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Abstract: The use of N-2-methylbenzylidene-4-antipyrineamine as an acid corrosion inhibitor for
mild steel surfaces in hydrochloric acid is discussed in this article by means of weight loss, electro-
chemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) methods. The
experimental findings exhibited that N-2-methylbenzylidene-4-antipyrineamine is a significant corro-
sion inhibitor for the mild steel in 1.0 M HCl solution and that its protection efficiency touches the
peak at 5 × 10–4 M, exhibiting 91.8% for N-2-methylbenzylidene-4-antipyrineamine. The inhibitory
efficiency increases as the inhibitor concentration rises and reduces as the temperature rises. Temper-
ature has a significant impact on corrosion and blocking activities, which is extensively examined and
explained. According to the gravimetric results, the examined inhibitor inhibits mild steel surface
corrosion by providing a barrier at the metal–hydrochloric acid medium interface. Thermodynamic
characteristics were combined with a quantum chemistry investigation using density functional
theory to provide more insight into the inhibitory effect mechanism. The tested inhibitor adsorbs on
the mild steel surface based on Langmuir’s adsorption isotherm method.

Keywords: corrosion inhibitor; antipyrineamine; methylbenzylidene; gravimetric; EIS

1. Introduction

Mild steel is easily corroded in everyday situations. Acid solutions, particularly
hydrochloric acid, are typically very aggressive media for mild steel corrosion. They
are employed in various industrial operations such as acid cleaning, oil-well acidizing,
acid descaling, and so on [1–3]. Because of its outstanding mechanical qualities and
inexpensive cost, mild steel is frequently used as a structural material in various chemical
and petrochemical industries [4]. Mild steel’s major point is that it dissolves in acidic
conditions. Inhibitors are among the most practical ways to prevent mild metal from
corrosion, particularly in acid conditions. At quite low doses, the inhibitors are efficient. The
use of inhibitors has resulted in a decreased rate of iron dissolution and a significant increase
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in the life of mild steel [5]. Organic molecules containing nitrogen, sulfur, and oxygen
atoms are the most well-known acidic inhibitors. Organic molecules are thought to prevent
corrosion by adsorbing onto metal surfaces. Moreover, the electronic structure of inhibiting
molecules, steric factor, aromaticity, and electron density at the donor site, the existence of
functional groups which include -C=N-, -C=O, -N=N-, etc., molecular area, the molecular
weight of the molecule, temperature, and electrochemical potential at the metal/solution
interface are all factors that influence adsorption [6]. Inorganic compounds or their mixtures,
including such phosphates, chromate, nitrite, and the salts of zinc, silicates, cadmium,
and arsenic have already been proved to be efficient as corrosion inhibitors for the mild
steel in the metal industries for a long time [7]. However, their own toxic effects are a
significant disadvantage, and their use may cause reversible (temporary) or irreversible
(permanent) damage to organ systems. As a result, the development of more eco-friendly
corrosion inhibitors is of tremendous practical importance. Due to the chemical structure
of N-2-methylbenzylidene-4-antipyrineamine which contains nitrogen, oxygen, and sulfur
heteroatoms as well as benzene rings, it can transfer its electrons into unoccupied d-orbitals
of iron atoms on the surface of mild steel to produce a strong metal-protective coating by
coordinate bonding [8–15]. As a result, N-2-methylbenzylidene-4-antipyrineamine has
the potential to be a corrosion inhibitor in hydrochloric acid environments [16–20]. We
wish to look into the impact of immersion time and solution temperature on corrosion
inhibition mechanisms in this study. The EIS and weight loss techniques was used to test
the N-2-methylbenzylidene-4-antipyrineamine inhibitive ability on mild steel corrosion in
1 M HCl. SEM surface morphology tests were performed to ensure that the researched N-2-
methylbenzylidene-4-antipyrineamine protects the steel surface from corrosion in the tested
media. Herein, we describe the evaluation of N-2-methylbenzylidene-4-antipyrineamine
(Figure 1) as a metallic corrosion inhibitor in a corrosive solution using gravimetric and EIS
methods. The exposure periods were also investigated. The process of inhibition was also
subjected to a suitable adsorption isotherm.
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Figure 1. Structure of N-2-methylbenzylidene-4-antipyrineamine.

