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Abstract: Nanoparticles as lubricant additives demonstrate powerful friction reduction and antiwear
properties and are potential alternatives to traditional additives in line with green and environmen-
tally friendly requirements. However, the vast majority of currently available research focuses on the
tribological properties of various nanoparticles in base oils at laboratory, which has a large gap with
their application in engineering. To cope with the rapid economic and industrial development in
China, there is a need to improve the tribological properties of nanoparticles. This paper highlights
the current status and development trend of nanoparticles as lubricant additives in China. The
factors influencing the tribological properties of nanoparticles, such as their composition, particle
size and morphology, as well as the base stocks and their combination with other additives, are
summarized. Furthermore, the research progress in the lubrication mechanism of nanoparticles is
discussed, and the issues concerning the application of nanoparticles as lubricant additives as well
as their future directions are discussed. This review is expected to provide an impetus to guide
the design of high-performance, fully formulated lubricant systems containing nanoparticles as the
lubricant additive.

Keywords: nanoparticle; nanoscale lubricant additive; tribological properties; current situation;
future direction

1. Introduction

Lubricants consist of base oils and additives, of which additives as the essence of
high-performance lubricants play key roles in friction reduction, antiwear and antioxi-
dation abilities and load-carrying capacity, as well as the reliability and operational life
of mechanical devices under harsh working conditions. The dramatic development of
modern industry in China continuously requires that machinery and equipment transform
into large, precise and intelligent ones, and the operating environment of the mechanical
moving parts increasingly becomes complex and harsh. As a result, traditional lubricant
additives are unable to meet the needs of modern industrial development. Nanoadditives,
an emerging class of lubricant additives, are superior to traditional lubricant additives in
that they not only have superior friction reduction and antiwear properties but also have
unique self-healing capability [1,2].

The researches on nanoadditives in China can be traced back to the 1990s, when the
subject of nanomaterial tribology was established [3]. Since then, a variety of research at
home and abroad has been dedicated to relevant research in this field, which is contributive
to enriching and promoting the research on nanomaterial tribology [4-9].

Viewing the widespread industrial application of nanoadditives in our country, this
paper attempts to summarize the significant contributions made by our group and other
domestic research groups, covering the effects of the component, particle size and mor-
phology of nanoparticles on their tribological properties as well as their interactions with
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base oils and/or other additives. It also talks about the currently existing problems and
development trends of nanoadditives.

2. Effect of Nanoadditive Composition on Tribological Properties

Usually, nanoparticles refer to materials with a particle size of less than 100 nm in at
least one dimension in three-dimensional space, and this small size allows them to easily
enter the frictional contact zone and efficiently exert excellent tribological properties [10].
Nanoadditives can be classified by composition into metal, oxide, sulfide or carbon and
its derivatives as well as rare earth compounds and others, and various nanoadditives
usually rely on unique physicochemical properties to deliver excellent friction-reducing
and antiwear properties. Table 1 provides a summary of the classification of nanoparticles
with respect to their components.

Table 1. Summary of various nanoparticles.

Diameter Content Decreasing Decreasing Decreasing
Component Nanoparticles (am) (Wt%) Degree of Degree of Degree of WR Ref.
COF (%) WSD (%) (%)
Cu 5 0.5 37 / 90 [11-15]
Ag 6-7 2.0 10 / 10 [16,17]
Bi 40 0.1 69 37 / [18,19]
W 30-60 0.5 30 19 / [20]
Metal Al 65 05 20 30 / [21]
Ni 80-120 0.1 29 39 / [22,23]
Ga 286 + 21 0.17 39 / 93 [24,25]
Sn 30-60 1.0 50 62 / [26]
ALOs 78 0.1 18 4 / [27]
Zr0O, 6-7 2.0 8 / 20 [28,29]
Fe304 45-50 1.5 58 13 / [30]
. CuO 7-15 0.5 -5 22 / [31-33]
Oxide Si0, 35 0.1 15 -3 / [19,34,35]
TiO, 30 0.1 15 3 / [35,36]
SnO, 20 0.1 4 -9 / [35]
ZnO 4 1.2 10 31 / [37,38]
CuS / 1.0 31 / 81 [39-41]
Sulfide WS, 20-60 1.0 27 / 85 [42-44]
MoS, 50-100 0.5 37 35 / [45,46]
GP 195422 0.08 16 / 26 [47-52]
Carbon and its CNTs 10-20 0.02 24 6.6 / [53,54]
derivative CQDs 2.66 1.0 62 89 / [55]
Diamond 110 0.2 17 25 / [34,56,57]
CeO, 300-600 2.0 18 16 / [58]
Rare earth La(ReOy);3 / 0.5 28 30 / [59]
compound Mixed rare earth
naphthenate 20-30 3.0 12 55 / [60]
Fe304,@MoS, 600-800 1.0 44 / 20 [61]
Si0,@Cu 694 1.0 32 / 67 [62]
Si0,@MOoS, 683 1.0 32 / 58 [62]
Cu@MoS, 8-13 0.5 38 29 / [63]
MoS,@CNT 80 1.0 33 / 98 [64]
Other MoS,@GP 80 10 20 / 98 [64]
MoS,@Cqg 100 1.0 25 / 9% [64]
MnzO,/GP 25 0.03 35 / 76 [65,66]
WS, /GP 100 0.02—0.04 70 / 66 [67]
TiO,/BP 300-500 0.01 26 13 / [68]
2.1. Metal

