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Abstract: Rotating systems equipped with oil-film bearings are critical and common in many indus-
trial machines. There are various non-random uncertainties in such fluid-lubricated dynamic systems.
It is important to quantify the effects of uncertainties without adequate statistical information on
the dynamics of rotor-bearing systems. In this paper, a rotor system with oil-film bearings at both
ends is investigated considering many interval uncertainties. The rotating system is modeled in a
deterministic sense. The Chebyshev interval method is used to track the propagation of different
uncertainties. Deviations in the steady state responses, time history, and shaft orbits are calculated
and comparatively discussed. Influence patterns of different interval parameters and dispersions in
various dynamics are presented in detail. It is found that there can be global and local impacts as well
as cumulative effects caused by multi-source uncertainties. The findings of the present study could
be helpful for a more insightful dynamic analysis of rotor-bearing systems as well as their optimal
design and maintenance.

Keywords: rotor system; dynamic characteristics; interval uncertainty; oil-film bearing

1. Introduction

Rotor systems supported by oil-film bearings are very common in engineering, such as
turbochargers [1] and pumps [2]. The lubricants can separate the rotor shaft and bearings
to reduce the friction and wear of critical components. Moreover, the fluid-lubricated
bearings are recognized to have a large load-carrying capacity, which is beneficial to
large-sized heavy-duty machinery. Although many variants, such as tilting pad journal
bearings [3], are available in modern industry, the lubrication characteristics of plain oil-film
bearings and the corresponding rotordynamics are still the core research interests of many
investigators [4–6]. It has been identified that uncertain factors in rotor systems supported
by oil-film bearings play crucial roles in design and dynamic studies [7–12].

Indeed, there are many ubiquitous uncertainties in an engineering fluid film-lubricated
bearing rotor system [13]. The manufacturing of mechanical components can introduce
errors, affecting their geometrical and material properties. Tolerances are allowed when
the system is assembled, which causes clearance and concentricity variations. The viscosity
of lubricants largely depends on the temperature. However, as the machine runs, the
fluctuations in temperature are inevitable and extremely difficult to predict [14]. Even
if the temperature is recorded continuously, it is generally impossible to incorporate it
precisely in the early-stage design or dynamic assessment. The above fact requires that any
irreducible uncertainty in a rotor-bearing system should be properly dynamically analysed
to be robust or even valid. Up till now, many researchers have made their contributions
to clarify the evolution of lubrication characteristics of oil-film bearings and dynamics
of rotating systems with mandatory uncertainties included [15–19]. For example, Sun
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et al. [20] investigated the stability of a journal bearing rotor based on an analytical model
considering misalignment and parametric uncertainty. Garoli and Castro [21] studied
the fluid-induced instability and responses of a rotor system model considering bearing
stochasticity. Geng et al. [22] proposed a double integral method to quantify the impact
introduced by bearing uncertainties in the responses of a thin-walled casing. A simple
derivative-based method was proposed by Medina et al. [23] for the prediction of bearing
rotor dynamic coefficients, i.e., stiffness and damping coefficients. Sensitivity indices of
uncertainties were calculated, and the obtained results were compared with experimental
tests. Rough surfaces in bearings are another important uncertain quantity, which were
comparatively studied by Tauviqirrahman et al. [24]. A heterogeneously patterned rough
surface in a journal bearing was employed, and the acoustic and tribological performances
were discussed. Da Silva and Nicoletti [25] studied the effects of uncertainty in the bearing
clearance on journal bearing reliability. Li et al. [26] investigated the nonlinear dynamics,
including the bifurcations, shaft orbits, and responses, of a rotor model including the
random fluid forces. Intelligent data-driven methods, such as the deep convolutional
neural network [27], have been used to include uncertainties for rotor-bearing system fault
identifications. These works all adopted stochastic models of the uncertainties and assumed
their probabilistic distributions, such as the polynomial chaos expansion. This prerequisite
can be subjective, leading to possible unreliable results. The selection and establishment
of the uncertainty models should rely on available information [28]. Probabilistic models
can be rigorous, and the obtained results are profound. However, they do not suit the case
where little prior statistical data exists [29]. Although the fuzzy-type method is helpful and
will alleviate the hash requirement to some extent, the membership functions in it can be
hard to determine. Thus, the interval-based uncertainty quantification methods [30] are
proposed for dynamic problems with limited information. In such interval models, the
descriptions of uncertain parameters are simple, and only the bounds are required [31].
Thus, the interval models for uncertainties will be particularly suitable for variables with
sparse information, which is more common in the complex engineering context, since the
strict and mandatory requirements in the probabilistic and fuzzy algorithms are removed.
Consequently, the obtained results are essentially interval quantities. Ma et al. [32] applied
an intrusive interval procedure to a rotor system for dynamic response predictions. Fu
et al. [33] constructed the surrogate function for the rubbing dual-rotor system based on
the polynomial series. It is found that the non-intrusive methods have great convenience in
solving complex linear and nonlinear uncertain vibration problems without modifications
to the deterministic solvers. This feature will facilitate applications of them to a variety of
scenarios without limitations, i.e., they are adaptive to different problems.

