
1 
 

Supplemental Material S1 

1 Computation model in detail 

The transient point contact TEHL model consists of the following equations. 

Reynolds equation with squeeze term: 
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The x and y are the coordinate axes, ρ is the density, η is the viscosity, p is the pressure 

distribution, h is the film thickness distribution, us is the entrainment speed, and t is the time.  

Film thickness equation:  
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where h0 is the minimum undeformed gap, Rx and Ry are radii of curvature in x and y direction, r is 

the waviness of the upper body at time t, and v is the elastic deformation. 

Elastic deformation equation: 
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where Ee is the equivalent Young's modulus. 

Load balance equation: 

( )= , ,w p x y t dxdy
Ω
∫∫                             S(4) 

where w is the applied load.  

 The flash temperature distribution is calculated by the moving-point heat-source integration 

method [1, 2]. The thermal deformation of surfaces is ignored following the models of He et al. [3]. 

A heat flux ( ), , qq x y t ∈Ω  assigns to the surface of a half-space solid and moves with speed V 

along the X direction. The heat source ( ), ,q x y t′ ′ ′  at point ( ),x y′ ′  and time t′  will generate a 

temperature rise at point ( ),x y  and time t as follows: 
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where sρ   is the density of the solid, sc   is the specific heat of the solid, sα   is the thermal 
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diffusivity of solid. Therefore, the total temperature rise during the period ( )0,t  should be, 
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In EHL, friction heat is assumed to occur in the middle layer ( 2z h= ) of the lubricant. The 

frictional heat flux flows into the two surfaces. The temperature distribution along the film thickness 

direction changes linearly from the middle layer to the two surfaces. The temperature rise of the two 

surfaces is, 
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where ( )1 , ,q x y t′ ′ ′  and ( )2 , ,q x y t′ ′ ′  are the heat flux densities to surface 1 and 2, respectively. 

The heat flux results from friction as follows: 

( ) ( ) 1 2, , , ,q x y t x y t u uτ= −                         S(9) 

where ( ), ,x y tτ  is the shear stress distribution. The ( )1 , ,q x y t′ ′ ′  and ( )2 , ,q x y t′ ′ ′  are calculated 

by the following equation: 
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( ) ( ) ( ) ( )2 , , , , , , , ,cq x y t f x y t q x y t q x y t′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= +               S(11) 

where ( ) [ ], , 0,1f x y t′ ′ ′ ∈  is the heat partition coefficients, ( ), ,cq x y t′ ′ ′  is the additional heat flux 

representing the bulk heat conduction. It satisfies  
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 Based on Fourier’s Law, the temperature of two surfaces should satisfy  

( ) ( )
( ) ( )( ) ( ) ( )1, , , ,

1 , , , , , ,
, , 2

m
f c

T x y t T x y t
K f x y t q x y t q x y t

h x y t
−

= − −         S(12) 



3 
 

( ) ( )
( ) ( ) ( ) ( )2, , , ,

, , , , , ,
, , 2

m
f c

T x y t T x y t
K f x y t q x y t q x y t

h x y t
−

= +             S(13) 

where fK   is the thermal conductivity of the fluid, mT  , 1T  , and 2T   are the temperature of the 

middle layer, surface 1, and surface 2, respectively. 

Eliminating the mT   by Equations S(14) and S(15) results in the matching equation of 

temperature: 
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The viscosity and density of the lubricant are also functions of pressures and temperatures. 

Viscosity-pressure-temperature equation: 

( )0 0= exp p T Tη η α γ − −                               S(15) 

where α is the pressure-viscosity coefficient, η0 is the ambient viscosity value, γ is the temperature-

viscosity coefficient, T0 is the reference temperature. 

Density-pressure-temperature equation: 
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where the unit of p is GPa, ρ0 is the ambient density value, β is the temperature-density coefficient. 

 The shear stress distribution ( ), ,x y tτ   is essential for calculating frictional heat and 

coefficient of friction. In a recent paper by the authors, a shear stress model reported by Bair et al. 

[4] was used. The same model is used in this work. 

( )/1 L
L e ηγ ττ τ −= −                                 S(17) 

0L L L hpτ τ γ= +                                  S(18) 

where  �̇�𝛾 is the shearing rate, τL is the limiting shear stress of the lubricant, τL0 is the initial shear 

stress of the lubricant , γL is the pressure coefficient corresponding to the maximum friction 

coefficient in hydrodynamic lubrication, and ph is the fluid pressure. According to Bair et al. [4], for 

oil lubricant, τL0 = 2MPa and γL = 0.05.  