Due to their small size effect, metal nanoparticles have a very high surface energy
and can be well adsorbed on a rubbed surface during friction. Furthermore, tribochem-
ical reactions may occur under shear stress, resulting in a tribofilm with good friction
reduction and antiwear properties. However, metal nanoparticles are chemically unsta-
ble and are prone to oxidation in air. These drawbacks, fortunately, can be overcome by
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surface capping with oil-soluble alkyl chains, thereby preventing the oxidation of metal
nanoparticles and improving their dispersion stability in lubricants [69]. A large number of
studies demonstrate that copper nanoparticles are widely adaptable to different lubrication
systems and can significantly improve the tribological properties of base oils as well as
the contact fatigue life of mechanical components [70-72]. Zhang et al. [73] prepared alkyl
phosphorothioate acid (DDP)-modified copper nanoparticle (NPCuDDP) and used it as the
nanoadditive for a diamond-like carbon (DLC)/PAO tribosystem (PAO refers to poly-alpha
olefin). Unlike conventional small-molecule additives, NPCuDDP is widely adaptable to
DLC coating and can significantly reduce the friction coefficient and wear rate of DLC/PAO
tribosystems, which is due to the formation of the tribofilm with a low shear strength via
tribochemical reactions.

Namely, the Cu nanoparticle undergoes tribochemical reactions to generate oxides
and sulfates under shear stress, while the dopants in the DLC coating also participate
in tribochemical reactions, thereby contributing to the formation of the tribofilm. The
formation of the tribofilm is schematically illustrated in Figure 1.

& — Cu+ CuO + CuSO,

Cu CuO CuSO, AL(SO), AIPO,

Cu0+H— Cu+H,0 Al+ @ - AL(SO,), + AIPO,

DLC coatings

Figure 1. Schematic diagram illustrating the formation of the tribofilm of DLC/PAO solid-liquid
lubricating system in the presence of NPCuDDP [73].

In addition to Cu nanoadditives, Ni nanoparticle with magnetism as well as catalytic
activity has also received much attention [74,75]. Hu et al. [76] used oleylamine-modified
Ni nanoparticle (OA-Ni) to form an in situ carbon-based tribofilm with excellent friction
reduction and antiwear properties as well as a certain degree of load-carrying capacity,
and they suggest that the excellent tribological properties of the OA-Ni nanoparticle is
attributes to its catalytic activity towards the formation of a graphitized carbon layer on the
rubbed metal surfaces, as shown in Figure 2.
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Figure 2. Formation mechanism of tribo-film from OA-Ni nanoparticle. (a) Stable dispersion of
Ni nanoparticles in oil, (b) under the catalysis of Ni nanoparticles, PAO6 molecules carbonize
around them to form amorphous carbon phase, forming the concrete structure of nickel nanocrystals
embedded in the amorphous carbon phase, (c) is a partially enlarged schematic of the multilayer
composite tribofilm in (b) [76].
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2.2. Oxide

Oxide nanoparticles are advantageous over metal nanoparticles due to their better
chemical stability [77]. Nevertheless, it is still a challenge to efficiently and easily fabricate
oxide nanoparticles with homogeneous particle size and controllable morphology, which
limits their production on a large scale and their application in industry as well. Neverthe-
less, a range of published research demonstrates that oxide nanoparticles might represent
one of the future directions of nanoadditives.

Zhang et al. [78] prepared DDP-modified ZnO nanoparticle (ZODDP) from zinc
dialkyldithiophosphate (ZDDP) using a one-step method and investigated the tribological
properties of the as-prepared ZODDP for a steel-aluminum contact. As shown in Figure 3,
ZODDRP has excellent tribological properties and can reduce the friction coefficient and
wear rate by 10% and 70%, respectively, thanks to the formation of ZnO deposited film,
which is encouraging for overcoming the poor tribological performance of ZDDP towards
steel-aluminum contact. This, in combination with the significant reduction in the sulfur
and phosphorus contents of ZODDP, could be of particular significance for the development
of a new generation of nanoadditives with improved environmental acceptance.

6000
—DIOS
—— DIOS+1.2 wt% ZDDP
3000 - — DIOSH).4 wt% ZODDP|
04

-3000 DIOS+H0.4 wt%ZOD 05+1.2 wt%ZDDH

-6000 DIOS

Waear scar depth(nm)

-9000 T T T T T T
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Wear scar width(mm)

Figure 3. Two-dimensional (2D) morphologies of worn surfaces of aluminum disks by using three-
dimensional (3D) profilometer (Bruker Contour GT-K) [78].

Huang et al. [79] prepared mesoporous SiO, (denoted as MSN-loaded T512) with an
average particle size of 50 nm to support commercial antioxidants and further evaluated
its tribological and antioxidant properties in base oils. Their findings indicate that SiO,
nanoparticle not only has a certain degree of friction-reducing and antiwear abilities
but also has good antioxidation ability. As shown in Figure 4, the slow release of the
antioxidant prolongs its residence time in the lubricating oil and finally serves a good
antioxidant function.

added in the oil l slow release

oxidation
product.,

Figure 4. Schematic illustration for the preparation of MSNs-loaded T512 and its antioxidant
mechanism [79].



Lubricants 2022, 10, 312

50f23

2.3. Sulfide

Sulfides mainly include MoS,, WS, and CuS, and sulfur can promote the reaction
between nanoparticles and the friction interface to afford high-performance tribofilm,
thereby exerting friction-reducing and antiwear effects. However, in keeping with the
implementation of increasingly strict laws and regulations for environmental protection,
the release of gaseous sulfide in the preparation of metal sulfide is highly limited, and the
establishment of the low-temperature green synthesis method for fabricating metal sulfide
is still a challenge. Jiang et al. [80] synthesized oil-soluble WS, nanoadditive using green
liquid-phase pyrolysis in the presence of (NH4),WS,0; as the precursor and oleic acid as
the modifier. As shown in Figure 5, the as-synthesized oil-soluble WS, nanoadditive can
significantly improve the tribological properties of the base oil over a wide temperature
range, and it could be a potential alternative to ZDDDP, thanks to its excellent friction
reduction and antiwear properties superior to those of ZDDP.

