calculated difference between the midsection and the edge is larger than the test
result. The reason is that the support stiffness is evenly distributed along the axial direction during
the calculation, and the three-dimensional bending of the bump foil along the axial direction can
resist deformation when there is a pressure difference along the axial direction. The discontinuous
distribution of bump foil support stiffness is taken into account by Kim TH [30], in which the top foil
needs to be modeled by 2D plate elements.
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3.2. The Influence of Structural Loss Factor on the Dynamic Coefficients of Supercritical CO2 Foil
Bearing

In this Section, and the following Sections 3.3 and 3.4, the fluid in the lubricating thin film of foil
bearing is supercritical CO2. Both the ambient pressure and ambient temperature (pa, Ta) of bearings
are higher than and not extremely close to the critical point. The input parameters of foil bearing in
this paper are dimensionless, which, related to ambient parameters, includes the bearing number
Λ = 6µaω/pa(R/C0)2 and the average Reynolds number Rea = ρaωRC0/µa.

The variations of dynamic stiffness and damping coefficients of supercritical CO2 foil bearing
are shown in Figure 4, when eccentricity ε0 is 0.8, bearing number Λ is 0.0097, average Reynolds
number Rea is 44,174 and length-to-diameter ratio L/D is 1, respectively. In Figure 4, the structural
loss coefficients are 0.09, 0.21, and 0.32, respectively, and the dimensionless perturbation frequencies
are 0.5 and 1, respectively.

As k varies from 0.1 to 1 in Figure 4, dynamic stiffness coefficients increase with the dimension-
less bearing stiffness k. Whether the dimensionless perturbation frequency Ω is 1 or 0.5, the difference
among the direct stiffness coefficients kxx under different structural loss factors are small. The direct
stiffness coefficients kxx are nearly the same under the dimensionless perturbation frequencies Ω = 1
and 0.5. Whether the dimensionless perturbation frequency Ω is 1 or 0.5, the larger the structural loss
factor γ, the smaller the cross-coupling stiffness coefficient kxy. The difference of the cross-coupling
stiffness coefficients kxy under different structural loss factors γ varies with the dimensionless support
stiffness k, and the difference increases first and then remains unchanged. When the dimensionless
perturbation frequency Ω is 1, the cross-coupling stiffness coefficient kxy is larger than that under
the dimensionless perturbation frequency Ω = 0.5. The difference among the cross-coupling stiff-
ness coefficients kxy under different structural loss factors is also in the same regulation. When the
dimensionless perturbation frequency Ω is 0.5, the cross-coupling stiffness coefficients kyx under
different structural loss factors γ are equal. When the dimensionless perturbation frequency Ω is
1, the difference among the cross-coupling stiffness coefficients kyx under different structural loss
factors γ is also small, and the larger the structural loss factor γ, the larger the cross-coupling stiffness
coefficient kyx.

For different structural loss factors γ and dimensionless perturbation frequencies Ω in Figure 4,
the variation of the direct stiffness coefficient kyy with the dimensionless support stiffness k is highly
similar to the cross-coupling stiffness coefficient kxy, but the difference among the results of the
direct stiffness coefficients kyy under different parameters is smaller. Whether the dimensionless
perturbation frequency is 1 or 0.5, the larger the structural loss factor γ, the larger the values of the
four dynamic damping coefficients. Under the same structural loss factor γ, for the direct damp-
ing coefficient cxx and the cross-coupling damping coefficient cyx, the results under dimensionless
perturbation frequency Ω = 1 are larger than that under Ω = 0.5. The results of the direct damping
coefficient cyy and the cross-coupling damping coefficient cxy when the dimensionless perturbation
frequency Ω is 1 are smaller than those when the dimensionless perturbation frequency Ω is 0.5. The
effect of the structural loss factor γ on the cxx and cyx is more pronounced than that of the structural
loss factor γ on cxy and cyy.