From the literature review, previous studies mostly focused on the stochastic analysis
of rotor-bearing systems. There is little research on the interval uncertain dynamics of
rotor systems with oil-film bearings, which are more common in reality. Moreover, it
is mandatory to explore the effectiveness of interval methods for the non-probabilistic
dynamics computation of such systems. This paper aims to discard the hypothesis made in
previous stochastic studies and cope with a more generalized scenario. The comprehensive
interval dynamic responses of the rotor-bearing system, including the interval orbits, time
history, and steady state responses will be investigated. Cases considering many interval
physical quantities are studied. The established methods can be adapted to deal with
various dynamic problems of such systems without limitations to the current system
configuration and dynamic characteristics, which demonstrates excellent versatility.

2. Deterministic Modeling and Solution

A double-disc rotor system supported by oil-film bearings is considered for the present
study, as illustrated in Figure 1. In this section, the modeling of the system is detailed
according to the finite element analysis and hydrodynamic theory. The modal property and
response solution of the established dynamic model are presented as well, which serves as
the deterministic basis for the consequent interval uncertainty analysis.
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Figure 1. Rotor system model supported by oil-film bearings.

2.1. Finite Element Modeling of Rotor

The finite element modeling of the rotor includes the modeling of disc elements, shaft
elements, and bearing supports. Accurate modeling of these elements is important for a
meaningful dynamic analysis. For example, researchers have made many efforts [34,35] in
the modeling of details of various elements including connections, supports, and dampers.
Modeling of shaft and disc elements is described in this subsection. The bearing element
will be described in the next subsection. According to the finite element theory applied in
rotordynamics [36], a disk element has the following kinetic energy

Td =
1
2

md

( .
x2

d +
.
y2

d

)
+

1
2

Id

(
.
ϕ

2
d +

.
β

2
d

)
+
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Ip

(
ω2 − 2ω

.
βd ϕd

)
, (1)

where md is the mass of a disk, Id and Ip denote the diameter and polar moments of inertia,
xd represents the displacement along the x direction, yd denotes the displacement along the
y direction, ω is the angular rotation speed, and ϕd and βd are the rotation angles along the
two perpendicular axes. Thus, according to the Lagrange formulation, the following terms
can be derived

d
dt

(
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∂
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In the above equation, the elemental mass and gyroscopic matrices are presented.
For a shaft element there is an additional elemental stiffness matrix apart from the

mass and gyroscopic matrices. The deflection within a beam element can be fitted by using
the shape functions as

ue(ξ, t) = [N1(ξ) N2(ξ) N3(ξ) N4(ξ)][x1 φ1 x2 φ2]
T , (3)

where ξ characterizes a position variable, [N1(ξ) N2(ξ) N3(ξ) N4(ξ)] are the shape function
set, and [x1 φ1 x2 φ2] represents the lateral displacement set in the x direction. The strain
energy of the Euler beam element in one lateral direction can be expressed as

Ue =
1
2

∫ le

0
Ee Ie(ξ)

(
∂2ue(ξ, t)

∂ξ2

)2

dξ, (4)
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where le is the beam element length, Ee is the elastic modulus, and Ie = πr4/4 is the moment
of area of the shaft cross-section with r being the radius of the rotor shaft. The kinetic
energy of the shaft element can be defined as

Te =
1
2

∫ le

0
ρe Ae(ξ)

.
u2

e (ξ, t)dξ, (5)

where ρe is the material density and Ae is the area of the shaft cross-section. Based on
the Lagrange equation, the elemental matrices of a shaft element can be calculated. Since
the two bending planes corresponding to the lateral motions are not coupled, the full
expressions of the shaft elemental matrices are [36]