2. Materials and Methods
2.1. Inhibitor

A solution of 2-methylbenzaldehyde (0.1 mmol) in 50 mL ethanol was refluxed with
4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (0.1 mmol) for 5 h. After cooling
to room temperature, a solid mass was separated and recrystallized from ethanol in 87%
yield: 1 H-NMR (CDCl3): δ 9.712 (s, N=C–H), 6.983, 7.214, 7.307, 7.322, 7.418, 7.675, 7.711,
7.775, 7.876 (s, 1H, aromatic ring), δ 2.017 (s, 3H, CH3), 2.964 (s, 3H, CH3), δ 3.128 (s, 3H,
CH3); IR: 3050.0, 3061.6 cm−1 (C–H, aromatic), 2910.7, 2945.9, and 2970.0 cm−1 (C–H,
aliphatic), 1646.6 cm−1 (C=O), 1569.4 cm−1 (C=C); 1588.6 cm−1 (C=N, imine), 1484.4 cm−1

(C=C, aromatic); UV-Vis: 250 nm in acetonitrile. The reaction sequence was postulated in
Scheme 1.
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Scheme 1. The chemical synthesis of target inhibitor.

2.2. Materials

Mild steel coupons purchased from the Company of Metal Samples have been utilized
during the current investigation as the working electrodes. The mild steel chemical com-
position weight percentage is presented in Table 1. The mild steel coupons were cleaned
based on the standard method G1-03/ASTM [21].

Table 1. Chemical composition of the mild steel coupon (wt.%).

Carbon Manganese Silicon Aluminum Sulfur Phosphorus Iron

0.210 0.050 0.380 0.010 0.050 0.090 balance

2.3. Electrochemical Impedance Spectroscopy

The tests were carried out in aerated, non-stirred 1.0 M HCl solutions containing
various doses of the inhibitor. A Gamry water-jacketed glass cell was used to conduct
electrochemical studies at the steady-state corrosion potential. The cell had three electrodes:
a working electrode, a counter electrode, and a reference electrode made of a steel specimen,
a graphite bar, and a saturated calomel electrode (SCE). The Gamry Instrument Potentio-
stat/Galvanostat/ZRA (REF 600) model was used for the experiments (Gamry, Warminster,
PA, USA). The corrosion potential of the electrochemical impedance spectroscopy was
measured using Gamry’s DC105 and EIS300 software (EIS). The AC signals of 5 mV peak-to-
peak amplitude at the corrosion potential in the frequency range of 100 KHz to 0.1 Hz were
used for EIS experiments. Using the Gamry Echem Analyst programme, all impedance data
were fitted to appropriate equivalent circuits (ECs). To enable the steady-state potential to
establish, the electrochemical tests started about 30 min after the working electrode was
immersed in the solution. To ensure that the tests were repeatable, each measurement was
carried out in triplicate and only the average data were presented [22].

2.4. Weight Loss Measurements

Weight loss techniques were conducted at periods of time of (1, 6, 12, and 24 h) at
temperatures (30, 40, 50, and 60 ◦C) utilizing an electrical balance. Weight loss measure-
ments were conducted at the inhibitor concentrations of 1× 10−4, 2× 10−4, 3× 10−4, and
5 × 10−4 M and after exposure time, the mild steel was removed, carefully washed with
distilled water, acetone, dried in the oven, and weighted. The measurements were carried
out in triplicate and the weight loss mean value was evaluated [23].

2.5. Acidic Solution

The corrosive solution was prepared by diluting 37% HCl (Merck-Malaysia) using
distilled water.

3. Results and Discussion
3.1. EIS

The EIS findings for the mild steel corrosion in the absence and presence of the N-2-
methylbenzylidene-4-antipyrineamine are presented in Table 2. The impedance spectra
for the different concentrations of N-2-methylbenzylidene-4-antipyrineamine at 30 ◦C are
displayed in Figure 2. As exhibited in Figure 1, a significant improvement in the total
substrate impedance was recognized with the addition of the N-2-methylbenzylidene-4-
antipyrineamine concentration hydrochloric acid environment. The mild steel impedance
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spectra in the presence of N-2-methylbenzylidene-4-antipyrineamine with the Nyquist plots
had two loops: the first one in the HF field (high frequency) and the second one at an MF
region (intermediate frequency), with a slight inductive performance at LF (low frequency).
The electrode and the charge-transfer process were responsible for the HF and MF loops,
respectively. In the absence or presence of N-2-methylbenzylidene-4-antipyrineamine, the
inductive behavior seen in the LF zone was related to either the relaxation of the adsorp-
tion of corrosion results or the adsorption of N-2-methylbenzylidene-4-antipyrineamine
molecules on the surface of mild steel in the corrosive environment [24]. The protection
efficiency was determined from the charge-transfer resistance according to Equation (1):