It can be seen that the structural loss factor has influence on the stiffness coefficients as well as
the damping coefficients of foil bearing. Such reason is that the dynamic coefficients are determined
by the dynamical stiffness of foil support system, which is a complex number, and the structural loss
factor is contained in the imaginary part.
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3.3. The Influence of Bearing Number and Average Reynolds Number on the Dynamic Coefficients
of Supercritical CO2 Foil Bearing

Dynamic stiffness and damping coefficients of the supercritical CO2 foil bearing are shown in
Figure 5 with different bearing numbers Λ and average Reynolds number Rea, when the structural
loss factor γ is 0.21, the eccentricity ε0 is 0.8 and the length-to-diameter ratio L/D is 1, and the
dimensionless perturbation frequency Ω is 0.5 or 1, respectively, where the results for the blue lines
are the same as the input parameters when the structural loss factor γ is 0.21 in Figure 4.
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By comparing the results of the red lines and the blue lines, it can be seen that for the same
average Reynolds number Rea, the variation of the direct stiffness coefficients with the dimensionless
support stiffness k is nearly the same under different bearing numbers Λ and different dimensionless
perturbation frequencies Ω. Similar results are obtained for other stiffness and damping coefficients.
Under the same average Reynolds number Rea and dimensionless perturbation frequency Ω, the direct
stiffness coefficients kxx and direct damping coefficients cxx at the Λ = 0.0109 are larger than the results
at the Λ = 0.0097. However, the cross-coupling damping coefficient cyx at the Λ = 0.0109 is smaller
than the results at the Λ = 0.0097. For the cross-coupling stiffness coefficient kxy with dimensionless
support stiffness k < 0.3 and the direct stiffness coefficients kyy with dimensionless support stiffness
k = 0.1, the results at the Λ = 0.0109 are equal to that at the Λ = 0.0097. The results of kxy and kyy

under the other dimensionless support stiffness k and the Λ = 0.0109 are larger than that at the
Λ = 0.0097. Under the same average Reynolds number Rea, the dimensionless perturbation frequency
Ω = 1 and the dimensionless support stiffness k < 0.73, the cross-coupling stiffness coefficients kyx
at the Λ = 0.0109 are equal to that at the Λ = 0.0097. The cross-coupling stiffness coefficients kyx

under the other dimensionless support stiffness k at the bearing number Λ = 0.0109 is slightly larger
than the results at the bearing number Λ = 0.0097. The stiffness coefficients under dimensionless
perturbation frequency Ω = 0.5 are similar to those under dimensionless perturbation frequency
Ω = 1. Under the same average Reynolds number Rea, when the dimensionless perturbation frequency
Ω is 1, the cross-coupling damping coefficient cxy at the bearing number Λ = 0.0109 is nearly the same
as the results at the bearing number Λ = 0.0097. When the dimensionless perturbation frequency is
0.5 and the bearing number Λ is 0.0109, the results are slightly larger than those when the bearing
number is 0.0097. The variation of the direct damping coefficient cyy with the dimensionless support
stiffness k is similar to that of the cross-coupling damping coefficient cxy.

However, comparing the results of the black lines and the blue lines, at the same bearing number,
the variation of bearing stiffness and damping coefficients with the dimensionless support stiffness k
under different average Reynolds numbers Rea and different dimensionless perturbation frequencies
Ω have nearly no similarity. Such reason is that both the compressibility and the turbulence effect
are included in the average Reynolds number, while the bearing number reflects the compressibility
only. Because of the turbulence effect, the bearing number is not able to directly determine the
characteris-tics of supercritical CO2 foil bearings, which is different from air bearings.

3.4. The Influence of Compressibility of Supercritical CO2 on the Dynamic Coefficients
The variation of the dynamic stiffness and damping coefficients of supercritical CO2 foil bearing

with dimensionless perturbation frequency Ω are shown in Figure 6, when the eccentricity ε0 is 0.6,
bearing number Λ is 0.01, average Reynolds number Rea is 49,260, and L/D is 1. The results by the
partial derivative method at different conditions of perturbation are shown by different colors in each
subplot, with the red lines (CVP) considering the complete variables perturbations, the green lines
(QST) and blue lines (OPP) considering quasistatic treatment (without ∂ρ/∂t) and only perturbed
pressure, respectively.

The blue line shows that the conventional perturbation method for air bearings indiscriminately
applied to supercritical CO2 bearings. The difference between the blue lines and the red lines reflects
the perturbation effects of density, viscosity, and Reynolds number. The difference between the green
lines and red lines reflects the effect of partial density over partial time (The hysteresis of lubricating
film to perturbation caused by compressibility of lubricant).