(a) (b)
1 PAQG oil + 0.8w1% ZDDP E 1.24 PAOG oil + 0.8wt% ZDDP
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Figure 5. (a) Friction coefficient and (b) wear scar diameter of WS, and ZDDP in base oil [80].

A spherical MoS; nanoparticle synthesized by Xu et al. [81] exhibits good friction
reduction and antiwear effects in DIOS base oil, which is attributed to the formation
of the tribofilm and the adsorption film of MoS,-DIOS on the rubbed metal surfaces.
Chen et al. [82] demonstrated that the presence of ultra-thin MoS, nanosheets could signifi-
cantly improve the load-carrying capacity of base oils depending on the fracture strength
of MoS;. As the Hertzian pressure in the frictional contact region is below the fracture
strength of MoS,, the MoS, nanosheets can prevent direct contact between the rubbed
surfaces, which inhibits the occurrence of wear.

2.4. Carbon and Its Derivatives

Common carbon and its derivatives, including nanodiamond, carbon nanotubes
(CNTs), graphene (GP) and fullerene, have received extensive attention, thanks to their
excellent chemical stability, self-lubricity and good mechanical properties [83,84]. A study
by Chu et al. [85] from Taiwan Province of China showed that the introduction of 3%
(volume fraction) of nanodiamond could minimize the occurrence of friction and wear.
Additionally, the addition of carbon nanoparticle prepared by the one-pot method in PAO6
base oil could reduce the friction coefficient and wear spot diameter of the sliding pair by
47% and 30%, respectively, which demonstrates that the as-prepared carbon nanoparticle
could be a potential nanoadditive [86]. However, many carbon-based materials suffer
from complex preparation, high cost and inhomogeneous product size and are currently
unavailable for large-scale industrial production and application [87-89]. In this sense,
the search for an efficient and low-cost as well as size-controllable synthesis method for
nanoadditives is one of the major future directions worth special attention.

Carbon quantum dots (CQDs), consisting of carbon nuclei and surface groups and
usually less than 10 nm in diameter, can combine their surface groups with modifiers
possessing different functions, which not only contributes to improving their dispersion
stability but also endows them with additional properties compared with conventional
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nanodiamond. Ye et al. [90] synthesized diphenylamine-modified multifunctional CQDs
with photoluminescence and good antioxidant ability as well as friction-reducing and
antiwear properties at low temperature. As an additive to polyethylene glycol (PEG) base
oil, CQDs with a concentration of 1% (mass fraction) in the PEG base 0il exhibit the best
friction-reducing and antiwear properties. The presence of the diphenylamine structure
gives it the ability to scavenge free radicals, and the antioxidant capacity of CQDs is
positively dependent on their concentration.

Since its first report in 2004, GP has been extensively investigated in a wide range
of areas such as electronics and mechanics [91], and in recent years, its applications have
gradually expanded into the field of nanoadditives. A variety of GP-based materials
have been derived due to their excellent mechanical strength, thermal conductivity and
oxidative corrosion resistance as well as good lubricity. Li et al. [92] used isopropyl
triisostearyl titanate to surface-modify graphene oxide (GO) and obtained T-GO with
excellent dispersion stability. The as-prepared T-GO can significantly improve the extreme
pressure properties of the base oil and reduce the friction coefficient and wear rate by 50%
and 20%, respectively.

2.5. Rare Earth Compound

Rare earth elements are important raw materials for national defense and high-tech
industries [93]. China, the country with the largest rare earth reserve in the world, is at the
forefront of the research on rare earth. In recent years, nanoadditives containing rare earth
elements have attracted extensive attention, largely because the nanoparticles made from
rare earth compounds with high chemical activity and favorable adsorption capability often
exhibit desired friction-reducing and antiwear functions. Jin et al. [94] investigated the
tribological properties of oil-soluble lanthanum fluoroborate (La(BF4)3-OA) in polar base
oils, and they found that the active elements La, B and F could promote the formation of the
protective tribofilm on the friction interface, thereby exerting excellent friction-reduction
and antiwear properties. Wu et al. [95] synthesized oleylamine-modified CeO, (denoted
as OA-CeO,) nanoparticle by a one-pot method and evaluated its tribological properties.
They found that a low concentration of the as-prepared OA-CeO, nanoparticle can catalyze
the oxidation of the friction subsurface to form an antiwear protective film with iron oxide
as the main component. At the same time, a high concentration of CeO, nanoparticle
can form a deposited film with high load-carrying capacity, which also contributes to
improving the friction-reducing and antiwear properties of the lubricant (Figure 6). Some
studies show that rare earth elements are biologically toxic and their stockpile levels are
continuously decreasing along with their applications in a wide range of high technology,
which will inevitably harm the use of rare earth compounds as lubricant additives in
the future [96,97]. This reminds us that the recycling of rare earth elements from waste
materials, and their use in the preparation of environmentally friendly nanoadditive could
be worth special attention.