The thermal EHL problem defined through Equations S(1) to S(18) can be solved iteratively 
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through numerical methods to obtain lubrication performance parameters. The method of solving 

the system has been studied by researchers [1, 2, 5-8]. Here, we only address some key points in the 

solutions. In order to perform numerical solution procedures, equations are non-dimensionalized 

first.  

 The following dimensionless variables are used when solving the pressure distribution:  
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where a and b are the radius of Hertzian contact in two principal directions. In point contact, a 

equals b. ph is the maximum Hertzian contact pressure value. Rx is the radius of curvature in the x 

direction, and η0 and ρ0  are, respectively, the ambient viscosity and density of the lubricant. The 

Hertzian contact parameters for point contact are calculated as follows 
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The non-dimensional form of the Reynolds equation is  
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The non-dimensional film thickness equation is: 
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The non-dimensional elastic deformation equation: 
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The non-dimensional load balance equation: 
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 The non-dimensional Reynolds equation, S(20), needs to be discretized for a numerical 

solution. The authors studied several different discrete methods [9]. Here the recommended discrete 

form is shown below. 
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 The D represents the influence matrix derived from the non-dimensional elastic deformation 

equation, S(22), for calculating the elastic deformation. The discrete form of S(22) is  

1 1
,

, , ,
1 1

M N
i j

i j k l k l
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V D P
− −

= =

= ∑∑                               S(25) 

The expression of the influence matrix D can be found in the work of Liu et al. [10]. 

 The dimensionless variables for solving the temperature distribution are as follows: 

x x a= ， y y a= ， H h a= , 24 st t lα= ⋅ ， ( )4 sV V l α= ⋅ ， ( )3 2 2s s hT T c pπ ρ∆ = ∆ ⋅ ， 

( )4 h sq q l p α= ⋅  
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The material of the two bodies is assumed to be the same.   

 The non-dimensional temperature rise equation is, 
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 The non-dimensional matching equation of temperature is, 
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 The temperature rise equations, S(26) and S(27), can only be numerically calculated as follows 
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where , ,
, ,
m n p
i j kC  is the influence coefficient of temperature rise. It is defined as the temperature rise 

at point (m, n) and time t resulting from a unit heat source at point (i, j) during period k. The 

calculation of , ,
, ,
m n p
i j kC  can refer to Liu et al. [1] 

The discrete non-dimensional equations above are solved numerically. The corresponding 

solution flow chart is shown in Figure S.1. The outer loop is for the time step. At every time step, 

the discrete Reynolds equation S(24) is solved iteratively for the pressure distribution. For a specific 

j value, S(24) turns into a tridiagonal system, which can be easily solved by the Thomas method. 

The relative difference of pressure distributions from two adjacent iterations is used as the index to 

show the convergence of pressure distribution. The corresponding equation is, 

( ) ( )

( )

1s s

Ps

P P

P
ε

+ −
≤

∑∑
∑∑

                           S(30) 

where Pε  is the threshold value, set as 1×10-6 in the current study. If equation S(30) is not satisfied, 

the pressure distribution is updated by the under-relaxation method as follows, 
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( ) ( ) ( ) ( )1 1s s s
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where ω is the under-relaxation factor equaling 0.8 in the current study. Once equation S(30) is 

satisfied, the converged pressure distribution is used to calculate the load-carrying capacity. The 

relative error between the load-carrying capacity and the applied load is used to test the satisfaction 

of the load balance equation. The corresponding equation is 

( )1s

W

W W

W
ε

+ −
≤

∑∑
∑∑

                          S(32) 

where Wε  is the threshold value, set as 1×10-6 in the current study. W is the non-dimensional 

applied load, equal to 2π/3 according to the non-dimensional load balance equation S(23). If 

equation S(32) is not satisfied, the film thickness distribution is adjusted with a specific value. 

According to the work of Wang et al. [11], the proportional integral derivative (PID) controller is 

used to calculate the adjustment value of film thickness distribution, ∆H, as follows, 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2p i dH K e s e s K e s K e s e s e s∆ = − − + + − − + −          S(33) 

where Kp, Ki, and Kd are coefficients of the PID controller, e(s), e(s−1), and e(s−2) are the absolute 

error between load-carrying capacity and the applied load at the iteration s, s−1, and s−2, 

respectively, e.g., e(s) = W(s)−W. In the current study, Kp equals 0.01, Ki equals 0.005, and Kd equals 

zero.  