IE(%) =
R−ct − Rct

R−ct
× 100 (1)

where R−ct represents the charge-transfer resistance value with the addition of the tested
inhibitor whereas Rct indicates the charge-transfer resistance value in the absence of the
corrosion inhibitor. As seen from Table 2, the protection efficiency increases with increasing
the inhibitor concentration. The parallel network Rct − Cdl (charge-transfer resistance
double-layer capacitance) is frequently a poor approximation in these instances, particularly
in techniques with an effective corrosion inhibitor. Because the mild steel corroding surface
is assumed to be inhomogeneous in a corrosive environment due to its roughness, the
capacitance is reported using a CPE (constant phase element).

Table 2. The parameters of EIS for mild steel in 1.0 M HCl with different inhibitor concentrations at
30 ◦C.

Inhi. Conc., (M) Rs, ohm cm2 Rct, ohm cm2 CPEdl (Y0 × 10−5),
ohm−1 cm−2 Sn IE (%)

Blank – 77.0 – 0.0

1 × 10−4 1.550 239.0 39.40 71.08

2 × 10−4 1.560 259.0 22.20 75.0

3 × 10−4 1.630 328.0 17.70 77.0

5 × 10−4 1.730 376.0 23.30 80.0
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3.2. Weight Loss Measurements

The corrosion rate and protection efficiency of the inhibitor at various concentrations
(1× 10−4, 2× 10−4, 3× 10−4, and 5× 10−4 M) and different temperatures (30–60 ◦C) were
evaluated by gravimetrical techniques, and the results are demonstrated in Figures 3 and 4.
The protection efficiency increased by increasing the inhibitor concentration, and a decrease
in the corrosion rate was shown at all studied concentrations, as illustrated in Figure 3.
Hence, it is obvious that the protection efficiency was concentration-dependent. With
increasing inhibitor concentration, considerable inhibitor molecules’ numbers are adsorbed
on the tested coupon surface, which appears in increased protection performance. The
adsorbed inhibitor molecules control and/or block the reaction sites and hence protect
the coupon surface from the corrosive solution. While the inhibitor has significant ion
pairs of electrons, such as ion pairs on sulphur, and nitrogen atoms, and the pi-electrons,
that are coordinately bonded with iron atoms on the coupon surface, they could retard
corrosion. For the inhibitor concentration of 5× 10−4 M and 30 ◦C, and an immersion time
of 5 h, the inhibitor exhibited the highest protection efficiency of 91.8%. The experimental
findings as in Figure 3 revealed that the mass loss and the rate of corrosion increased with
the exposure period for the tested coupons and at all the studied concentrations of the
tested inhibitor [25]. At 24 h of exposure period in the presence of the tested inhibitor, the
corrosion rate increased slightly. Thus, the slight increase in corrosion could be attributed to
the increased immersion time in the acidic solution. Figure 3 shows a plot of the corrosion
rate with inhibition efficiency (%) versus time (hours) for various inhibitor concentrations.
From these results, it can be seen that the inhibition efficiency increased with increasing
time significantly for all levels of inhibitor concentration. Then, a decrease in the value was
observed after 24 h and depending on the concentration of the inhibitor. The corrosion rate
and protection efficiency were determined according to Equations (2) and (3):

CR =
87600W

atd
(2)

where W represents the coupon weight loss in “g”, a refers to the coupon surface area in
cm2, t signifies to the immersion period in h, and d is the coupon density in g/cm3.

IE% =

[
CR(o) − CR(i)

CR(o)
× 100

]
(3)

where CR(o) and CR(i) are the corrosion rate in the absence and presence of the inhibitor,
respectively.

The current inhibitor’s (N-2-methylbenzylidene-4-antipyrineamine) inhibitory effi-
ciency in hydrochloric acid solution can also be evaluated with that of other published
inhibitors that are using corrosion inhibitors generated from antipyrine to protect mild
steel from corrosion. The majority of antipyrine studied exhibit substantial inhibitory
effectiveness, as seen in Table 3. To draw a parallel with the current inhibitor, N-2-
methylbenzylidene-4-antipyrineamine has the highest inhibition performance of the an-
tipyrine listed in Table 3 [26–31], and a performance comparable to that stated in [28,30].
The corrosion rate was lowered and the corrosion inhibition performance increased as the
concentration of N-2-methylbenzylidene-4-antipyrineamine increased. This may be due
to the fact that as the N-2-methylbenzylidene-4-antipyrineamine concentration rises, the
inhibitor’s adsorption coverage on steel surfaces increases.
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Table 3. The performance of N-2-methylbenzylidene-4-antipyrineamine inhibition was evaluated
numerically to that of other antipyrine that had previously been studied.