Low concentration High concentration

o ?*m{-@’ég R

pides and m‘ﬁﬂxﬂksnf*“": :

% Ce0, nanoparticle

Figure 6. Schematic illustration of the antiwear mechanism of OA-modified CeO, nanoparticle under

different concentrations [95].
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2.6. The Others

Today, many efforts are being made to design and prepare nanohybrids as lubricant
additives. Compared with a single nanoparticle, nanohybrids combine the characteristics
of over two kinds of nanoparticles, which is favorable for achieving a synergistic triboeffect
and thereby more efficiently reducing friction and wear. For example, core-shell-structured
nanoparticles are used extensively in the catalytic and electromagnetic fields, and the
differences in the physicochemical properties of the core and shell can be utilized to benefit
tribological properties [98]. Zhang et al. [99] prepared carbon-coated magnesium silicate
hydroxide (MSH@C) by hydrothermal method and found that MSH@C is more effective
than single MSH in reducing friction and wear, which is because the core—shell-structured
nanoparticle participates in a tribochemical reaction to generate a loose tribofilm with a
highly ordered structure. As shown in Figure 7, the core-shell structure is separated during
the friction process: The shell is adsorbed onto the rubbed surface to further undergo
phase transition under shear stress, while the core moves out of the contact region to carry
the load.

(a) @® Carbon

e Hydrogen
Pl’%sure ¢ Fluorine

Figure 7. (a) The MSH@C undergoes core—shell separation by compression and shear. (b) The shell
layer adheres to the newly worn surface by physical adsorption or mechanical embedding, while the
thin MSH core slips out of the sliding contact interface [99].

For conventional 2D-layered material such as GP, the weak interlayer interactions
allow it to slip during friction, thereby reducing friction. However, under extreme con-
ditions, GP cannot provide effective antiwear protection, and in this case, it often needs
to combine GP with nanoparticle [100]. Gan et al. [101] prepared ionic liquid-modified
GO/Cu nanocomposite and found that the as-prepared nanocomposite as the lubricant
additive of PEG can effectively reduce friction and wear (by 40% and 47%).

In addition to nanohybrids, black phosphorus (BP) [102,103] and metal-organic frame-
works (MOFs) [104] as nanoadditives have also attracted some attention. BP is nontoxic
and thermodynamically stable, and it is widely used in semi-conductive industry (field-
effect transistor), biomedicine and catalysis [105]. However, the presence of the solitary
pairs of electrons on the surface of BP makes it highly susceptible to reacting with oxygen
and water in air, which is harmful to its structure stability [106]. This requires that BP
with a 2D-layered structure be treated to avoid premature failure; otherwise, it would be
inapplicable to nanoadditives for reducing friction and wear. Tang et al. [107] used oleic
acid to modify BP and achieved a macroscopic superlubricity of steel/steel contact with
the assistance of the as-obtained BP. The reason lies in that the surface-capped BP forms an
adsorbed film in the contact region during friction, and its lone pair of electrons further
binds the lubricant oleic acid and catalyzes the degradation of oleic acid to form amorphous
carbon, thereby impeding the direct contact between the steel surfaces.

MOFs offer significant advantages in gas storage and separation, biosensing and
catalysis, as well as drug delivery [108,109]; and the multi-selectivity of organic linkers is
favorable for increasing the dispersion stability of MOFs in 0il [110,111], which could help
to expand their application in nanoadditives. Wu et al. [112] synthesized zirconium-based
MOFs (Zr-MOFs) using DDP as the modifier, and the as-synthesized Zr-MOFs exhibited
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excellent dispersion stability in base oil and could reduce friction and wear by more than
50%. At the same time, the Zr-MOFs with a high specific surface area can significantly
increase the oxidation induction period of the base oil, and their oxidation resistance is
improved after the modification by DDP.

3. Effect of Size of Nanoadditive on Tribological Properties

Nanoparticles of different sizes have varying ease of entry into the frictional contact
zone under the same test condition, which inevitably leads to discrepancies in tribological
properties. Smaller nanoparticles will not only enter the frictional contact zone faster but
also exhibit improved dispersion stability and oil transmission capacity, allowing for better
judgment of oil quality. Nanoadditives will certainly develop towards smaller particle
size in the future [113-117]. However, comparative studies on the tribological properties
of nanoparticles of different particle sizes are scarce, and different test conditions can
be selective for the optimum particle size. Xu et al. [118] prepared calcium carbonate
nanoparticles (CCNPs) of different particle size, where the small CCNPs have the best
friction reduction and antiwear properties at high load and low frequency, while the large
size CCNPs have the greatest performance at high frequency. In addition, nanoparticles
can mend surface damage caused by wear through the deposition effect. Various sizes
of nanoparticles are embedded in the surface protrusions to differing degrees, and small
nanoparticles that can be fully embedded have the optimal antiwear ability [119].

For laminar nanoparticles, friction depends on the number of layers, and an increase
in the number of layers can reduce friction [120]. Ci et al. [121] studied the differences
in the tribological properties of hexagonal boron nitride (h-BN) at differing thicknesses.
They found that h-BN of a medium thickness has the best friction reduction and antiwear
properties, which is because h-BN with a moderate thickness can sustain interlayer sliding
during the friction process and can form a 150 nm thick tribofilm.

In addition, the length and diameter of some nanomaterials will also determine their
access to the contact area during the friction process. Ye et al. [122] observed that CNTs
with short lengths (0.5~2 um) and medium diameters (10~20 nm) have the best friction
reduction and antiwear properties, due to their rolling bearing and surface mending effects
between the contact areas.