Me =
ρe Aele

420



156 0 0 22le 54 0 0 −13le
0 156 −22le 0 0 54 13le 0
0 −22le 4l2

e 0 0 −13le −3l2
e 0

22le 0 0 4l2
e 13le 0 0 −3l2

e
54 0 0 13le 156 0 0 −22le
0 54 −13le 0 0 156 22le 0
0 13le −3l2

e 0 0 22le 4l2
e 0

−13le 0 0 −3l2
e −22le 0 0 4l2

e


, (6)

Ke =
Ee Ie

l3
e



12 0 0 6le −12 0 0 6le
0 12 −6le 0 0 −12 −6le 0
0 −6le 4l2

e 0 0 6le 2l2
e 0

6le 0 0 4l2
e −6le 0 0 2l2

e
−12 0 0 −6le 12 0 0 −6le

0 −12 6le 0 0 12 6le 0
0 −6le 2l2

e 0 0 6le 4l2
e 0

6le 0 0 2l2
e −6le 0 0 4l2

e


, (7)

Ge =
ρe Ie

15le



0 36 −3le 0 0 −36 −3le 0
−36 0 0 −3le 36 0 0 −3le
3le 0 0 4l2

e −3le 0 0 −l2
e

0 3le −4l2
e 0 0 −3le l2

e 0
0 −36 3le 0 0 36 3le 0
36 0 0 3le −36 0 0 3le
3le 0 0 −l2

e 3le 0 0 4l2
e

0 3le l2
e 0 0 −3le −4l2

e 0


. (8)

The rotary and shear effects can be included in the above deductions, which leads to
the Timoshenko beam element.

2.2. Oil-Film Bearing Model

Oil-film bearings are a classic hydrodynamic structure [37]. Oil is supplied to the
clearance between the journal and bearing and forms a fluid film as the journal rotates, thus
separating the direct dry contact surfaces. Assuming the pressure of lubricant equals zero
at the bearing ends and the flow can be described as laminar, the Reynolds equation holds
for such fluid-lubricated systems. Furthermore, if the length-to-diameter ratio is small the
bearing can be referred to as a short bearing. Negative pressure in areas of the clearance is
assigned zero. The forces provided by the oil film can be given as [38]

Fr = −
DωυL3

bε2

2c(1−ε2)
2

Ft = −
πDωυL3

bε

8c(1−ε2)
3/2

, (9)
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where Fr and Ft are the fluid forces along the radial and tangential directions, and D, Lb, c,
υ and ε are the diameter, length, clearance, lubricant viscosity, and eccentricity, respectively.
The two force components will be exerted on the shaft. The resultant bearing force, Fb
(load-carrying capacity), and attitude angle, αb, can be calculated by

Fb =
πDωυL3

bε

8c(1− ε2)2

√(
16− π2

π2 ε2 + 1
)

, (10)

αb = arctan
π
√

1− ε2

4ε
. (11)

Normally, the load on a bearing is vertical, such as the weight of shafts and disks.
The final magnitude of the bearing resultant force must equal the load and its direction
opposite. Thus, the eccentricity and Ocvirk number can be determined based on Equations
(10) and (11) depending on the structural configuration and lubricant characteristics of
the oil-film bearing, as well as the rotating speed and external loads. Based on the short
bearing model, its dynamic characteristics are calculated by [36]

Kb =
Fb

c[π2(1− ε2) + 16ε2]3/2

[
k11 k12
k21 k22

]
, (12)

Cb =
Fb

ωc[π2(1− ε2) + 16ε2]3/2

[
c11 c12
c21 c22

]
, (13)

where
k11 = 4[π2(2− ε2) + 16ε2],

k12 =
π[π2(1− ε2)

2 − 16ε4]

ε
√

1− ε2
,

k21 = −π[π2(2− ε2)(1 + 2ε2) + 32ε2(1 + ε2)]

ε
√

1− ε2
,

k22 = 4
[

π2(1 + 2ε2) +
32ε2(1 + 2ε2)

1− ε2

]
,

c11 =
2π
√

1− ε2
[
π2(1 + 2ε2)

2 − 16ε2
]

ε
,

c12 = c21 = −8[π2(1 + 2ε2)− 16ε2],

c22 =
2π[π2(1− ε2)

2
+ 48ε4]

ε
√

1− ε2
.