Inhibitor Inhibitor
Concentration IE% Refs.
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Table 3. Cont.
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11 × 10−6 M 41.7 [31]

The increase in surface coverage due to the adsorption of inhibitor molecules on the
mild steel surface is ascribed to the improvement in protective efficacy. The adsorption layer
then protects the mild steel surface from the acidic environment by blocking the active sites.
In comparison to the first examined antipyrine inhibitors in Table 3, N-2-methylbenzylidene-
4-antipyrineamine demonstrated superior protection against corrosion. The impacts of
steric hindrance and heteroatoms in the inhibitor molecular structure are linked to this
phenomenon. The best inhibiting efficiency was found when the inhibitor was added to the
corroding solution at a concentration of 0.0005 M. The inhibiting performance did not alter
much when the concentration was increased to 0.001 M. After 5 h of immersion, the greatest
corrosion inhibition efficiency of around 91 percent was observed at 0.0005 M concentration.
After 5 h of exposure time, there was no considerable rise in corrosion inhibition efficiency,
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and after 24 h, inhibition efficiency declined. This was due to the desorption of the examined
inhibitor molecules from the mild steel surface and the destabilization of the protective
barrier on the mild steel surface [32]. After 24 h of immersion, there was a significant
decrease in inhibitory performance.

Temperature highly affects the corrosion rate and the inhibition efficiency, and with in-
creasing temperature, the rate of corrosion increases exponentially in an acidic environment.
To understand the protection performance of the tested inhibitor at various temperature
degrees, 30–60 ◦C, the corrosion rate and inhibition efficiency were investigated (Figure 4).
The tested inhibitor revealed the highest inhibition efficiency at 30 ◦C, which regularly
declined with an increase in temperature. The tested inhibitor exhibited lower protection
performance at the maximum temperature. This result attends to the fact that the rise in
temperature did not support physisorption (physical interactions), therefore reducing the
protection performance.

The corrosion process activation parameters were determined according to Arrhenius
Equation (4):

logCR = logk−
{

Ea

2.303RT

}
(4)

where Ea is the activation energy, k represents the frequency factor, T is the temperature,
and R refers to the gas constant.

The value of the metal coupon in 1 M hydrocloric acid solution without and with
various concentrations of the examined inhibitor have been evaluated based on the plot
between log CR and 1/T as seen in Figure 5 [33]. The Ea was computed and given in
Table 4 using a linear graph with a slope of −Ea/2.303R as shown in Figure 5. As the
temperature rose, the adsorption of inhibitor molecules on the metal surface decreased,
and the corrosion rate rose in response. The adsorption of inhibitor molecules on the mild
steel surface diminished as the temperature rose, and the rate of corrosion rose in response.
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Table 4. The values of isothermic parameters for mild steel in 1 M HCl without and with the addition
of various concentrations of the tested inhibitor.

C (M) Ea (kJ·mol−1) ∆Ha (kJ·mol−1) ∆Sa (J·mol−1K−1)

Blank 63.11 60.43 57.58
0.0001 49.37 45.77 131.74
0.0002 46.28 43.17 119.32
0.0003 45.21 42.48 114.73
0.0005 43.84 41.32 109.99

The fact that the inhibitory processes have a greater activation energy than the un-
inhibited indicates that the dissolution of mild steel occurs gradually. Moreover, as the
concentration of the inhibitor rose, the activation energies rose with it. This indicates that
the presence of the inhibitor creates a barrier to the corrosion reaction, which increases with
increasing concentration. At higher temperatures, the adsorption of the inhibitor molecules
on the metal surface decreases, and as a result, corrosion rates increase.