 Once equation S(32) is satisfied, the shear stress is calculated and the solution moves into the 

temperature loop. The heat partition coefficients, additional heat flux, and surface temperature 

distributions are solved iteratively. Detailed algorithms can refer to Liu et al. [1, 2]. The relative 

difference of average temperature distributions from two adjacent iterations is used as the index to 

show the convergence of temperature distribution. The corresponding equation is,  
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1s s
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T T
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ε
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≤

∑∑
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                        S(34) 

where Tε is the threshold value, set as 1×10-4 in the current study. If equation S(34) is not satisfied, 

the average temperature distribution is updated by the under-relaxation method as follows, 

( ) ( ) ( ) ( )( )1 1s s s s
avg avg T avg avgT T T Tω+ += + −                         S(35) 

where ωT is the under-relaxation factor equaling 0.3 in the current study.  
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Figure S.1 Flow chart of the numerical solution procedures 

Once equation S(34) is satisfied, the solution moves to next time step. Accordingly, the surface 

roughness has to be cyclically shifted a certain distance in the relative movement direction of the 

two mating surfaces. Theoretically, the moving distance is determined by the time interval and the 

relative speed. However, it is always set as an integer multiple space interval of the solution domain 

in numerical simulation to simplify the programming. After updating the roughness, the pressure 

and temperature distributions are solved again, as described above. The solution procedures will 

stop once the predefined end-time value is reached.  
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2 Results  

2.1 Model validation 

 The transient TEHL model is validated with the experimental results of He et al. [3]. 

Specifically, the experimental results shown in one sub-figure of Figure 8 in their paper are extracted. 

The sub-figure used is indexed with 'Load: 500N'. Most simulation parameters are the same as 

reported in Ref [10] except for the roughness data. He et al. [3] used measured roughness but did 

not provide it. Thus, we use numerically generated Gaussian surfaces instead. The root-mean-square 

roughness is set equaling that of Ref [10]. Figure S.2 shows the coefficient of friction (COF) 

simulated with the model and codes in this work and those extracted. The simulated COF matches 

well with the experimental ones, validating the model and codes in this work. 

 

Figure S.2 Model validation with experimental results of He et al. [10] 

 The convergence of the transient TEHL is illustrated with the evolution of minimum film 

thickness and maximum pressure along with time. Without losing generality, the results with w = 

200N, us = 3m/s, θ  = 0°, A = 0.09 , and Ωx ≈ 39.8 (Nw = 19) are used. Figure S.3 and Figure S.4 

show the change in minimum film thickness and maximum pressure as the time step increases, 

respectively. The results suggest that the minimum film thickness and maximum pressure approach 

stable values, fluctuating periodically as the time step increases.  
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Figure S.3 The minimum film thickness at each time step for selected working parameters 

 
Figure S.4 The maximum pressure at each time step for selected working parameters 

2.2 Grid convergence study 

 In order to test the grid convergence of the selected grid density, 256×256, three different grid 

densities, 256×256, 512×512, and 1024×1024, are used to simulate the steady-state EHL case with 

Nw = 32, A = 0.3, θ  = 0°, w = 200N, and us = 3m/s. The combination of Nw = 32 and A = 0.3 results 

in the most significant non-dimensional waviness used in the current study. Considering the non-

dimensionalization of waviness (equations 6 to 8 in the paper), the working conditions with a large 

central film thickness and smaller Hertzian contact zone result in more significant dimensional 

waviness. The working condition satisfying this condition is w = 200N and us = 3m/s in this work. 

Therefore, the parameters used for the grid convergence study ensure that the most significant 

waviness is tested. The central lines of the film thickness and pressure distributions are shown in 
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Figure S.5. The results show that increasing the grid density from 256×256 to 1024×1024 only 

causes slight differences. In the meantime, using coarse grids can save a considerable amount of 

computational resources, especially dealing with transient Reynolds equations and a large parameter 

matrix of simulation. Therefore, the current study sticks with the grid density of 256×256. 

 

Figure S.5 The central lines of the film thickness and pressure distributions with different grid 

densities. 

2.3 Contour maps 

 Supplemental Material S2 is a zip file containing all contour maps and simulated data.  
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