4. Effect of Morphology of Nanoadditive on Tribological Properties

Sphere-, sheet-, onion- and nanotube-like nanoparticles are widely used in tribology,
and their lubrication mechanisms and tribological properties are highly dependent on
morphology [123]. Various nanoparticles with different morphologies are summarized
in Table 2, and the progress in the mechanistic studies will be described later. Usually, it
is necessary to artificially manipulate the morphology of nanoparticles so that they can
be well applied in engineering, and the increased difficulty and cost of preparation can
diminish the benefits of friction reduction and antiwear properties [124]. Therefore, it is
imperative to establish cost-effective production methods of nanoparticles; otherwise, the
commercialization of nanoadditives will be infeasible.

Table 2. Summary of nanoparticles with different morphologies.

Diameter Content Decreasing Decreasing Decreasing
Morphology Nanoparticles (am) (Wt%) Degree of Degree of Degree of WR Ref.
COF (%) WSD (%) (%)
PDA@Cu 200 0.4 45 / 97 [125]
Fe;0,@MoS, 500 05 17 / 34 [126]
Sphere CNSs 40-60 0.025 48 14 / [127-131]
CNSs-PEI 200-600 0.3 28 / 42 [132]
MoS, 20 05 37 35 / [133]
MoS, /TiO, 67 1.0 20 33 / [134]
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Table 2. Cont.
. Decreasing Decreasing Decreasing
Morphology Nanoparticles Dl(annr;e)ter C((;;t;l;t Degree of Degree of Degree of WR Ref.
° COF (%) WSD (%) (%)
MoS, 400 0.06 28 23 / [135]
TizCy Ty /MoS, / 0.3 39 / 85 [136]
Ag/BP 200-400 0.075 73 / 92 [137]
LDH 50-140 1.0 17 30 / [138]
LDH/GO / 0.2 67 / 97 [139]
Sheet LDH/MoS, / 0.2 67 / 98 [139]
BN 200-500 0.06 35 35 / [140-143]
Si0,-B-N-GO 50-100 0.15 24 47 / [144]
OAMBN/Cus / 0.2 27 25 / [145]
GP 600 0.075 27 43 / [146]
COFs / 0.05 49 / 95 [147,148]
Bentonite / 1.0 48 / 50 [149,150]
TIF-WS, 100-200 0.25 27 43 87 [151]
Onion Candle soot particles 30-50 0.3 14 / 39 [152]
NiFe,O4/OLFs 30 / 73 / / [153]
MWCNTs / 0.01 8 / 91 [154]
Ag/MWCNTs / 0.18 36 32 / [155]
Tub Cu/PDA/CNTs / 0.2 34 24 / [156]
ube Halloysite / 0.6 24 / 28 [157]
CNTs/MoS, / 3.0 44 34 / [158]
Ni/MWCNT / 0.2 44 / 56 [159]
4.1. Sphere

Spherical nanoparticles might act as rolling bearings in the frictional contact area to
prevent direct contact between the rubbed surfaces, eventually transforming sliding friction
into rolling friction [160-162]. Carbon nanospheres (CNSs) are typical representatives of
spherical nanoparticles with the advantages of being green and chemically inert and having
excellent friction-reducing and antiwear properties [163]. After many years of develop-
ment, CNSs with mature preparation methods and low cost are suitable for largesacle
industrial production [164-168]. Ye et al. [169] said that N and P co-doped CNSs can reduce
friction and wear by 60% and 90%, respectively, due to the formation of a protective film
on the rubbed surface, and the dual-doped CNSs retain excellent stability even under
harsh conditions.

In addition to carbon-containing materials, spherical oxide nanoparticles with excel-
lent mechanical properties have also received widespread attention. Li et al. [170] prepared
a ZrO, /5i0O; nanocomposite that reduced the coefficient of friction by 16% at low concen-
trations. Zhou et al. [171] designed and synthesized hollow SiO,@TiO; spherical materials
that provided a versatile and green nanoadditive that not only reduces the coefficient of
friction and wear rate by 40% and 50% but also rapidly degrades more than 50% of the
used base oil within 80 min.

4.2. Sheet

Common sheet or 2D-layered nanoparticles include GP, BP, MoS;, BN and others.
In contrast to spherical nanoparticles, the weak interactions between the layers allow
sheet-like materials to slip during friction, thereby reducing the coefficient of friction. In
addition, the strong film-forming capacity [172] of 2D-layered materials, in combination
with their polishing effect [173] and mending effect [174], makes them advantageous
potential nanoadditives. This section will focus on the application of BN and a new type
of sheet-like nanoparticle (2D transition metal carbide, nitride and carbonitride (MXene))
in lubricants.

BN has high chemical inertness and mechanical thermal stability and is widely used
in the field of high-temperature solid lubrication [175]. In recent years, BN has been known
as a lubricant additive with promising potential in reducing friction and wear; its use
in the field of solid lubrication, however, is constrained by its poor dispersion stability



Lubricants 2022, 10, 312

10 of 23

in lubricants. To deal with this issue, Wang et al. [176] used amino-containing silane
coupling agents to surface-functionalize h-BN, which in combination with the reaction be-
tween 4-carboxyphenyl boronic acid and amino group generates a sheet-like nanoadditive
(CPBA-BNNSs) with excellent dispersion stability in lubricant base oil. Compared with
the unmodified h-BN, the CPBA-BNNSs exhibit superior tribological properties even at
lower additions.