Based on Equation (5), a modified Arrhenius plot of logCR/T against 1/T for mild
steel dissolution in 1 M HCl enabled the determination the activation enthalpy (∆Ha ) and
the activation entropy (∆Sa) values:

log
{

CR
T

}
=

[{
log
{

R
Nh

}
+

{
∆Sa

2.303R

}}]
−
(

∆Ha

2.303RT

)
(5)

where N is the number of Avogadro and h is the of Plank constant.
Figure 6 shows a plot of log(CR/t) vs. 1/t. Table 4 shows the activation enthalpy

(∆Ha) and the activation entropy (∆Sa) values calculated from the slope and intercept of
Figure 6. The positive ∆Ha

(
63− 43 kJ·mol−1

)
values illustrate the endothermic nature of

mild steel dissolving. The kinetic characteristics of activation are mostly responsible for
the low corrosion rate, as seen by the increase in H with increasing inhibitor concentration.
The enthalpy of activation values in the absence (0.0 ppm) and in the presence of the tested
inhibitor (0.0005 M) were 60 kJ·mol−1 and 41 kJ·mol−1, respectively (Table 4), and were
obtained from the slope of Figure 6, whereas the entropy of activation values in the absence
and in the presence of the tested inhibitor were 57 J·mol−1 and 109 J·mol−1, respectively,
and were determined from the intercept of Figure 6. Positive ∆Ha values without and
with the addition of the tested inhibitor suggest that the mild steel dissolving process is
endothermic [34,35].
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3.3. Adsorption Isotherm

Generally, the ability of the investigated inhibitor molecules to be adsorbed on the
metallic surface determines their protective efficacy. As a result, it is critical to comprehend
the adsorption isotherm, which offers crucial information on the inhibitor molecules’
interactions with the surface of the metal. The nature and chemical structure of the
inhibitor molecules, and also how they are adsorbed on the metal surface (physisorp-
tion or chemisorption), influence the corrosion inhibitory mechanism of the metallic
surface [36–40]. The inhibitory concentrations and surface coverage (θ) were studied
using several adsorption techniques to determine the best adsorption behavior. In the 1 M
HCl solution, the equilibrium adsorption of the studied inhibitor obeyed the Langmuir
adsorption principle on the alloy. Surface coverage was related to inhibitor concentration
and equilibrium constant (Kads) in this Langmuir model, as shown in Equation (6)

C
θ
=

1
Kads

+ C (6)

Figure 7 shows a straight line generated by graphing C/θ versus C, with a linear
correlation coefficient (R2) close to one, indicating that the adsorption process of the exam-
ined inhibitor’s molecules in the acidic medium on the metallic surface fits the Langmuir
concept. The value of ∆Go

ads was calculated using Equation (7) [41]:

∆Go
ads = −2.303 RT log 55.5 Kads (7)

where R is the universal gas constant, T is the absolute temperature, and the 55.5 represents
the value of the molar concentration (mol·L−1) of water. Early investigations have shown
that if the value of ∆Go

ads is negative, the inhibitor molecule’s adsorption on the metalic
surface is a natural process [42]. In the present study, the value of ∆Go

ads for the tested
inhibitor is −33.85 kJ·mol−1, implying that the adsorption process is indeed physisorption
and chemisorption [43,44].
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3.4. Surface Morphology

The surface morphology investigation (SEM) for the mild steel coupons immersed
for 5 h in a solution of 1 M hydrochloric acid solution in the absence and presence of the
optimum concentration (5 × 10–4 M) of the N-2-methylbenzylidene-4-antipyrineamine
has been postulated in Figure 8. From the SEM images as in Figure 8a, it can be seen that
the significant damage on the mild steel surface was fulfilled with the corrosion product
while, with Figure 8b, after adding the optimum concentration of N-2-methylbenzylidene-
4-antipyrineamine, the mild steel surface became more smooth.
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3.5. Possible Mechanisms of Inhibition

Organic inhibitors, in general, work via adsorption to prevent the corrosion of mild
steel [45–49]. This includes adsorbed inhibitor molecules replacing adsorbed water molecules
and other corrosive substances on the surface of the mild steel [47–49]. The inhibition
mechanism is influenced by a number of variables [47–49]. The metallic surface charges and
the state of natural and/or synthetic organic molecules in an acidic solution, in particular,
have a significant impact on the adsorption mechanism [50]. The surface of mild steel in
the hydrochloric acid medium is positively charged, and anions (chloride ions) selectively
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adsorbed on the surface, according to previous research investigations [51,52]. Excess
electrons on the surface are created by various adsorbents, allowing cationic particles to be
adsorbed on the mild steel surface [47–52]. The investigated inhibitor would undoubtedly
be protonated in a 1 M hydrochloric acid environment and electrostatically pulled onto the
mild steel surface (physical adsorption). The physisorption process includes the following:
Cl in HCl was thought to first unite with the surface of the metal (positively charged)
via Coulomb force, and then the inhibitor molecule was adsorbed between the positively
charged molecular and negatively charged mild steel surface via ionic attraction. These
adsorbed molecules formed a monomolecular film when they reacted with [Fe(H2O)·2Cl].
To achieve stability, cations received electrons from the steel surface. The electron density of
N, and O atoms in the inhibitor molecule were enhanced by anions, which are considered
donating groups.