The dynamic coefficients can be integrated into the rotor model directly by establishing
the equations of motion.

2.3. Dynamic Characteristic Analysis

When all the elements in the system are modeled, its overall governing motion equa-
tions can be assembled. When X = [x1, y1, φ1, θ1, . . . , xq, yq, φq, θq]

T is the full degrees of
freedom in the system, the q-node full equation is

M
..
X + (C + ωG)

.
X + KX = Fg + Fu(t), (14)

where M, C, K and G are the mass, damping, stiffness, and gyroscopic matrices, respectively,
and Fg and Fu(t) denote the gravitational force and unbalance force vectors, respectively.
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The natural characteristics, including critical speeds and their corresponding mode
shapes, are obtained from calculating the eigenvalue problem using{

A
.
Y + BY = 0
Y = [X;

.
X]

, (15)

where 
A =

[
C + ωG M

M 0

]
B =

[
K 0
0 −M

] . (16)

The dynamical system given in Equation (14) can be solved by the numerical integra-
tion schemes. For example, the Newmark-β method. Then, the shaft orbit and time history,
as well as steady state responses, can be derived based on the numerical solutions.

3. Interval Uncertainty Approach

The modeling and solution process detailed in previous sections are based on de-
terministic formulations, i.e., the parameters and configurations are free of uncertainty.
Naturally, it is inadequate if parametric uncertainties are considered. As pointed out in the
introduction, non-probabilistic scenarios are more common in the engineering context and
the interval-based quantification algorithms have fewer prerequisites regarding the prior
distribution properties. The Chebyshev method [30] can track effectively the propagation
of non-random uncertainties in mechanical vibration systems and it is non-intrusive. This
means that it can be introduced into the dynamical study of the oil-film bearing supported
rotor system without additional modifications of the deterministic solvers.

To enable propagation of the input interval uncertainty, a transformation needs to be
done in the first place because physical parameters have different magnitude scales. For a
physical interval variable

ϑ = arccos
2a− (a + a)

a− a
, (17)

where ϑ ∈ [0, π] and a ∈ [a, a], with a and a being the lower and upper bounds of a.
The linear projection links a practical rotor parameter with a standard interval variable,
which benefits further surrogate modeling. If more than one interval physical parameter is
considered, the above transformation should be done for each one, making it a vectorized
calculation. The k-order Chebyshev surrogate for the desired rotor dynamic responses, Υ,
under uncertainty (it can be any interested quantities, such as the time history and steady
state solutions) can be given as

Υ(ϑ, t) =
k

∑
m1=0

· · ·
k

∑
mr=0

1
2λ

Tm1,··· ,mn Cm1,··· ,mn(ϑ), (18)

where λ is the appearance times of zero in subscripts m1, · · · , mn, n represents the number of
interval parameters considered, Tm1,··· ,mn is the coefficient to be determined, and Cm1,··· ,mn

denotes the multi-dimensional Chebyshev polynomial, which is expressed by

Cm1,··· ,mn(θ) = cos(m1ϑ1) cos(m2ϑ2) · · · cos(mnϑn). (19)

The unknown surrogate coefficients are solved by the Mehler integration [30]:

Tm1,··· ,mn =

(
2
π

)n∫ π

0
· · ·
∫ π

0
Υ(cos ϑ1, · · · , cos ϑn) cos(m1ϑ1) · · · cos(mnϑn)dϑ1 · · ·dϑn, (20)

However, the above integration cannot be directed computed due to the implicit
relationships between the uncertain dynamic response and uncertainty inputs, i.e., there is
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no expression of Υ(cos ϑ1, · · · , cos ϑn). The Gauss quadrature is introduced for a numerical
realization of Equation (20):

Tm1,··· ,mn =
h

∑
j1=0
· · ·

h

∑
jn=0

(
2
h

)n
Υ̂(t, cos θj1 , · · · , cos θjn) cos(m1θj1) · · · cos(mnθjn), (21)

where h is the number of collocation points, which should not be less than k + 1 for single
interval input, and Υ̂(t, cos θj1 , · · · , cos θjn) is the sampled response obtained by setting the
interval parameter to collocation points. For multi-dimension collocation, they have the
following calculation formulas{

θj =
2j−1

2h π, j = 1, 2, · · · , h
θ̃ = θj1 ⊗ θj1 ⊗ · · · ⊗ θjn

, (22)

where ⊗ represents the tensor product. It can be seen that Equations (21) and (22) associate
the Chebyshev surrogate model with the original rotor-bearing system. It is found that
a few collocations will facilitate a surrogate capable of giving accurate predictions. After
the surrogate coefficients are calculated, the surrogate function is established and the
desired uncertain response bounds could be computed by applying a scanning procedure
to the simple surrogate model, which imposes neglectable burdens. It is worth mentioning
that the whole uncertainty prediction process is non-intrusive, preserving the complex
rotor-bearing deterministic solver structure and bringing many conveniences.