Layered double hydroxide (LDH) is widely used in catalysis, electrode and nuclear
element capture and biomaterial [177-179]. Recently, there has been considerable interest
from researchers in LDH as an aqueous or oil-based nanoadditive, and numerous studies
show that LDH has excellent tribological properties [180-183]. Wang et al. [184] achieved a
combination of catalysis and wear reduction by the calcination of Ni-Al LDH in air. The
nickel oxide formed after calcination catalyzes the carbonization of the base oil to form
carbon chips, thereby effectively avoiding the direct contact between the rubbed surfaces.
In turn, the relatively thick tribofilm formed by LDH ensures extremely low wear at high
contact pressures.

MXenes are emerging 2D materials with important applications in energy storage,
shielding against electromagnetic interference and sensing [185]. The presence of surface
groups such as -OH, -O- and -F gives MXenes favorable polarity [186], which extends
their application as nanoadditives. Differing from conventional 2D materials, MXenes
can provide continuous lubrication at any thickness, and their tribological properties
are independent of the interlayer interactions [187]. Yi et al. [188] achieved macroscopic
superlubricity with Ti3C,Ty MXene nanosheets in glycerol, and the coefficients of friction
and wear rate are reduced by more than 95% at lower Hertzian contact pressures. This is
because the tribofilm of MXene-containing nanosheets significantly reduces the shear stress
under boundary lubrication, while the glycerol layer formed with the nanosheets through
hydrogen bonding adsorption can reduce the shear stress under elastic fluid lubrication.
As aresult, there is a synergistic lubrication effect between MXene and glycerol, as shown
in Figure 8. Yi et al. further investigated the macroscopic superlubrication of Mo,CTy
MXene nanosheets in ionic liquids [189]. Their experimental results show that a composite
tribofilm containing molybdenum oxide and phosphorus oxide, in conjunction with the low
shear strength between the MXene nanosheet layers, achieve macroscopic superlubricity at
a maximum Hertzian contact pressure of above 1.4 GPa.
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Furthermore, covalent organic backbones such as bentonite clays and their composites
are also of great interest to researchers. They will not be discussed in detail here due to the
limited space available. In one word, 2D-layered materials with unique advantages have
found applications in various fields, and they could give rise to novel nanoadditives with
promising potential in engineering.

4.3. Onion

Onion nanoparticles with concentric multilayer spherical structure are thought to
have outstanding tribological properties, especially under extreme conditions such as high
temperature and high loading [190-192]. Unlike sheet and spherical nanoparticles, onion
nanoparticles can undergo rolling friction rather than sliding at low contact pressures,
while their exfoliated lamellae with a low shear strength can provide sliding friction at high-
contact pressures [193]. Meanwhile, the absence of surface dangling bonds is favorable
for ensuring the chemical inertness and reducing the adhesion to friction subsurface of
onion-like nanoparticles, which is conducive to the occurrence of rolling friction [8].

He et al. [194] prepared onion-like carbon nanoparticle by a short period of gas burst-
ing, and the as-obtained onion-like carbon nanoparticle as the lubricant additive greatly
reduced friction and wear because the exfoliated GP nanosheets can form a protective
film with desired friction reduction and antiwear properties. Luo et al. [195] obtained an
onion structure by the spontaneous combination of MoS; nanosheets through laser irradi-
ation. The as-obtained onion structure MoS,, with a minimal amount of dangling bond,
has greatly reduced surface energy as well as excellent antioxidant behavior and extreme
pressure properties. Ouyang et al. [196] investigated the tribological properties of onion
WS, and flake talc nanoparticles as lubricant nanoadditives. They found that the onion
WS, with a high load-carrying capacity as well as mending effect for the friction subsurface
reduced the Hertzian contact pressure, while the interlayer sliding of talc nanoparticle
helps to further reduce the shear stress via a synergistic effect.

4.4. Nanotube

Nanotubular materials with varying aspect ratios tend to roll upon entering the
frictional contact area [197]. However, strong intermolecular forces inevitably cause the
nanotubes to form aggregates whose rolling bearing effect is much weaker than that of
spherical nanoparticles. It is argued that rolling is not a reasonable lubrication mechanism
of nanotubes due to their special characteristics such as susceptibility to deformation
and wide distribution and the presence of structural defects. Instead, the exfoliation and
deformation of nanotubes in combination with the formation of thick boundary lubrication
film are mainly responsible for the desired friction reduction and antiwear properties of
nanotubular materials [198,199].

CNTs are the most widely studied class of tubular materials [200]. The formation of
carbon films under dry friction gives them excellent self-lubricating performance, and their
self-lubricity is positively correlated with their content [201]. As oil-based nanoadditives,
CNTs often need to be surface modified in order to improve their dispersion stability in
the lubricant base oil and hinder their agglomeration therein. Bai et al. [202] prepared a
supramolecular gel lubricant by dispersing acid-treated CNTs in a 500SN base oil containing
a gelling agent. As shown in Figure 9, the 3D mesh structure formed by the gelling agent
in the base oil can effectively improve the dispersion stability of CNTs, and the addition
of a small amount of CNTs is favorable for improving the friction reduction and antiwear
properties. Gong et al. [203] improved the dispersion stability of CNTs in oil by covalent
modification with polymeric aryl phosphates. They found that the protective tribofilm
formed on the surface of the steel disc allows the composite to retain excellent friction
reduction and antiwear properties at high temperatures.



Lubricants 2022, 10, 312

12 0f 23

2l L DG D, KR,

: oAl " g TR
n/q*ffk/,'&,::{g . ,-,’:'_" 4‘Q<7
") = ¥ % - Jy"“‘“y
o

==%= CNTH - 500SN
D<><>D>d 12-HSA
- (899990] ~~  500SN
S0 08 § (o
/i;;ik.‘:rs i§ ———— CNTH
S
o8 >~ 12-HSA
L Lk

Figure 9. Schematic diagram of lubrication mechanism of CNTs in 500SN base oil [202].