When the dimensionless perturbation frequency Ω tends to 0+, all the stiffness coefficients of
the foil bearing considering the complete variable perturbation are identical to the results of the
quasi-static treatment. Because the foil deformation is a static process independent of time under
infinitely slow small displacements of the shaft. As the dimensionless perturbation frequency Ω
increases, for the direct stiffness coefficient kxx, when Ω is less than 0.4, the results considering the
complete variable perturbation are equal to the quasi-static treatment, and decrease with Ω. However,
when Ω > 0.4, the results by complete variable perturbation begin to increase while the results by the
quasi-static treatment continue to decrease. The direct stiffness coefficient kyy by complete variable
perturbation increases significantly with Ω.
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In the range of perturbation frequencies Ω in Figure 6, the cross-coupling stiffness kxy by
the complete variable perturbation is larger than that by the two degenerate conditions, while
the kyx by complete variable perturbation is the smallest. The direct damping cxx by quasi-static
treatment is nearly equal to that by only perturbed pressure. The direct damping coefficients and the
cross-coupling damping coefficient cyx obtained by complete variable perturbation are significantly
smaller than those by the two degenerate conditions. For the cross-coupling damping coefficient
cxy, the results by complete variable perturbation are between the two degradation conditions
when dimensionless perturbation frequencies Ω is less than 1.1, and less than the two degradation
conditions when Ω > 1.1.

Although the time lag effect of the compressible lubrication ∂ρ/∂t can be reflected only by the
partial derivative method including complete variable perturbation, all the dynamic coefficients
obtained by the two degradation conditions in Figure 6 also vary with the dimensionless perturbation
frequency Ω, which is brought about by the structural perturbation of the foil bearing through the
∂h/∂t term. Such indicates that the frequency effect of the dynamic coefficients of compressible
lubricated foil bearings is the result of both the properties of lubricant and the dynamical deformation
of the foil.

4. Conclusions
In this paper, both the damped elastic support foil model and the compressible turbulent

lubrication Reynolds equation were perturbed by the partial derivative method with dynamical
variations of complete variables. Then the partial derivative method can be used to solve the stiffness
and damping coefficients of supercritical CO2 foil bearings under different perturbation frequencies.
The main conclusions are as follows:

1. The results of minimum film thickness of an air foil bearing were calculated by the program
of the method of this research (through a simple change) and compared with the test and
calculation data in the literature. It is verified that the two-dimensional uniform spring model
for support stiffness is reasonable for foil bearings.
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2. The partial derivative method is able to take into account the influence of structural loss factor as
well as perturbation frequency on the dynamic coefficients of foil bearings. The structural loss
factor has influence on the stiffness coefficients as well as the damping coefficients. Thus, for
compressible lubricated bearings, the static stiffness and damping coefficients (obtained under
perturbation frequency infinitely close to zero) are not the dynamic coefficients required for
rotor dynamics analysis. The structural loss factor has little influence on the trend of dynamic
coefficients changing with the dimensionless support stiffness, but mainly affects their value.

3. Due to the turbulence effect, the bearing number is not able to directly determine the charac-
teristics of supercritical CO2 foil bearings, which is different from air bearings. For the same
average Reynolds number, the trends of stiffness and damping coefficients changing with the
dimensionless support stiffness are similar, and the bearing number only affects the value of
dynamic coefficients. The average Reynolds number not only affects the values of the dynamic
coefficients but also has influence on their variations with the dimensionless support stiffness.
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Nomenclature

θ circumferential angular coordinate
ε eccentricity ratio
ϕ attitude angle
Oj shaft center
Ob bearing center
h film thickness
ω rotational circular frequency
υ shaft perturbation circular frequency
Ω dimensionless perturbation frequency
t time
ρ density
µ viscosity
p pressure
λ dimensionless axial coordinate
Λ bearing number
Gx, Gz turbulence coefficients
α1, β1, α2, β2 constants in the turbulence coefficients
wt displacement of plate foil
k support stiffness
cf structure damping
γ structural loss factor
R bearing radius
L bearing length
C0 radius clearance
Pε, Pϕ complex perturbed pressure
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Subscripts
0 static variables
d perturbations
a ambient parameters
Headers
- dimensionless variables
~ complex amplitude of frequency perturbation
Abbreviations
CVP complete variables perturbations
QST quasi-static treatment
OPP only perturbed pressure
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