The overall analysis procedure of the rotor system with oil-film bearings subject to
interval uncertainty is demonstrated in Figure 2.
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4. Results and Discussion

The rotor-bearing system considered in Figure 1 is investigated from the deterministic
and indeterministic aspects. In the beginning, the modal characteristics based on the
deterministic parameter set given in Table 1 are presented. Based on the simulations, the
Campbell diagram of the rotating system is demonstrated in Figure 3. The results show
that, in the interested speed range, there are two forward synchronous critical speeds,
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i.e., 556 rpm and 2234 rpm. The first two order mode shapes of the rotating system are
shown in Figure 4, which correspond to the natural frequencies equal to the critical speeds.
These deterministic characteristics help readers to understand the inherent properties of
the rotating system under study and provide guidance for uncertainty analysis.

Table 1. Rotor model configuration.

Name Value Name Value

Length of rotor 1.5 m Thickness of disk 0.07 m
Diameter of rotor 0.05 m Diameter of disk 1 0.06 m
Young’s modulus 2.1× 1011 N/m2 Diameter of disk 2 0.07 m

Lubricant viscosity 0.1 Pa·s Unbalance amount 0.001 kg
Bearing length 0.015 m Bearing clearance 5× 10−5 m
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As mentioned in the introduction, there are plenty of uncertainty sources in a rotor
system supported by oil-film bearings, such as the service environment evolutions, variable
geometry [39], tribofilm-asperity interaction [40], and bearing clearance fluctuations [41].
Based on the deterministic analysis, uncertainty propagation algorithms can be further
incorporated by employing the procedures elaborated on in Section 3. In the following
section, the steady state responses presented are extracted at the disk 1 node. Time history
is the x-directional displacement at 2100 rpm. In calculations, the order of the surrogate
model is 4, which proves to be efficient as well as accurate.

The first interval variable considered is shaft stiffness, which is often reflected in the
elastic modulus. A 3% interval coefficient is applied in the simulation and the obtained
interval results are given in Figures 5 and 6, including the steady state response, the time



Lubricants 2022, 10, 354 9 of 16

history, and shaft orbit. It is shown that the interval elastic modulus arouses overall impact
in the studied speed scope, except that the deviations are trivial when the rotation speed is
quite low. Moreover, the responses after the first critical speed are more affected, especially
the second mode. A special feature observed from the interval frequency response is that
the deviation of amplitude around the second critical speed is small, although the resonant
region is expanded, which is caused by the frequency deviations. Indeed, the elastic
modulus has crucial effects on the natural properties of the rotating system. On the second
mode resonance point, the response amplitude is almost the same as the deterministic
value, i.e., the interval response upper bound precisely encloses the original peak without
penetration. Nevertheless, the interval time history presented in Figure 6a shows that
the effects of uncertainty are mainly exhibited around peaks. The interval shaft orbit in
Figure 6b demonstrates significant deviations from the deterministic orbit, indicating that
the shaft can have an arbitrary trajectory in the interval bands due to uncertain elastic
modulus, which is often observed in measured orbits.
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To validate the effectiveness of the obtained solutions, the interval responses subject to
the uncertain elastic modulus are further comparatively studied with the results obtained
from the crude scanning method. The latter is deemed to be reliable with many evenly-
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scattered parameter samples [42]. In calculations of the crude scanning method, the
considered uncertainty interval is equally divided by the scanning points and the step
distance between different scanning points is the same. After comparison, the difference
in rates for the response bounds between the results of the Chebyshev method and the
scanning method, based on 100 samples, are shown in Figure 7. It is proved that the
constructed surrogate model has high accuracy, and the highest error rate is below 1%. It
should be noted that the simulation efficiency is much higher compared with the traditional
crude sampling-based scanning method.
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Figure 7. Error analysis of the results under interval elastic modulus.