5. Lubrication Mechanisms
5.1. Ball Bearing Effect

The spherical or sphere-like nanoparticles, with rigid structure, act like ball bear-
ings when they enter the frictional contact area, transforming sliding friction into rolling
combined with sliding friction [204]. In this way, the direct contact between the rubbed
surfaces is prevented, and the occurrence of extreme situations such as jamming are greatly
hindered. At the same time, the high-performance nanoparticles with active surface groups
are confined to the frictional contact area owing to their desired embedding stability [205],
which is favorable for them to exert a ball-bearing effect. Duan et al. [206] suggested that
rolling rather than sliding friction exists between the rubbed interfaces when ZnO/Al,O3
composite nanoparticles are used as lubricant additives. Similarly, talc/carbon sphere
composite nanoparticle can transform sliding friction into rolling friction when it enters the
friction interval, and there is a synergistic effect between the talc and carbon spheres [207].

5.2. Mending Effect

Wear can contribute to the appearance of cracks and micro-pits on worn surface,
and nanoparticles entering the friction contact area can be deposited within the defects
to mend the worn surface efficiently, thereby compensating for the wear mass loss. This
mending effect of nanoadditive can help to reduce the surface roughness, thereby improving
fuel efficiency and extending the service life. For example, surface-modified cellulose
nanocrystals exhibit good dispersion stability in lubricant base oil and can mend the wear
marks on rubbed surfaces [208]. Similarly, the ionic liquid-modified CNTs exert a ball-
bearing effect during friction as well as mending and polishing effects, which could account
for their excellent friction reduction and antiwear properties [209].

5.3. Polishing Effect

Mechanical components are regularly ground to enhance surface accuracy and reduce
surface roughness. Similarly, nanoparticles in lubricants can act as abrasive grains to fill
and polish surfaces once introduced into the frictional contact area, thereby reducing the
mass loss caused by friction and wear. Usually, the polishing effect of nanoparticles highly
depends on their mechanical properties. For example, a surface treated with nanodiamond
nanofluid possessing high hardness, modulus of elasticity and compressive strength can
achieve the best surface smoothness, in contrast with those treated with commonly seen
nanoparticles such as Al;O3, SiO; and MoS, [210].
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5.4. Formation of Tribofilm

Small nanoparticles with a high specific surface area have high adsorption capacity
and reactivity in the boundary lubrication zone. It has been shown that organic-inorganic
hybrid nanoparticles can form a protective film on rubbed surfaces via organic chain
adsorption thereon under mild condition, and the adsorption film becomes thinner until
it ruptures at an extended friction duration [211]. At this point, the nanoparticles are
deposited in situ on the friction subsurface under shear stress, forming a tribofilm with
desired extreme pressure and antiwear properties. In contrast to traditional small-molecule
organic additives, nanoparticles form tribofilms mainly through the welding of inorganic
nuclei, adhesion or reaction with the surface and do not consume or corrode the friction
substrate. When the film formation rate and the wear rate reach a dynamic equilibrium, no
more wear occurs, whereas when the film formation rate increases further, even negative
wear occurs in association with the mass augment of the worn surface.

5.5. Extension of Tribomechanism of Nanoadditive

The friction reduction and antiwear properties of nanoparticles as lubricants have long
been considered to be related to the four lubrication mechanisms mentioned above. With
the continuous development of tribology, a large number of nanoparticles is being used as
lubricant nanoadditives, thus enabling the classical lubrication mechanisms to be continu-
ously supplemented. For instance, graphite- and graphene-based protective films formed
on metal substrates have excellent tribological properties, and their mechanistic models
have been continuously optimized with development [212]. Within the frictional contact
region, sheet nanoparticles can transform the interfacial shear of the friction subsurface into
the intralayer shear of nanoparticles, which in association with weak interlayer interactions
contributes to greatly reducing interfacial friction and wear [213-218]. As a complement to
the mending effect and tribofilm formation, friction-sintering mechanism is increasingly
receiving attention [219-221]. Namely, in the presence of normal load and shear stress,
nanoparticles as the lubricant additives are diffused into the friction subsurface and rapidly
densified without reaching the sintering temperature, thereby forming friction-sintered
film with excellent friction reduction and antiwear properties [222].

6. Effect of Other Additives on the Tribological Properties of Nanoparticles

Typical lubricant additives include friction reducer, antiwear agent, cleaner, dispersant
and viscosity modifier. In practice, a single nanoadditive cannot meet all the performance
requirements of the lubricant and needs to be combined with other additives to afford
fully formulated high-performance finished lubricant. However, there are often complex
interactions between nanoparticles and other additives, which could lead to synergistic
or antagonistic triboeffect. For example, the excessive adsorption of the dispersant on the
friction subsurface could affect the adhesion of the tribofilm, thus preventing the nanopar-
ticle from properly exerting friction reduction and antiwear properties [223,224]. Another
example in this respect is that there is synergistic effect between MoS, and extreme pressure,
antiwear as well as scavenging agents, whereas there is antagonistic effect between MoS,
and dispersant [225]. Currently, few domestic studies are available about the combination
of nanoadditives with other additives, and the commercial application of nanoparticles
as lubricant additives is still challenging. This, however, should not negate that with the
implementation of the dual-carbon target in our country, the study on green and efficient
fully formulated lubricants suitable for advanced machinery lubrication will be a popular
topic in forthcoming research.