On the surface, nitrogen and/or oxygen heteroatoms could be liberated. Through
the donor–acceptor contact, the electron pair in the examined inhibitor molecules might
establish coordination and back-donating bonds with the iron atoms which have vacant
d-orbital in addition to π-electrons (chemical adsorption). Chemisorption is accomplished
through a mechanism known as retro-donation. As a result, a coating layer is applied
to the mild steel surface to shield it from the acidic media. The role of inhibitors is
chemically interpreted by absorbing them on steel surfaces, forming a protective thin
layer (blocking cathodic and/or anodic processes) or chemical bonding. This is due to the
metal’s interaction with the inhibitor molecules. The inhibitory process can be continued
using three adsorption mechanisms. The first is charged molecules that attract metals
electrostatically. The interaction between the surface and unbound electrons is the second
process. The metal surface and π-electron interaction is the final mechanism. Our mild steel
corrosion inhibitor may be explained in terms of the number of adsorption sites, charge
density, molecule size, inhibitor interaction with metal surface method, and ability to form
an insoluble complex in 1 M of HCl. Figure 1 shows the π-electrons implicated in both
unpaired electrons and double bonds on nitrogen and oxygen atoms derived from chemical
interactions with the metallic surface. Figure 9 illustrates the hypothesized inhibitory
mechanism. Figure 9 suggests the mechanism of corrosion inhibition of mild steel in 1 M
HCl medium by N-2-methylbenzylidene-4-antipyrineamine molecules. The existence of
N-2-methylbenzylidene-4-antipyrineamine layers on the steel surface prevented acidic ions
from penetrating the surface and thereby preserved the surface. N-2-methylbenzylidene-4-
antipyrineamine should have formed the protective surface coating via nitrogen and oxygen
heteroatoms as well as the pi-bonds. The physical adsorption of the examined inhibitor
molecules on the mild steel surface was caused by the electrostatically attractions of the
protonated N-2-methylbenzylidene-4-antipyrineamine molecules and the preadsorbed
counter chloride ions on the mild steel surface. Between these chemical groups and Fe’s
empty orbital, donor–acceptor interactions could occur. With any antibonding orbitals,
back-donation is also a possibility (Equations (8)–(10)).

Fe + Inhibitor↔ Fe(Inhibitor)ads (8)

Fe(Inhibitor)ads ↔ Fe++ + Inhibitor + 2e− (9)

(Inhibitor)aq + H2Oads ↔ (Inhibitor)ads + H2Oaq (10)
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4. Conclusions

The study’s findings can be summarized as follows:

1. A Schiff base derived from an environmentally beneficial molecule called antipyrine
was produced and tested as a mild steel corrosion inhibitor in a 1 M HCl solution at
temperatures ranging from 30 to 60 ◦C.

2. Although the investigated corrosion inhibitor has an inhibitory impact on mild steel
in the analyzed corrosive medium, the findings indicate that N-2-methylbenzylidene-
4-antipyrineamine is a significantly improved inhibitor. N-2-methylbenzylidene-
4-antipyrineamine, derived from the mass loss approach, protected the mild steel
surface by 91.8 percent at 30 ◦C.

3. The inhibitory efficacy of the tested inhibitor is shown to diminish as the temperature
rises from 30 to 60 ◦C. At 60 degrees Celsius, the inhibition efficiency decreases
marginally.

4. The synthesized N-2-methylbenzylidene-4-antipyrineamine has significant corrosion
inhibition efficiency in the mild steel in 1 M hydrochloric acid environment owing to
the presence of the highly efficient electronic sites (sulphur, nitrogen, and pi-bonds)
that block the active sites of mild steel.

5. The electrochemical impedance spectroscopy and weight loss techniques exhibited
that the protection performance increases with increasing the concentration.

6. The value of ∆Go
ads is negative, the inhibitor molecule’s adsorption on the metallic

surface is a natural process.
7. The value of ∆Go

ads is −33.85 KJ·mol−1, suggesting physisorption and chemisorption
adsorption mechanisms.

8. The adsorption of the tested inhibitor on the metal surface was found to obey the
Langmuir adsorption isotherm model.
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