The bearing length varies due to manufacturing or assembling errors, and 10% uncer-
tainty is introduced in the calculations. According to the interval analysis, the correspond-
ing responses are plotted in Figures 8 and 9. It suggests that the bearing length has less
impact on the unbalanced responses of the rotating system. The steady-state responses sug-
gest that only the vibration peaks are deviated, including the resonance and anti-resonance
areas. There is no deviation in other rotation speed ranges. The interval time history and
shaft orbit shown in Figure 9 reveal that the displacement peaks in the time history and
orbit ranges are minorly deviated. This can be explained since the bearing length is already
small and the effects of bearing length are not dominant since the short bearing hypothesis
is used. Mass unbalance of a rotor system can change with time because of friction and
wear of critical components. Thus, it is reasonable to consider interval uncertainty in
the unbalance magnitude. Figures 10 and 11 demonstrate the uncertain responses of the
rotating system under 10% uncertainty of the mass unbalance included. We can notice that
the uncertain unbalance magnitude has an overall impact on the steady-state responses
and the deviation is proportional to the deterministic responses for all rotation speeds. It is
essential this way since the rotating system is linearly dependent on the mass unbalance
and it does not alter the inherent modal property of the rotor system. The deviations in
the time history and shaft orbit also indicate that the interval unbalance causes moderate
fluctuations.
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Figure 10. The steady state response of the system under interval mass unbalance.
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Figure 11. Time history and orbit of the system under interval mass unbalance.

Next, we investigate a two-dimensional interval case, i.e., considering the interval
bearing length and elastic modulus simultaneously. Their interval coefficients are the
same as in previous cases. As expected, the interval responses demonstrated in Figure 12
show combined effects of the uncertainties. The resonant regions are also expanded.
However, the amplitudes in the second mode are deviated rather than barely enveloped,
as in Figure 5. The time history shows striking deviations in all time stamps and the shaft
orbit is distributed significantly, as evidenced in Figure 13. Finally, a more complicated
situation is studied. We studied four interval parameters at the same time, i.e., the interval
elastic modulus with 1.5% uncertainty, the interval bearing length with 5% uncertainty,
the interval lubricant viscosity with 5% uncertainty, and the interval mass unbalance
with 5% uncertainty. The corresponding results for this compound case are illustrated in
Figures 14 and 15. For such complex simulation cases, the traditional scanning method
introduces an overwhelming computational burden aroused by the massive parameter
sampling. For instance, there will be 1004 samples in total if we use 100 samples for
an individual interval uncertainty in the scanning process. Indeed, a parameter sample
requires a complete execution of solving the original rotor-bearing system. Thus, it is
obvious that the Chebyshev method used in the current study has superiority. In Figure 14,
we can find that even though there are small deviation degrees in each parameter, the
steady state dynamic responses are notably affected. Again, the first mode is linearly
deviated while the second mode is expanded. To quantitatively evaluate the dispersion
of critical speeds, the bounds of the first two critical speeds are given in Table 2. The
results also suggest that the second critical speed is more influenced. However, the final
dispersions of critical speeds are not the sum of the deviation coefficients of individual
interval parameters.

Table 2. Bounds of the first two critical speeds.

Lower Bound Upper Bound

First critical speed 551 rpm 562 rpm
Second critical speed 2219 rpm 2256 rpm
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Figure 12. The steady state response of the dynamical system under interval elastic modulus and
bearing length.
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5. Conclusions

In this paper, the interval uncertain responses of a rotor equipped with oil-film bear-
ings are investigated. The deterministic solution process is established following a finite
element analysis and the hydrodynamic bearing theory. Surrogate modeling for uncertainty
propagation analysis is established according to the Chebyshev interval method. Various
interval parameters are considered, and the results are presented. The steady state response,
time history, and shaft orbit are discussed. It is found that the elastic modulus has global
effects while the bearing length has local impacts. Combined effects are observed for the
multi-source cases. The accuracy validation suggests that the implemented surrogate model
has high precisions and is superior to the traditional scanning method in terms of efficiency.
The results reported can guide the robust dynamical studies of such rotor systems and
benefit the design process. It is also helpful in determining which parameter should be
specially treated. Future studies will focus on strategies for utilizing the optimization of
such rotor-bearing systems and reducing the impact of uncertainty.
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