Our group previously investigated the effect of various types of additives on the
lubricating performance of the oil-soluble Cu nanoparticle [226]. There are synergistic
friction reduction and antagonistic antiwear effects among the dispersant, scavenger, and
Cu nanoparticle. There are synergistic friction-reducing and antiwear effects between Cu
nanoparticle and antioxidant, while there is an antagonistic antioxidant effect between
them. Similarly, a synergistic triboeffect occurs among friction modifier, viscosity modifier
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and ZDDP, and a synergistic antioxidant effect occurs between the viscosity modifier and
ZDDP. Lei et al. [227] investigated the tribological properties of ZDDP combined with
oleylamine-modified CeO, and found that the synergistic co-adsorption, i.e., the rigid
monolayer adsorption of ZDDP and the viscoelastic adsorption of CeO,, increases the
nonseizure load.

Ionic liquids can be used as base oils, friction modifiers or antiwear additives [228,229].
The combination of nanoparticle and ionic liquids has also attracted much attention from
researchers [230,231]. Li et al. [232] demonstrated that there is a synergistic triboeffect
between Mo nanoparticle and the ionic liquid of 2-mercaptobenzothiazolate. In PEG base
oil, the hybrid additive has the optimum tribological properties, which is because the anion
of the ionic liquids and Mo nanoparticle participate in tribochemical reactions to generate
in situ MoS; tribofilm on the friction subsurface. Qu et al. [233] synthesized the ionic liquid
of 1-ethoxycarbonylmethyl—3-methylimidazolium tetrafluoroborate, and they found a
synergistic lubrication effect between the as-synthesized ionic liquids and Cu nanoparticle
due to the formation of tribofilm consisting of copper oxide and boron trifluoride on the
rubbed surface.

7. Effect of Different Base Oils on the Tribological Properties of Nanoparticles

For a more convenient description, this article divides the commonly used base oils into
two categories: the low-polarity base oils represented by mineral oils and polyalphaolefins
and the high-polarity base oils represented by diisooctyl sebacate. The adsorption of polar
base oil on the rubbed surfaces prevents the deposition of nanoparticles thereon and the
ball bearing effect as well, which hinders the friction reduction and antiwear effects of
the nanoparticles. At the same time, nanoparticles incorporated in the oil film might
damage the integrity of the oil film, thereby aggravating wear [234]. In general, there
are discrepancies in the tribological properties of nanoparticles as lubricant additives in
separate base oils. A good example in this respect is that Cu nanoparticle in synthetic
ester base 0il can increase wear by more than seven times, while in mineral oils it can
significantly reduce wear [235]. Relevant studies in this area, however, still remain at the
initial stage all over our country, and mastering the chaotropic performance diversities
of various nanoparticles with respect to diurnal base oils has important implications for
the commercial application of nanoadditives as well as for compounding novel high-
performance lubricants.

8. Conclusions

Nanoparticles of numerous components, sizes and morphology have been attract-
ing extensive attention as lubricant additives. They often have unique advantages over
traditional small-molecule additives, due to the small size effect and good access to surface-
functionalization. Their largescale application in industry, however, lags and awaits
the establishment of more cost-effective preparation methods based on further research
and exploration.

(1) Domestic researchers have mainly concentrated on research into the application of
traditional nanoparticles such as metals and oxides. As the country with the largest rare
earth content, a large number of rare earth materials are used in various medium- and
high-end equipment manufacturing industries every year, which generates a large amount
of waste. The use of waste containing rare earth elements to synthesize nanoadditives
with excellent tribological properties is useful not only for the reuse of resources but also
for environmental protection. At the same time, the rise of emerging materials including
composite nanomaterials has also shown that single nanoparticles cannot meet the needs of
industry, so the development of high-performance nanocomposites should be vigorously
pursued based on the original research. Ultimately, the organic combination of small-scale
laboratory experiments, pilot plants and large-scale preparation will promote the rapid
development of nanoadditives in China.
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(2) Although domestic researchers have conducted some research on onion- and tube-
like nanoparticles, their difficulty of preparation and the economic cost inevitably restrict
their development. In contrast, sphere- and sheet-like nanoparticles are accepted for more
products. In the future, we suggest concentrating on the synthesis and preparation of
ultra-small nanoparticles, as well as their application, and achieve large-scale production.

(3) China has always been a pioneer in environmental protection, and with the intro-
duction of laws and regulatory requirements related to environmental protection, bio-based
lubricants with desirable biodegradability will dominate the market in the future. At this
stage, the research on nanoadditives by Chinese researchers is mainly limited to mineral
base oils. Compared with mineral oils, bio-based lubricants have different molecular struc-
tures and even diametric physicochemical properties, which refers to diverse requirements
for additives. Therefore, it is imperative to promote the basic study of nanoadditives
suitable for bio-based lubricating base oil and to explore their multiple interactions in
relation to their formulation rules.

(4) In the context of domestic industrial development and the current status of nanoad-
ditives applications. With a view to the priority research directions in the future, we suggest
focusing on the quantitative relationship between the structure, component and tribological
properties of nanoadditives as well as their compatibility with other lubricant additives
such as antioxidant, viscosity index improver, cleaner and dispersant, and the conforma-
tional relationships between the morphology-microstructure and tribological properties of
nanoadditives, the correlation between their surface chemistry and tribological properties
and the pathways to tuning their tribological properties based on the surface molecular
design are worth special attention. Furthermore, it is urgent to establish macro-preparation
technology for nanoadditives and to explore in depth the design and synthesis of self-
dispersed nanoadditives as well as nanoadditives suitable for biodegradable base oils in
order to promote their applications in industry.
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